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A polynomial parametrization of torus knots

P. -V. Koseleff and D. Pecker

UPMC Paris 6, 4, place Jussieu, F-75252 Paris Cedex 05,
{koseleff,pecker}@math.jussieu.fr

Abstract. For every odd integer N we give an explicit construction
of a polynomial curve C(t) = (x(t), y(t)), where deg x = 3, deg y =
N + 1 + 2

[

N

4

]

that has exactly N crossing points C(ti) = C(si) whose
parameters satisfy s1 < · · · < sN < t1 < · · · < tN . Our proof makes use
of the theory of Stieltjes series and Padé approximants. This allows us
an explicit polynomial parametrization of the torus knot K2,N .

keywords: Polynomial curves, Stieltjes series, Padé approximant, torus knots

1 Introduction

Let N be an odd integer. We look for a parametrized curve C(t) = (x(t), y(t)) of
minimal lexicographic degree such that C has exactly N crossing points, corre-
sponding to parameters (si, ti) such that

C(si) = C(ti), s1 < · · · < sN < t1 < · · · < tN . (1)

Here we look for curves with deg x = 3. As a consequence of Bézout theorem,
we have deg y ≥ N + 1. We have translated this problem into a problem on
real roots of certain real polynomials in one variable. In [KP] we proved that if
N > 3, there is no solution with deg y = N + 1. We have computed the first
examples and we have shown that the minimal degrees are deg y = N+1+2

[

N
4

]

for N = 3, 5, 7.

The purpose of this paper is to give an explicit construction at any order of such
curves with deg y = N + 1 + 2

[

N
4

]

.

In section 2., we first recall some properties of the Chebyshev polynomials. Our
construction is based on certain relations in the space spanned by some of these
polynomials.

The explicit construction is given in section 3. It involves some particular poly-
nomial basis whose existence is proved in section 6., using Stieltjes series theory
and Padé approximation theory (see [BG]).

In section 5., we will show that the algebraic relation between cos 2θ and cos 6θ
may be seen as a Stieltjes series, namely some algebraic hypergeometric function.
We will recall some properties of these functions and their approximations by
rational functions in section 6., the so-called Padé approximants.
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(s1, t1) (s2, t2) (sN , tN)

Fig. 1. Curve of degree (3, 19) in logarithmic scale in y

The polynomial curves whose existence are proved are of interest for an explicit
polynomial parametrizations of the (2, N)-type torus knotK2,N (see [Ad,KP,Mu,RS]).
In section 4., we give an explicit parametrizations for the knots K2,N . They are
symmetric with respect to the y-axis and of smaller degrees than those already
known.

2 Some properties of the Chebyshev polynomials

Definition 1 (Monic Chebyshev polynomials).

If t = 2 cos θ, let Tn(t) = 2 cos(nθ) and Vn(t) =
sin((n+ 1)θ)

sin θ
.

Tn and Vn are both monic and have degree n. It is convenient for our problem
to consider them as basis of R[t].

Looking for a polynomial curve C(t) = (x(t), y(t)) where deg x = 3, one can
suppose that

x(t) = T3(t), y(t) = Tm(t) + am−1Tm−1(t) + · · · + a1T1(t).

In [KP] (Lemma A) we have shown that if s 6= t are real numbers such that
T3(s) = T3(t), then for any integer k we have

Tk(t) − Tk(s)

t− s
=

2√
3

sin
kπ

3
Vk−1(s+ t) = εkVk−1(s+ t). (2)

We proved the following:
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Proposition 2. Let εk =
2√
3

sin
kπ

3
= Vk−1(1) and

Rm = εmVm−1 + εm−1am−1Vm−2 + · · · + ε1a1V0. (3)

— If Rm has exactly N distinct roots −1 < u1 < · · · < uN < 1 and no other in
[−2, 2], then

C(t) = (T3(t), Tm(t) + am−1Tm−1(t) + · · · + a1T1(t))

has exactly N crossing points.
— Let ui = 2 cosαi, then

si = 2 cos(αi + π/3), ti = 2 cos(αi − π/3) (4)

are the parameters of the crossing points and satisfy

s1 < · · · < sN < t1 < · · · < tN .

We look for polynomials Rm in R[t] having N roots that are linear combinations
of the Vk, where k is not equal to 2 [mod 3]. We will consider separately E ⊂ R[t]
spanned by V6k+1 and V6k+3 and Ẽ spanned by the V6k and V6k+4. We first
describe these vectorial spaces as direct sums:

Lemma 3. E = T1 · R[T6] ⊕ T1 · T2 ·R[T6], Ẽ = 1 ⊕ T3 · E.

Proof. — From sin(x+ y)− sin(x− y) = 2 cos(x) sin(y) we deduce that for every
integers n and p, we have

Vn+p − Vn−p = Vp−1Tn+1.

We thus deduce that V1 = T1 = t, V3 = T1 · T2 and

V6k+1 − V6k−3 = T1 · T6k, V6k+3 − V6k−5 = V3 · T6k = T1 · T2 · T6k.

From T6k = Tk(T6), we deduce by induction that

E = T1 · R[T6] ⊕ T1 · T2 ·R[T6].

— From sin(x+ y) + sin(x − y) = 2 cos(y) sin(x), we get

Vn+3 + Vn−3 = T3Vn

so
V6k+6 + V6k = T3V6k+3, V6k+4 + V6k−2 = T3V6k+1.

As V0 = 1 and V−2 = −1, we thus deduce by induction that Ẽ = 1 ⊕ T3 ·E. ⊓⊔

Definition 4. Let us define for k ≥ 0,

W̃2k = V6k, W2k = V6k+1, W2k+1 = V6k+3, W̃2k+1 = V6k+4.
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We have degWn = 2n+ 2
[

n
2

]

+ 1 and E = vect (Wk, k ≥ 0).

We have deg W̃n = 2n+ 2
[

n+1
2

]

and Ẽ = vect (W̃k, k ≥ 0).

Using the Padé approximation theory, we will prove in section 6 (p. 15)

Theorem 5. There exists a sequence of odd polynomials Cn in E such that

vect (W0, . . . ,Wn) = vect (C0, . . . , Cn), Cn = t2n+1Fn, Fn(0) = 1.

Furthermore Fn(t) > 0 when t ∈ [−2, 2].

We find, up to some multiplicative constant,

C0 = t = W0,

C1 = t3 = W1 + 2W0,

C2 = t5
(

t2 − 6
)

= W2 − 10W1 − 16W0,

C3 = t7
(

t2 − 9/2
)

= W3 + 7/2W2 − 15W1 − 21W0,

C4 = t9
(

t4 − 12 t2 + 33
)

= W4 − 22W3 − 56W2 + 176W1 + 231W0,

C5 = t11
(

t4 − 102

11
t2 +

234

11

)

= W5 +
52

11
W4 − 40W3 −

910

11
W2 + 208W1 + 260W0.

We deduce from theorem 5 and lemma 3 the following useful result for the
construction of the height function z(t) of our knots (see section 4.).

Corollary 6. The sequence C̃0 = 1, C̃n = −1

3
T3Cn−1 of even polynomials in Ẽ

satisfies:

vect (W̃0, . . . , W̃n) = vect (C̃0, . . . , C̃n), C̃n = t2nF̃n, F̃n(0) = 1.

Furthermore F̃n(t) > 0 when t ∈ [−2, 2].

3 Construction of the prescribed curves

We will construct polynomials Rm in E with N = 2n + 1 real roots in [−1, 1]
and no other roots in [−2, 2]. They will be chosen as a slight deformation of Cn.
Let us first show properties of the polynomials Cn.

Lemma 7. Let 0 < u1 < · · · < un < 1 be real numbers. For ε being small
enough,

1. there exists a unique (a0, . . . , an−1) such that {0,±εu1, . . . ,±εun} are roots
in [−1, 1] of

An(ε) = Cn + an−1Cn−1 + · · · + a0C0.

2. {0,±εu1, . . . ,±εun} are the only real roots in [−2, 2] of An(ε).
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Proof. Looking for An(ε) with roots 0 and ±εui is equivalent to the linear system











C0(εu1) C1(εu1) · · · Cn−1(εu1)
C0(εu2) · · · Cn−1(εu2)

...
...

C0(εun) C1(εun) · · · Cn−1(εun)





















a0

a1

...
an−1











= −











Cn(εu1)
Cn(εu2)

...
Cn(εun)











whose determinant is ε(1+3+···+2n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

u1F0(εu1) u
3
1F1(εu1) · · · u2n−1

1 Fn−1(εu1)
u2F0(εu2) · · · u2n−1

2 Fn−1(εu2)
...

...
unF0(εun) u3

nF1(εun) · · · u2n−1
n Fn−1(εun)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

It is equivalent to the classical Vandermonde-type determinant when ε→ 0:

εn2

∣

∣

∣

∣

∣

∣

∣

∣

∣

u1 u
3
1 · · · u2n−1

1

u2 · · · u2n−1
2

...
...

un u
3
n · · · u2n−1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= εn2

u1 · · ·un

∏

1≤i<j≤n

(u2
j − u2

i ) 6= 0.

Therefore, this system has a unique solution.

— Using Cramer formulas, we get ak(ε) =
Gk(ε)

Gn(ε)
where

Gk(ε) = det(Cij
(εui))1≤i,j≤n

and i1 < i2 < · · · < in ∈ {0, . . . , n} − {k}. We get

Gk(ε) = ε2(i1+···+in)+n

∣

∣

∣

∣

∣

∣

∣

∣

∣

u2i1+1
1 Fi1(εu1) u

2i2+1
1 Fi2(εu1) · · · u2in+1

1 Fin
(εu1)

u2i1+1
2 Fi1(εu2) · · · u2in+1

2 Fin
(εu2)

...
...

u2i1+1
n Fi1(εun) u2i2+1

n Fi2(εun) · · · u2in+1
n Fin

(εun)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≃
ε→0

ε(n+1)2−(2k+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

u2i1+1
1 u2i2+1

1 · · · u2in+1
1

u2i1+1
2 · · · u2in+1

2
...

...
u2i1+1

n u2i2+1
n · · · u2in+1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

— We thus deduce that ak(ε) = O(ε2(n−k)) and therefore

lim
ε→0

An(ε) = Cn = t2n+1Fn.

Let An(ε) = t
∏n

i=1(t
2 − ε2u2

i )Dn(ε). We deduce that lim
ε→0

Dn = Fn. Let ε be

small enough, we get Dn(t) > 0 for t ∈ [−2, 2] because of the compactness of
[−2, 2]. ⊓⊔
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Proposition 8. Let N = 2n+ 1 be an odd integer. There exists a curve C(t) =
(x(t), y(t)), where deg x = 3 and deg y = N + 2

[

N
4

]

+ 1, such that C has exactly
N crossing points corresponding to parameters (si, ti) such that

C(si) = C(ti), s1 < · · · < sN < t1 < · · · < tN . (5)

Proof. Let N = 2n + 1. Let us choose ε and 0 < u1 < · · · < un, such that
there exists a polynomial An(ε) ∈ vect (W0, . . . ,Wn) having exactly N distinct
roots {0,±εu1, . . . ,±εun} in [−2, 2]. It has degree degWn = 2n + 2

[

n
2

]

+ 1 =

N + 2
[

N
4

]

= m− 1. We have

An = Wn + · · · + a0 = Vm−1 + εm−1am−1Vm−2 + · · · + a2V1.

Using proposition 2, the curve

x(t) = T3(t), y(t) = εmTm(t) + am−1Tm−1(t) + · · · + a2T2(t)

has the required properties. ⊓⊔

Example 9 (N = 9). We chose

y(t) = −27

10
T14 + 10T12 − 23T10 + 42T8 − 64T6 + 85T4 − 100T2 + 112.

The roots of Q are u0 = 0,±u1 = .355,±u2 = .584,±u3 = .785,±u4 = 1.073.
We obtain a polynomial parametrization of degree (3, 14). Note that we choose
u4 > 1 for a nicer picture (see fig. 2). Note that the parameters of the crossing
points satisfy s1 < · · · < s9 < t1 < · · · < t9.

4 Construction of the torus knots

If N = 2n + 1 is odd, the torus knot K2,N of type (2, N) is the boundary of
a Moebius band twisted N times (see [Ad,Mu] and fig. (3)). The purpose of
this section is to give an explicit construction of a polynomial curve C(t) =
(x(t), y(t), z(t)) that is equivalent (in the one point compactification S3 of the
space R3) to the torus knot K2,N .

Vassiliev (see [Va]) proved that any non-compact knot type can be obtained
from a polynomial embedding t 7→ (f(t), g(t), h(t)), t ∈ R, using the Weierstrass
approximation theorem.

Shastri [Sh] gave a detailed proof of this theorem, and a simple polynomial
parametrizations of the trefoil and of the figure eight knot. A. Ranjan and R.
Shukla [RS] have found small degree parametrizations for K2,N , N odd. They
proved that these knots can be attained from polynomials of degrees (3, 2N −
2, 2N − 1).

In [KP], we proved that it is not possible to attain the torus knot K2,N with
polynomial of degrees (3, N + 1,m) when N > 3. We gave explicit parametriza-
tion of degrees (3, N +2

[

N
4

]

+1, N +2
[

N+1
4

]

) for N = 3, 5, 7, 9 and showed that
they were of minimal lexicographic degree for N ≤ 7.
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Fig. 2. N = 9. Curve of degree (3, 14)

A sufficient condition is to construct a parametrized curve C(t) = (x(t), y(t), z(t))
such that (x(t), y(t)) has exactly N = 2n + 1 crossing points corresponding to
parameters

s1 < · · · < sN < t1 < · · · < tN

and such that

x(ti) = x(si), y(ti) = y(si), (−1)i(z(ti) − z(si)) > 0, i = 1, . . . , N.

We look first for minimal degree in x. x(t) must be nonmonotonic and therefore
has degree at least 2. In case when deg x = 2, we would have constant ti + si

and not the condition (1). We will give a construction for degx = 3.

Proposition 10. For any odd integer N = 2n+ 1, there exists a curve C(t) =
(x(t), y(t), z(t)) of degree (3, N + 2

[

N
4

]

+ 1, N + 2
[

N+1
4

]

) such that the curve
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Fig. 3. K2,N , N = 3, 5, 7.

(x(t), y(t)) has exactly N crossing points

x(ti) = x(si), y(ti) = y(si), s1 < · · · < sN < t1 < · · · < tN

and
(−1)i(z(ti) − z(si)) > 0, i = 1, . . . , N.

Proof. — Following the construction of section 3., we first choose ε to be small
enough and 0 < c1 < · · · < cn < ε < 1/2, such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

C0(c1) C1(c1) · · · Cn−1(c1)
C0(c2) · · · Cn−1(c2)

...
...

C0(cn) C1(cn) · · · Cn−1(cn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Consider

un+1 = 0, ui = 2 cosαi = −cn+1−i, un+1+i = 2 cosαn+1+i = ci, i = 1, . . . , n.

We thus have −1 < u1 < . . . < uN < 1. Let

si = 2 cos(αi + π/3), ti = 2 cos(αi − π/3), i = 1, . . .N.

— Using the proposition (8), there is a polynomial

y(t) = Tm(t) + am−1Tm−1(t) + · · · + a1T1(t),

of degree m = N + 2
[

N
4

]

+ 1 such that

x(ti) = x(si), y(ti) = y(si), i = 1, . . .N.

— As for lemma 7, there exists a unique (b0, . . . , bn) such that

Bn = bnC̃n + bn−1C̃n−1 + · · · + b0C̃0

satisfies Bn(ui) = (−1)i, i = 1, . . .N . Namely, (b0, . . . , bn) is the solution of the
system

bnC̃n(ui) + bn−1C̃n−1(ui) + · · · + b0C̃0(ui) = (−1)i, i = 1, . . . , N.
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Because ui = −uN+1−i and C̃k are even polynomials, the system is equivalent
to











C̃0(un+1) C̃1(un+1) · · · C̃n(un+1)

C̃0(un+2) · · · C̃n(un+2)
...

...

C̃0(uN ) C̃1(uN ) · · · C̃n(uN )





















b0
b1
...
bn











=











(−1)n+1

(−1)n+2

...
(−1)N











.

From C̃0 = 1, C̃n = −1

3
T3Cn−1 and Ck(un+1) = 0, we deduce that the determi-

nant of the previous system is

± 1

3n
T3(c1) · · ·T3(cn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

C0(c1) C1(c1) · · · Cn−1(c1)
C0(c2) · · · Cn−1(c2)

...
...

C0(cn) C1(cn) · · · Cn−1(cn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

Bn is a linear combination of (W̃n, . . . , W̃0) and it has degree m′ = N +2
[

N+1
4

]

:

Bn = b′m′Vm′ + · · · + b′0V0.

Consider now z(t) = εm′+1b
′
m′Tm′+1 + · · · + ε1b

′
0T1, we have using eq. (2):

z(ti) − z(si)

ti − si
= Bn(ui) = (−1)i.

Because ti > si we deduce that z(ti) − z(si) has alternate signs. ⊓⊔

5 T2 as a power series of T6 + 2

Looking for identities in the vectorial space R[T6] + T2 · R[T6], we show first
some relation between T2 and T6.

Lemma 11. For t ∈ [−1, 1], we have

T2 + 2 = 4 sin2

(

1

3
arcsin

√

T6 + 2

4

)

.

Proof. Let t ∈ [−1, 1] and x ∈ [π/3, 2π/3] such that t = 2 cosx.

We get 3x− π ∈ [0, π] and cos(3x− π) = −1

2
T3 so

x =
π

3
+

1

3
arccos

(

−T3

2

)

=
π

3
+

1

3

(

π

2
+ arcsin

T3

2

)

=
π

2
+

1

3
arcsin

T3

2
.

We thus have

T1 = 2 cos

(

π

2
+

1

3
arcsin

T3

2

)

= −2 sin

(

1

3
arcsin

T3

2

)

.

We thus deduce the lemma from T2 = T 2
1 − 2 and T6 = T 2

3 − 2. ⊓⊔
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Lemma 12. Let ϕ(u) = 4 sin2

(

1

3
arcsin

√
u

)

. For u ∈ [0, 1], we have

ϕ(u) =
∑

n≥1

ϕnu
n where ϕ1 =

4

9
, ϕn+1 =

2

9

(3n+ 1)(3n− 1)

(n+ 1)(2n+ 1)
ϕn.

Proof. We have ϕ(u) = 2 − 2 cos

(

2

3
arcsin

√
u

)

. We deduce that























ϕ(u) = −2A+ 2

d

du
ϕ(u) =

2

3
B

d2

du2
ϕ(u) = −2

9

1

(u− u2)
A+

1

3

(2u− 1)

(u − u2)
B

(6)

where A = cos

(

2

3
arcsin

√
u

)

and B =

sin

(

2

3
arcsin

√
u

)

√
u− u2

.

Eliminating A and B from system (6), we find that

− 4 + 2ϕ (u) + 9 (1 − 2 u)
d

du
ϕ (u) + 18

(

u− u2
) d2

du2
ϕ (u) = 0. (7)

ϕ has a power series expansion and we get from (7)

ϕ0 = 0, ϕ1 =
4

9
, ϕn+1 =

2

9

(3n+ 1)(3n− 1)

(n+ 1)(2n+ 1)
ϕn.

⊓⊔

Remark 13. There is no need to know explicitely ϕ with the lemma 11. One
can see from 4u = v(v − 3)2 that ϕ is an algebraic function. It is therefore the
solution of a differential equation we can find using Euclid algorithm. Recursion
formula for the ϕn and the differential equation can be easely obtained using
the Maple package gfun (see [SZ]).

Definition 14. Let ∆ defined by ∆fn = fn+1 − fn. We say that fn is totally
monotone when for every integer k and every n ≥ 1, we have

(−1)k∆kfn > 0.

Example 15. — Let fn = exp(−n). We get (−1)k∆kfn = fn(1 − 1/e)k.

— Let fn =
1

n
. We get (−1)k∆kfn = fn

1
(

n+k
k

) .

They are both totally monotone.

Proposition 16. ϕn is totally monotone.
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Proof. We will show that

(−1)k∆kϕn = ϕn
Pk(n)

(n+ 1) · · · (n+ k) · (2n+ 1) · · · (2n+ 2k − 1)
> 0.

— We get

∆ϕn = ϕn+1 − ϕn = ϕn

(

2(3n− 1)(3n+ 1)

9(n+ 1)(2n+ 1)
− 1

)

= −ϕn
3n+ 11/9

(n+ 1)(2n+ 1)
.

Suppose now that (−1)k∆kϕn = ϕn
Pk(n)

(n+ 1) · · · (n+ k) · (2n+ 1) · · · (2n+ 2k − 1)
.

We thus deduce

(−1)k+1∆k+1ϕn = −∆
[

ϕn
Pk(n)

(n+ 1) · · · (n+ k) · (2n+ 1) · · · (2n+ 2k − 1)

]

= ϕn
Pk(n)

(n+ 1) · · · (n+ k) · (2n+ 1) · · · (2n+ 2k − 1)
−

ϕn+1
Pk(n+ 1)

(n+ 2) · · · (n+ k + 1) · (2n+ 3) · · · (2n+ 2k + 1)

= ϕn
(n+ k + 1)(2n+ 2k + 1)Pk(n) − 2(n2 − 1/9)Pk(n+ 1)

(n+ 1) · · · (n+ k + 1) · (2n+ 1) · · · (2n+ 2(k + 1) − 1)
.

We thus obtain

(−1)k∆kϕn = ϕn
Pk(n)

(n+ 1) · · · (n+ k) · (2n+ 1) · · · (2n+ 2k − 1)
,

where P0 = 1 and

Pk+1(n) = (n+ k + 1)(2n+ 2k + 1)Pk(n) − 2(n2 − 1/9)Pk(n+ 1).

— We will show now by induction that Pk = akX
k + · · · + a0 where ak > 0.

Suppose it is true for a given k, we thus deduce that

Pk+1 = (X + k + 1)(2X + 2k + 1)(akX
k + ak−1X

k−1 + · · ·) −
2(X2 − 1/9)(akX

k + (ak−1 + kak)Xk−1 + · · ·)
= 2akX

k+2 + ((4k + 3)ak + 2ak−1))X
k+1 + · · · −

[

2akX
k+2 + (2ak−1 + 2kak)Xk+1 + · · ·

]

= (2k + 3)akX
k+1 + · · · . (8)

Pk is a polynomial of degree k whose leading coefficient is 1 · 3 · · · (2k + 1).

— Let us prove now by induction the following

(−1)iPk(−i) > 0, i = 0, . . . , k.

This is true for k = 0.
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Suppose now it is true for Pk. Intermediate values theorem says that Pk has
exactly k real roots in ] − k, 0[, so Pk(x) > 0 when x ≥ 0 or when x+ k ≤ 0.

Let us compute

Pk+1(0) = (k + 1)(2k + 1)Pk(0) + 2/9Pk(1) > 0

For i = 1, . . . , k :

(−1)iPk+1(−i) = (k−i+1)(2(k−i)+1)(−1)iPk(i)+2(i2−2/9)(−1)i−1Pk(−(i−1)) > 0.

For i = −(k + 1) we get

(−1)k+1Pk+1(−(k + 1)) = 0 − 2((k + 1)2 − 2/9)(−1)k+1Pk(−k) > 0

We thus deduce that (−1)iPk+1(−i) > 0 for i = 0, . . . , k + 1.

— We thus deduce that Pk has exactly k roots in ]−k, 0[ so Pk(n) is nonnegative
for any integer n. ⊓⊔

Definition 17. f(z) =
∑

n≥1 fnz
n is a Stieltjes series if for every n ≥ 1 and

m ≥ 0, one has
∣

∣

∣

∣

∣

∣

∣

∣

∣

fn fn+1 · · · fn+m

fn+1 fn+2 · · · fn+m+1

...
...

fn+m fn+m+1 . . . fn+2m

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0.

Remark 18. This last condition is related to the problem of Hamburger mo-
ments. It is the Stieltjes condition. The totally monotonicity is related to the
Hausdorff condition (see [Ha]).

The Hausdorff condition and the Stieltjes condition are equivalent if the series
is not a rational function (see [BG], p. 194 and the proof of Schönberg, [Wa], p.
267 or [Sc]). We thus deduce that

Theorem 19. ϕ(z) =
∑

n≥1 ϕnz
n is a Stieltjes series.

Proof. ϕ(u) is an algebraic function that satisfies 4u = ϕ(ϕ− 3)2. Suppose that
ϕ = p/q where p(u) and q(u) are relatively prime polynomials in u, then we
would have 4uq3−p3 +6p2q−9pq2 = 0 and p would divide u and q would divide
1. We would have ϕ(u) = λu and it is not the case. Thus ϕ is not a rational
function and is therefore a Stieltjes function. ⊓⊔

Remark 20. In example (15), the sequence exp(−n) is totally monotonic. But
∑

n exp(−n)zn =
1

1 − e · z is a rational function and the condition (17) does not

hold.
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Remark 21. ϕ(u) = 2 − 2F (1/3,−1/3, 1/2;u) where F (a, b, c; z) is the hyperge-
ometric function. It results from eq. (7) that is known as the hypergeometric
equation ([BG,Wa])

(

u− u2
) d2

du2
f (u) + (c− (1 + a+ b)u)

d

du
f (u) − ab f (u) = 0.

for ϕ− 2 = −2f , a = −b =
1

3
, c =

1

2
.

6 Padé approximation

Rational approximations of Stieltjes series have remarkable properties. Let us
remind the following construction of Padé approximants:

Theorem 22 (Padé approximant). Let f(x) =
∑

k≥1 fkx
k be a Stieltjes se-

ries and consider two integers m ≤ n. There is a unique solution (Pn, Qm) ∈
Rn[x] × Rm[x], such that

Qm(0) = 1, Pn − fQm = 0 [mod xn+m+1]. (9)

Furthermore we have degPn = n and degQm = m.

Proof. Let us write

Pn = p0 + · · · + pnx
n, Qm = q0 + q1x+ · · · + qmx

n.

Eq. (9) gives



















p0 = f0,
p1 = f0q1 + f1q0

...
pn = fn−mqm + fn−m+1qm−1 + · · · + fnq0,

(10)



















0 = fn−m+1qm + fn−m+2qm−1 + · · · + fn+1q0
0 = fn−m+2qm + fn−m+3qm−1 + · · · + fn+2q0

...
0 = fnqm + fn+1qm−1 + · · · + fm+nq0.

(11)

The last m×m system (11) is











fn−m+1 fn−m+2 · · · fn

fn−m+2 fn−m+3 · · · fn+1

...
...

fn fn+1 . . . fm+n−1





















qm
qm−1

...
q1











= −q0











fn+1

fn+2

...
fm+n











(12)

and therefore has a unique solution because f is a Stieltjes series and q0 = 1.
The first system (10) is then solved for p0, . . . , pn.
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— System (11) may be also written










fn−m+2 fn−m+3 · · · fn+1

fn−m+3 fn−m+4 · · · fn+2

...
...

fn+1 fn+2 . . . fm+n





















qm−1

qm−2

...
q0











= −qm











fn−m+1

fn−m+2

...
fn











.

We thus deduce that if qm = 0 then Qm = 0 and Qm(0) = 0.

— With the last equation of (10) and (11), we have










fn−m fn−m+1 · · · fn

fn−m+1 fn−m+2 · · · fn+1

...
...

fn fn+1 . . . fm+n





















qm
qm−1

...
q0











=











pn

0
...
0











.

We thus deduce that pn 6= 0. ⊓⊔

Remark 23. The system (12) shows that if Qm(0) = 0, then Qm = 0.

Definition 24. We say that f [n/m] = Pn/Qm is the Padé approximant of order
(n,m) of f .

We will make use of a very useful theorem concerning Stieltjes series.

Theorem 25. Let f(x) be a Stieltjes series with radius of convergence R and
let us denote by f [n/m] its Padé approximant Pn/Qm. Then

1. Qm has exactly m real roots in ]R,+∞[.

2. Let f [n/m](x) =
∑

k≥1 f
[n/m]
k xk. We have

(a) for 1 ≤ k ≤ n+m, 0 < f
[n/m]
k = fk.

(b) 0 ≤ f
[n/m]
n+m+1 < fn+m+1.

(c) for k ≥ n+m+ 1, 0 ≤ f
[n/m]
k ≤ fk.

Proof. The assertion (1) is proved in [BG], p. 220. Note that the authors use
the function f(−z). Assertion (2a) is a consequence of the Padé approximation
definition. Assertion (2c) is proved in [BG], p. 212. Note that the authors have

shown that 0 ≤ f
[n/m]
k ≤ fk. Suppose now that f

[n/m]
n+m+1 = fn+m+1. From theo-

rem 22, we would have degPn + degQm = n+m + 1 and this is not the case.

We thus have f
[n/m]
n+m+1 < fn+m+1. ⊓⊔

We thus deduce

Corollary 26. Let m ≤ n. There are polynomials Pn ∈ Rn[u], Qm ∈ Rm[u]
and Fn,m ∈ R[v] such that

Qm(u)v − Pn(u) = vn+m+1Fn,m(v),

where Fn,m(0) = 1. Furthermore, we have Fn,m(v) > 0 when v ∈ [0, 1], degPn =
n, degQm = m and Qm(u) > 0 for u ∈ [0, 1].
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Proof. ϕ is a Stieltjes series and because
ϕn+1

ϕn
≃

n→∞
1 − 3

2n
, we deduce that its

radius of convergenceR is 1 and that
∑

n≥1 ϕn = ϕ(1) = 1. Let ϕ[n/m] = Pn/Qm

be the Padé approximant of ϕ, we deduce that

ϕ(u) − ϕ[n/m](u) =
∑

k≥n+m+1

(ϕk − ϕ
[n/m]
k )uk = un+m+1ψn,m(u), 0 ≤ u ≤ 1.

We have ψn,m(u) > 0 for u ∈ [0, 1]), from theorem 25, (2b). From Qm(0) = 1
and theorem 25, (1) we get Qm(u) > 0 for u ∈ [0, 1], and

vQm(u) − Pn(u) = un+m+1ψn,m(u)Qm(u) > 0.

On the other hand, as 4u = v(v− 3)2 ≃
v→0

9v, we deduce that vQm(u)−Pn(u) is

a polynomial in v with 0 as root of order n+m+ 1. We deduce that

vQm(u) − Pn(u) = vn+m+1Fn,m(v),

where Fn,m is a polynomial. ⊓⊔
We deduce

Proposition 27. There exists a family Cn in vect (W0, . . . ,Wn), such that

Cn = t2n+1Fn, Fn(0) = 1.

Furthermore, degCn = 2n+ 2
[

n
2

]

+ 1 and Fn(t) > 0 for t ∈ [−2, 2].

Proof. Let us consider

Ck,l(t) = vQl(u) − Pk(u) = vk+l+1Fk,l(v)

given by corollary 26. Note that Ql(u) > 0 for u ∈ [0, 1].

— If t ∈ [−1, 1], we have u, v ∈ [0, 1] and the announced result by corollary 26.

— We have u([1, 2]) = u([−2,−1]) = u([0, 1]) = [0, 1]. Let |t| ∈ [1, 2]. There
exists t1 ∈]0, 1], such that u = u(t) = u(t1) = u1 and we have v = v(t) = t2 ≥
t21 = v(t1) = v1. We deduce

Ck,l(t) = vQl(u) − Pk(u) = vQl(u1) − Pk(u1)

≥ v1Ql(u1) − Pk(u1) > 0.

In conclusion, for t ∈ [−2, 2], we have Fk,l(t) > 0.

— Ql(u) ∈ (T2 + 2)Rl[T6 + 2] and Pk ∈ Rk[T6 + 2]. We thus deduce that
Ck,l ∈ R[T6] ⊕ T2R[T6]. Note that degCk,l = max(6k + 2, 6l).

— If n = 2k + 1, let Cn = t · Ck,k. If n = 2k, let Cn = t · Ck,k−1. Cn has degree
2n+ 2

[

n
2

]

+ 1 and therefore Cn ∈ vect (W0, . . . ,Wn). ⊓⊔
Remark 28. We have proved the existence of Cn. This is an upper-triangular
basis of E with respect to the Wi. It is unique and it can be computed by simple
LU-decomposition of the matrix whose lines are the Wi.
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7 Conclusion

We have shown in this paper the existence of plane polynomial curves of degree
(3, N + 2

[

N
4

]

+ 1) having the required properties. We think that they are of
minimal lexicographic degrees (it is true for N = 3, 5, 7, 9). This question is
related to the following question: where are the real zeros of polynomials in
vect (Vk, k 6= 2 [mod 3])? We guess that such polynomials cannot have too many
zeroes in [−1, 1]. It would give a lower bound for the degrees of the torus knots
approximation by polynomial curves.

We have not given explicit formulas for our polynomials. We have just shown
that they can be found by solving some explicit linear system. In a near future,
we hope we will be able to give explicit function of the degree N .
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