(s1, t1) (s2, t2) (sN , tN )

Fig. 1. Curve of degree (3,19) in logarithmic scale in y

The polynomial curves whose existence are proved are of interest for an explicit polynomial parametrizations of the (2, N )-type torus knot K 2,N (see [Ad,KP,Mu,RS]).

In section 4., we give an explicit parametrizations for the knots K 2,N . They are symmetric with respect to the y-axis and of smaller degrees than those already known.

2 Some properties of the Chebyshev polynomials Definition 1 (Monic Chebyshev polynomials).

If t = 2 cos θ, let T n (t) = 2 cos(nθ) and V n (t) = sin((n + 1)θ) sin θ .

T n and V n are both monic and have degree n. It is convenient for our problem to consider them as basis of R [t].

Looking for a polynomial curve C(t) = (x(t), y(t)) where deg x = 3, one can suppose that

x(t) = T 3 (t), y(t) = T m (t) + a m-1 T m-1 (t) + • • • + a 1 T 1 (t).
In [KP] (Lemma A) we have shown that if s = t are real numbers such that T 3 (s) = T 3 (t), then for any integer k we have

T k (t) -T k (s) t -s = 2 √ 3 sin kπ 3 V k-1 (s + t) = ε k V k-1 (s + t). (2) 
We proved the following:

Proposition 2. Let ε k = 2 √ 3 sin kπ 3 = V k-1 (1) and R m = ε m V m-1 + ε m-1 a m-1 V m-2 + • • • + ε 1 a 1 V 0 . (3) 
-If R m has exactly N distinct roots -1 < u 1 < • • • < u N < 1 and no other in [-2, 2], then

C(t) = (T 3 (t), T m (t) + a m-1 T m-1 (t) + • • • + a 1 T 1 (t))
has exactly N crossing points.

-Let u i = 2 cos α i , then

s i = 2 cos(α i + π/3), t i = 2 cos(α i -π/3) (4)
are the parameters of the crossing points and satisfy

s 1 < • • • < s N < t 1 < • • • < t N .
We look for polynomials R m in R[t] having N roots that are linear combinations of the V k , where k is not equal to 2 [mod 3]. We will consider separately E ⊂ R[t] spanned by V 6k+1 and V 6k+3 and Ẽ spanned by the V 6k and V 6k+4 . We first describe these vectorial spaces as direct sums:

Lemma 3. E = T 1 • R[T 6 ] ⊕ T 1 • T 2 • R[T 6 ], Ẽ = 1 ⊕ T 3 • E.
Proof. -From sin(x + y) -sin(x -y) = 2 cos(x) sin(y) we deduce that for every integers n and p, we have

V n+p -V n-p = V p-1 T n+1 .
We thus deduce that

V 1 = T 1 = t, V 3 = T 1 • T 2 and V 6k+1 -V 6k-3 = T 1 • T 6k , V 6k+3 -V 6k-5 = V 3 • T 6k = T 1 • T 2 • T 6k .
From T 6k = T k (T 6 ), we deduce by induction that

E = T 1 • R[T 6 ] ⊕ T 1 • T 2 • R[T 6 ].
-From sin(x + y) + sin(x -y) = 2 cos(y) sin(x), we get

V n+3 + V n-3 = T 3 V n so V 6k+6 + V 6k = T 3 V 6k+3 , V 6k+4 + V 6k-2 = T 3 V 6k+1 . As V 0 = 1 and V -2 = -1, we thus deduce by induction that Ẽ = 1 ⊕ T 3 • E. ⊓ ⊔ Definition 4. Let us define for k ≥ 0, W2k = V 6k , W 2k = V 6k+1 , W 2k+1 = V 6k+3 , W2k+1 = V 6k+4 .
We have deg

W n = 2n + 2 n 2 + 1 and E = vect (W k , k ≥ 0). We have deg Wn = 2n + 2 n+1 2 and Ẽ = vect ( Wk , k ≥ 0).
Using the Padé approximation theory, we will prove in section 6 (p. 15) Theorem 5. There exists a sequence of odd polynomials C n in E such that

vect (W 0 , . . . , W n ) = vect (C 0 , . . . , C n ), C n = t 2n+1 F n , F n (0) = 1. Furthermore F n (t) > 0 when t ∈ [-2, 2].
We find, up to some multiplicative constant,

C 0 = t = W 0 , C 1 = t 3 = W 1 + 2 W 0 , C 2 = t 5 t 2 -6 = W 2 -10 W 1 -16 W 0 , C 3 = t 7 t 2 -9/2 = W 3 + 7/2 W 2 -15 W 1 -21 W 0 , C 4 = t 9 t 4 -12 t 2 + 33 = W 4 -22 W 3 -56 W 2 + 176 W 1 + 231 W 0 , C 5 = t 11 t 4 - 102 11 t 2 + 234 11 = W 5 + 52 11 W 4 -40 W 3 - 910 11 W 2 + 208 W 1 + 260 W 0 .
We deduce from theorem 5 and lemma 3 the following useful result for the construction of the height function z(t) of our knots (see section 4.).

Corollary 6. The sequence C0 = 1, Cn = -

1 3 T 3 C n-1 of even polynomials in Ẽ satisfies:
vect ( W0 , . . . , Wn ) = vect ( C0 , . . . , Cn ), Cn = t 2n Fn , Fn (0) = 1.

Furthermore Fn (t) > 0 when t ∈ [-2, 2].

Construction of the prescribed curves

We will construct polynomials R m in E with N = 2n + 1 real roots in [-1, 1] and no other roots in [-2, 2]. They will be chosen as a slight deformation of C n . Let us first show properties of the polynomials C n .

Lemma 7. Let 0 < u 1 < • • • < u n < 1 be real numbers. For ε being small enough,

1. there exists a unique (a 0 , . . . , a n-1 ) such that {0, ±εu 1 , . . . ,

±εu n } are roots in [-1, 1] of A n (ε) = C n + a n-1 C n-1 + • • • + a 0 C 0 .
2. {0, ±εu 1 , . . . , ±εu n } are the only real roots in [-2, 2] of A n (ε).

Proof. Looking for A n (ε) with roots 0 and ±εu i is equivalent to the linear system

     C 0 (εu 1 ) C 1 (εu 1 ) • • • C n-1 (εu 1 ) C 0 (εu 2 ) • • • C n-1 (εu 2 ) . . . . . . C 0 (εu n ) C 1 (εu n ) • • • C n-1 (εu n )           a 0 a 1 . . . a n-1      = -      C n (εu 1 ) C n (εu 2 ) . . . C n (εu n )      whose determinant is ε (1+3+•••+2n-1) u 1 F 0 (εu 1 ) u 3 1 F 1 (εu 1 ) • • • u 2n-1 1 F n-1 (εu 1 ) u 2 F 0 (εu 2 ) • • • u 2n-1 2 F n-1 (εu 2 ) . . . . . . u n F 0 (εu n ) u 3 n F 1 (εu n ) • • • u 2n-1 n F n-1 (εu n )
.

It is equivalent to the classical Vandermonde-type determinant when ε → 0:

ε n 2 u 1 u 3 1 • • • u 2n-1 1 u 2 • • • u 2n-1 2 . . . . . . u n u 3 n • • • u 2n-1 n = ε n 2 u 1 • • • u n 1≤i<j≤n (u 2 j -u 2 i ) = 0.
Therefore, this system has a unique solution.

-Using Cramer formulas, we get

a k (ε) = G k (ε) G n (ε)
where

G k (ε) = det(C ij (εu i )) 1≤i,j≤n and i 1 < i 2 < • • • < i n ∈ {0, . . . , n} -{k}. We get G k (ε) = ε 2(i1+•••+in)+n u 2i1+1 1 F i1 (εu 1 ) u 2i2+1 1 F i2 (εu 1 ) • • • u 2in+1 1 F in (εu 1 ) u 2i1+1 2 F i1 (εu 2 ) • • • u 2in+1 2 F in (εu 2 ) . . . . . . u 2i1+1 n F i1 (εu n ) u 2i2+1 n F i2 (εu n ) • • • u 2in+1 n F in (εu n ) ≃ ε→0 ε (n+1) 2 -(2k+1) u 2i1+1 1 u 2i2+1 1 • • • u 2in+1 1 u 2i1+1 2 • • • u 2in+1 2 . . . . . . u 2i1+1 n u 2i2+1 n • • • u 2in+1 n . -We thus deduce that a k (ε) = O(ε 2(n-k) ) and therefore lim ε→0 A n (ε) = C n = t 2n+1 F n . Let A n (ε) = t n i=1 (t 2 -ε 2 u 2 i )D n (ε). We deduce that lim ε→0 D n = F n . Let ε be small enough, we get D n (t) > 0 for t ∈ [-2, 2] because of the compactness of [-2, 2]. ⊓ ⊔
Proposition 8. Let N = 2n + 1 be an odd integer. There exists a curve C(t) = (x(t), y(t)), where deg x = 3 and deg y = N + 2 N 4 + 1, such that C has exactly N crossing points corresponding to parameters (s i , t i ) such that

C(s i ) = C(t i ), s 1 < • • • < s N < t 1 < • • • < t N .
(5)

Proof. Let N = 2n + 1. Let us choose ε and 0 < u 1 < • • • < u n , such that there exists a polynomial A n (ε) ∈ vect (W 0 , . . . , W n ) having exactly N distinct roots {0, ±εu 1 , . . . , ±εu n } in [-2, 2]. It has degree deg W n = 2n + 2 n 2 + 1 = N + 2 N 4 = m -1.
We have

A n = W n + • • • + a 0 = V m-1 + ε m-1 a m-1 V m-2 + • • • + a 2 V 1 .
Using proposition 2, the curve

x(t) = T 3 (t), y(t) = ε m T m (t) + a m-1 T m-1 (t) + • • • + a 2 T 2 (t)
has the required properties.

⊓ ⊔

Example 9 (N = 9). We chose

y(t) = - 27 10 T 14 + 10 T 12 -23 T 10 + 42 T 8 -64 T 6 + 85 T 4 -100 T 2 + 112.
The roots of Q are u 0 = 0, ±u 1 = .355, ±u 2 = .584, ±u 3 = .785, ±u 4 = 1.073. We obtain a polynomial parametrization of degree (3,14). Note that we choose u 4 > 1 for a nicer picture (see fig. 2). Note that the parameters of the crossing points satisfy

s 1 < • • • < s 9 < t 1 < • • • < t 9 .

Construction of the torus knots

If N = 2n + 1 is odd, the torus knot K 2,N of type (2, N ) is the boundary of a Moebius band twisted N times (see [Ad,Mu] and fig.

(3)). The purpose of this section is to give an explicit construction of a polynomial curve C(t) = (x(t), y(t), z(t)) that is equivalent (in the one point compactification S 3 of the space R 3 ) to the torus knot K 2,N . Vassiliev (see [Va]) proved that any non-compact knot type can be obtained from a polynomial embedding t → (f (t), g(t), h(t)), t ∈ R, using the Weierstrass approximation theorem.

Shastri [Sh] gave a detailed proof of this theorem, and a simple polynomial parametrizations of the trefoil and of the figure eight knot. A. Ranjan and R. Shukla [RS] have found small degree parametrizations for K 2,N , N odd. They proved that these knots can be attained from polynomials of degrees (3, 2N -2, 2N -1).

In [KP], we proved that it is not possible to attain the torus knot K 2,N with polynomial of degrees (3, N + 1, m) when N > 3. We gave explicit parametrization of degrees (3,

N + 2 N 4 + 1, N + 2 N +1 4
) for N = 3, 5, 7, 9 and showed that they were of minimal lexicographic degree for N ≤ 7.

Bottom view

Zoom on the bottom view A sufficient condition is to construct a parametrized curve C(t) = (x(t), y(t), z(t)) such that (x(t), y(t)) has exactly N = 2n + 1 crossing points corresponding to parameters

0 0.5 1 1.5 2 t -2 -1.5 -1 -0.5 s logarithmic scale x(s) -x(t) s -t = 0, y(s) -y(t) s -t = 0, s < t
s 1 < • • • < s N < t 1 < • • • < t N and such that x(t i ) = x(s i ), y(t i ) = y(s i ), (-1) i (z(t i ) -z(s i )) > 0, i = 1, . . . , N.
We look first for minimal degree in x. x(t) must be nonmonotonic and therefore has degree at least 2. In case when deg x = 2, we would have constant t i + s i and not the condition (1). We will give a construction for deg x = 3.

Proposition 10. For any odd integer N = 2n + 1, there exists a curve

C(t) = (x(t), y(t), z(t)) of degree (3, N + 2 N 4 + 1, N + 2 N +1 4
) such that the curve Fig. 3. K 2,N , N = 3, 5, 7.

(x(t), y(t)) has exactly N crossing points

x(t i ) = x(s i ), y(t i ) = y(s i ), s 1 < • • • < s N < t 1 < • • • < t N and (-1) i (z(t i ) -z(s i )) > 0, i = 1, . . . , N.
Proof.

-Following the construction of section 3., we first choose ε to be small enough and 0

< c 1 < • • • < c n < ε < 1/2, such that C 0 (c 1 ) C 1 (c 1 ) • • • C n-1 (c 1 ) C 0 (c 2 ) • • • C n-1 (c 2 ) . . . . . . C 0 (c n ) C 1 (c n ) • • • C n-1 (c n ) = 0.
Consider

u n+1 = 0, u i = 2 cos α i = -c n+1-i , u n+1+i = 2 cos α n+1+i = c i , i = 1, . . . , n.
We thus have -1 < u 1 < . . . < u N < 1. Let

s i = 2 cos(α i + π/3), t i = 2 cos(α i -π/3), i = 1, . . . N.
-Using the proposition (8), there is a polynomial

y(t) = T m (t) + a m-1 T m-1 (t) + • • • + a 1 T 1 (t), of degree m = N + 2 N 4 + 1 such that x(t i ) = x(s i ), y(t i ) = y(s i ), i = 1, . . . N.
-As for lemma 7, there exists a unique (b 0 , . . . , b n ) such that

B n = b n Cn + b n-1 Cn-1 + • • • + b 0 C0 satisfies B n (u i ) = (-1) i , i = 1, . . . N . Namely, (b 0 , . . . , b n ) is the solution of the system b n Cn (u i ) + b n-1 Cn-1 (u i ) + • • • + b 0 C0 (u i ) = (-1) i , i = 1, . . . , N.
Because u i = -u N +1-i and Ck are even polynomials, the system is equivalent to

     C0 (u n+1 ) C1 (u n+1 ) • • • Cn (u n+1 ) C0 (u n+2 ) • • • Cn (u n+2 ) . . . . . . C0 (u N ) C1 (u N ) • • • Cn (u N )           b 0 b 1 . . . b n      =      (-1) n+1 (-1) n+2 . . . (-1) N      . From C0 = 1, Cn = - 1 3 T 3 C n-1 and C k (u n+1
) = 0, we deduce that the determinant of the previous system is

± 1 3 n T 3 (c 1 ) • • • T 3 (c n ) C 0 (c 1 ) C 1 (c 1 ) • • • C n-1 (c 1 ) C 0 (c 2 ) • • • C n-1 (c 2 ) . . . . . . C 0 (c n ) C 1 (c n ) • • • C n-1 (c n ) = 0.
B n is a linear combination of ( Wn , . . . , W0 ) and it has degree

m ′ = N + 2 N +1 4 : B n = b ′ m ′ V m ′ + • • • + b ′ 0 V 0 . Consider now z(t) = ε m ′ +1 b ′ m ′ T m ′ +1 + • • • + ε 1 b ′ 0 T 1 , we have using eq. (2): z(t i ) -z(s i ) t i -s i = B n (u i ) = (-1) i .
Because t i > s i we deduce that z(t i ) -z(s i ) has alternate signs. ⊓ ⊔ 5 T 2 as a power series of T 6 + 2

Looking for identities in the vectorial space R[T 6 ] + T 2 • R[T 6 ], we show first some relation between T 2 and T 6 .

Lemma 11. For t ∈ [-1, 1], we have

T 2 + 2 = 4 sin 2 1 3 arcsin T 6 + 2 4 .
Proof. Let t ∈ [-1, 1] and x ∈ [π/3, 2π/3] such that t = 2 cos x.

We get 3x -π ∈ [0, π] and cos(3x

-π) = - 1 2 T 3 so x = π 3 + 1 3 arccos - T 3 2 = π 3 + 1 3 π 2 + arcsin T 3 2 = π 2 + 1 3 arcsin T 3 2 .
We thus have

T 1 = 2 cos π 2 + 1 3 arcsin T 3 2 = -2 sin 1 3 arcsin T 3 2 .
We thus deduce the lemma from

T 2 = T 2 1 -2 and T 6 = T 2 3 -2. ⊓ ⊔ Lemma 12. Let ϕ(u) = 4 sin 2 1 3 arcsin √ u . For u ∈ [0, 1], we have ϕ(u) = n≥1 ϕ n u n where ϕ 1 = 4 9 , ϕ n+1 = 2 9 (3n + 1)(3n -1) (n + 1)(2n + 1) ϕ n .
Proof. We have ϕ(u) = 2 -2 cos 2 3 arcsin √ u . We deduce that

           ϕ(u) = -2A + 2 d du ϕ(u) = 2 3 B d 2 du 2 ϕ(u) = - 2 9 1 (u -u 2 ) A + 1 3 (2u -1) (u -u 2 ) B (6) 
where

A = cos 2 3 arcsin √ u and B = sin 2 3 arcsin √ u √ u -u 2 .
Eliminating A and B from system (6), we find that

-4 + 2 ϕ (u) + 9 (1 -2 u) d du ϕ (u) + 18 u -u 2 d 2 du 2 ϕ (u) = 0. (7) 
ϕ has a power series expansion and we get from ( 7)

ϕ 0 = 0, ϕ 1 = 4 9 , ϕ n+1 = 2 9 (3n + 1)(3n -1) (n + 1)(2n + 1) ϕ n .

⊓ ⊔

Remark 13. There is no need to know explicitely ϕ with the lemma 11. One can see from 4u = v(v -3) 2 that ϕ is an algebraic function. It is therefore the solution of a differential equation we can find using Euclid algorithm. Recursion formula for the ϕ n and the differential equation can be easely obtained using the Maple package gfun (see [SZ]).

Definition 14. Let ∆ defined by ∆f n = f n+1 -f n . We say that f n is totally monotone when for every integer k and every n ≥ 1, we have

(-1) k ∆ k f n > 0. Example 15. -Let f n = exp(-n). We get (-1) k ∆ k f n = f n (1 -1/e) k .
-Let

f n = 1 n . We get (-1) k ∆ k f n = f n 1 n+k k
.

They are both totally monotone.

Proposition 16. ϕ n is totally monotone.

Proof. We will show that

(-1) k ∆ k ϕ n = ϕ n P k (n) (n + 1) • • • (n + k) • (2n + 1) • • • (2n + 2k -1) > 0.
-We get 11/9 (n + 1)(2n + 1) .

∆ϕ n = ϕ n+1 -ϕ n = ϕ n 2(3n -1)(3n + 1) 9(n + 1)(2n + 1) -1 = -ϕ n 3n +
Suppose now that (-1) k ∆ k ϕ n = ϕ n P k (n) (n + 1) • • • (n + k) • (2n + 1) • • • (2n + 2k -1)
.

We thus deduce

(-1) k+1 ∆ k+1 ϕ n = -∆ ϕ n P k (n) (n + 1) • • • (n + k) • (2n + 1) • • • (2n + 2k -1) = ϕ n P k (n) (n + 1) • • • (n + k) • (2n + 1) • • • (2n + 2k -1) - ϕ n+1 P k (n + 1) (n + 2) • • • (n + k + 1) • (2n + 3) • • • (2n + 2k + 1) = ϕ n (n + k + 1)(2n + 2k + 1)P k (n) -2(n 2 -1/9)P k (n + 1) (n + 1) • • • (n + k + 1) • (2n + 1) • • • (2n + 2(k + 1) -1) .
We thus obtain

(-1) k ∆ k ϕ n = ϕ n P k (n) (n + 1) • • • (n + k) • (2n + 1) • • • (2n + 2k -1)
,

where P 0 = 1 and

P k+1 (n) = (n + k + 1)(2n + 2k + 1)P k (n) -2(n 2 -1/9)P k (n + 1).
-We will show now by induction that

P k = a k X k + • • • + a 0 where a k > 0.
Suppose it is true for a given k, we thus deduce that

P k+1 = (X + k + 1)(2X + 2k + 1)(a k X k + a k-1 X k-1 + • • •) - 2(X 2 -1/9)(a k X k + (a k-1 + ka k )X k-1 + • • •) = 2a k X k+2 + ((4k + 3)a k + 2a k-1 )) X k+1 + • • • - 2a k X k+2 + (2a k-1 + 2ka k )X k+1 + • • • = (2k + 3)a k X k+1 + • • • . ( 8 
) P k is a polynomial of degree k whose leading coefficient is 1 • 3 • • • (2k + 1).
-Let us prove now by induction the following

(-1) i P k (-i) > 0, i = 0, . . . , k.
This is true for k = 0.

Suppose now it is true for P k . Intermediate values theorem says that P k has exactly k real roots in ] -k, 0[, so P k (x) > 0 when x ≥ 0 or when x + k ≤ 0.

Let us compute

P k+1 (0) = (k + 1)(2k + 1)P k (0) + 2/9P k (1) > 0 For i = 1, . . . , k : (-1) i P k+1 (-i) = (k-i+1)(2(k-i)+1)(-1) i P k (i)+2(i 2 -2/9)(-1) i-1 P k (-(i-1)) > 0. For i = -(k + 1) we get (-1) k+1 P k+1 (-(k + 1)) = 0 -2((k + 1) 2 -2/9)(-1) k+1 P k (-k) > 0
We thus deduce that (-1) i P k+1 (-i) > 0 for i = 0, . . . , k + 1.

-We thus deduce that P k has exactly

k roots in ]-k, 0[ so P k (n) is nonnegative for any integer n. ⊓ ⊔ Definition 17. f (z) = n≥1 f n z n is a Stieltjes series if for every n ≥ 1 and m ≥ 0, one has f n f n+1 • • • f n+m f n+1 f n+2 • • • f n+m+1 . . . . . . f n+m f n+m+1 . . . f n+2m > 0.
Remark 18. This last condition is related to the problem of Hamburger moments. It is the Stieltjes condition. The totally monotonicity is related to the Hausdorff condition (see [Ha]).

The Hausdorff condition and the Stieltjes condition are equivalent if the series is not a rational function (see [BG], p. 194 and the proof of Schönberg, [Wa], p. 267 or [Sc]). We thus deduce that Theorem 19. ϕ(z) = n≥1 ϕ n z n is a Stieltjes series.

Proof. ϕ(u) is an algebraic function that satisfies 4u = ϕ(ϕ -3) 2 . Suppose that ϕ = p/q where p(u) and q(u) are relatively prime polynomials in u, then we would have 4uq 3 -p 3 + 6p 2 q -9pq 2 = 0 and p would divide u and q would divide 1. We would have ϕ(u) = λu and it is not the case. Thus ϕ is not a rational function and is therefore a Stieltjes function. ⊓ ⊔ Remark 20. In example (15), the sequence exp(-n) is totally monotonic. But

n exp(-n)z n = 1 1 -e • z
is a rational function and the condition (17) does not hold.

Remark 21. ϕ(u) = 2 -2F (1/3, -1/3, 1/2; u) where F (a, b, c; z) is the hypergeometric function. It results from eq. ( 7) that is known as the hypergeometric equation ([BG,Wa])

u -u 2 d 2 du 2 f (u) + (c -(1 + a + b) u) d du f (u) -ab f (u) = 0. for ϕ -2 = -2f , a = -b = 1 3 , c = 1 2 .

Padé approximation

Rational approximations of Stieltjes series have remarkable properties. Let us remind the following construction of Padé approximants:

Theorem 22 (Padé approximant). Let f (x) = k≥1 f k x k be a Stieltjes series and consider two integers m ≤ n. There is a unique solution

(P n , Q m ) ∈ R n [x] × R m [x], such that Q m (0) = 1, P n -f Q m = 0 [mod x n+m+1 ]. ( 9 
)
Furthermore we have deg

P n = n and deg Q m = m.
Proof. Let us write

P n = p 0 + • • • + p n x n , Q m = q 0 + q 1 x + • • • + q m x n .
Eq. ( 9) gives

         p 0 = f 0 , p 1 = f 0 q 1 + f 1 q 0 . . . p n = f n-m q m + f n-m+1 q m-1 + • • • + f n q 0 , (10) 
         0 = f n-m+1 q m + f n-m+2 q m-1 + • • • + f n+1 q 0 0 = f n-m+2 q m + f n-m+3 q m-1 + • • • + f n+2 q 0 . . . 0 = f n q m + f n+1 q m-1 + • • • + f m+n q 0 . (11) 
The last m × m system (11) is

     f n-m+1 f n-m+2 • • • f n f n-m+2 f n-m+3 • • • f n+1 . . . . . . f n f n+1 . . . f m+n-1           q m q m-1 . . . q 1      = -q 0      f n+1 f n+2 . . . f m+n      (12) 
and therefore has a unique solution because f is a Stieltjes series and q 0 = 1. The first system (10) is then solved for p 0 , . . . , p n .

-System (11) may be also written

     f n-m+2 f n-m+3 • • • f n+1 f n-m+3 f n-m+4 • • • f n+2 . . . . . . f n+1 f n+2 . . . f m+n           q m-1 q m-2 . . . q 0      = -q m      f n-m+1 f n-m+2 . . . f n     
.

We thus deduce that if q m = 0 then Q m = 0 and Q m (0) = 0.

-With the last equation of ( 10) and ( 11), we have

     f n-m f n-m+1 • • • f n f n-m+1 f n-m+2 • • • f n+1 . . . . . . f n f n+1 . . . f m+n           q m q m-1 . . . q 0      =      p n 0 . . . 0     
.

We thus deduce that p n = 0. ⊓ ⊔ Remark 23. The system (12) shows that if Q m (0) = 0, then Q m = 0.

Definition 24. We say that f [n/m] = P n /Q m is the Padé approximant of order (n, m) of f .

We will make use of a very useful theorem concerning Stieltjes series.

Theorem 25. Let f (x) be a Stieltjes series with radius of convergence R and let us denote by f

[n/m] its Padé approximant P n /Q m . Then 1. Q m has exactly m real roots in ]R, +∞[. 2. Let f [n/m] (x) = k≥1 f [n/m] k x k . We have (a) for 1 ≤ k ≤ n + m, 0 < f [n/m] k = f k . (b) 0 ≤ f [n/m] n+m+1 < f n+m+1 . (c) for k ≥ n + m + 1, 0 ≤ f [n/m] k ≤ f k .
Proof. The assertion (1) is proved in [BG], p. 220. Note that the authors use the function f (-z). Assertion (2a) is a consequence of the Padé approximation definition. Assertion (2c) is proved in [BG], p. 212. Note that the authors have shown that 0 ≤ f 

[n/m] k ≤ f k . Suppose now that f [n/m] n+m+1 = f n+m+1
∈ R n [u], Q m ∈ R m [u] and F n,m ∈ R[v] such that Q m (u)v -P n (u) = v n+m+1 F n,m (v),
where F n,m (0) = 1. Furthermore, we have

F n,m (v) > 0 when v ∈ [0, 1], deg P n = n, deg Q m = m and Q m (u) > 0 for u ∈ [0, 1].
Proof. ϕ is a Stieltjes series and because ϕ n+1 ϕ n ≃ n→∞ 1 -3 2n , we deduce that its radius of convergence R is 1 and that n≥1 ϕ n = ϕ(1) = 1. Let ϕ [n/m] = P n /Q m be the Padé approximant of ϕ, we deduce that

ϕ(u) -ϕ [n/m] (u) = k≥n+m+1 (ϕ k -ϕ [n/m] k )u k = u n+m+1 ψ n,m (u), 0 ≤ u ≤ 1.
We have ψ n,m (u) > 0 for u ∈ [0, 1]), from theorem 25, (2b). From Q m (0) = 1 and theorem 25, (1) we get Q m (u) > 0 for u ∈ [0, 1], and

vQ m (u) -P n (u) = u n+m+1 ψ n,m (u)Q m (u) > 0.
On the other hand, as 4u = v(v -3) 2 ≃ v→0 9v, we deduce that vQ m (u) -P n (u) is a polynomial in v with 0 as root of order n + m + 1. We deduce that

vQ m (u) -P n (u) = v n+m+1 F n,m (v),
where F n,m is a polynomial. ⊓ ⊔

We deduce

Proposition 27. There exists a family C n in vect (W 0 , . . . , W n ), such that , 2]. There exists t 1 ∈]0, 1], such that u = u(t) = u(t 1 ) = u 1 and we have v = v(t) = t 2 ≥ t 2 1 = v(t 1 ) = v 1 . We deduce C k,l (t) = vQ l (u) -P k (u) = vQ l (u 1 ) -P k (u 1 )

C n = t 2n+1 F n , F n (0) = 1.
≥ v 1 Q l (u 1 ) -P k (u 1 ) > 0.

In conclusion, for t ∈ [-2, 2], we have F k,l (t) > 0.

-Q l (u) ∈ (T 2 + 2)R l [T 6 + 2] and P k ∈ R k [T 6 + 2]. We thus deduce that

C k,l ∈ R[T 6 ] ⊕ T 2 R[T 6
]. Note that deg C k,l = max(6k + 2, 6l).

-

If n = 2k + 1, let C n = t • C k,k . If n = 2k, let C n = t • C k,k-1 .
C n has degree 2n + 2 n 2 + 1 and therefore C n ∈ vect (W 0 , . . . , W n ). ⊓ ⊔

Remark 28. We have proved the existence of C n . This is an upper-triangular basis of E with respect to the W i . It is unique and it can be computed by simple LU-decomposition of the matrix whose lines are the W i .

Conclusion

We have shown in this paper the existence of plane polynomial curves of degree (3, N + 2 N 4 + 1) having the required properties. We think that they are of minimal lexicographic degrees (it is true for N = 3, 5, 7, 9). This question is related to the following question: where are the real zeros of polynomials in vect (V k , k = 2 [mod 3])? We guess that such polynomials cannot have too many zeroes in [-1, 1]. It would give a lower bound for the degrees of the torus knots approximation by polynomial curves.

We have not given explicit formulas for our polynomials. We have just shown that they can be found by solving some explicit linear system. In a near future, we hope we will be able to give explicit function of the degree N .

Fig. 2 .

 2 Fig.2. N = 9. Curve of degree(3, 14) 

Furthermore,

  deg C n = 2n + 2 n 2 + 1 and F n (t) > 0 for t ∈ [-2, 2]. Proof. Let us consider C k,l (t) = vQ l (u) -P k (u) = v k+l+1 F k,l (v)given by corollary 26. Note that Q l (u) > 0 for u ∈ [0, 1].-If t ∈ [-1, 1], we have u, v ∈ [0, 1] and the announced result by corollary 26.-We have u([1, 2]) = u([-2, -1]) = u([0, 1]) = [0, 1]. Let |t| ∈ [1

  . From theorem 22, we would have deg P n + deg Q m = n + m + 1 and this is not the case. We thus have f Let m ≤ n. There are polynomials P n

	[n/m] n+m+1 < f n+m+1 .	⊓ ⊔
	We thus deduce	
	Corollary 26.