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Abstract

This paper deals with multicriteria controls for systems coping with polytopic uncertainties. The proposed controls are inspired
by a Nash strategy for exactly known systems, reformulated as a nonconvex coupling between Semi-Definite Programming
problems. The extension to the uncertain case duplicates the Linear Matrix Inequalities for all vertices of the polytope. A new
iterative algorithm using Semi-Definite Programming is provided to design bounded Nash type controls for uncertain systems.
A numerical example is given to illustrate the design method.

Key words: Nash strategies, Game theory, Algebraic Riccati equations, Linear matrix inequalities (LMI), Robustness,
Polytopic uncertainty.

1 Introduction

For systems governed by several controllers (decision
makers or players) where each controller aims to mini-
mize its own cost function, Nash strategy offers a nice
framework to study control robustness. In fact, such
a strategy has an inherent robustness property since
no player can improve his/her payoff by deviating uni-
laterally from his/her Nash strategy once the equilib-
rium is attained. Several approaches are proposed us-
ing Nash strategy to design robust controls for linear
systems [14,8]. A way to treat uncertainty is to inter-
pret perturbation as an exogenous input (a fictitious
player) [7,19]. In [19], the definition of equilibria is ex-
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tended to deal with two cases: a soft-constrained formu-
lation, inspired by [4], where the fictitious player is in-
troduced in the criteria via a weighting matrix, and a
hard-constrained formulation where the fictitious input
is of bounded energy.

An extended definition of Nash equilibrium is proposed
in [18]. For a bounded energy disturbance, the cost value
is deviating from the nominal one by a distance which
increases when the disturbance energy grows up [15].
In addition, if the disturbance is periodic and of known
period, using a learning lapse of time, it is possible to
estimate the effect of the disturbance and a pure Nash
equilibrium is obtained. However, the associated equa-
tions are not easy to solve and the characteristics of the
disturbance should be known.

The common feature of all these techniques is that only
unstructured uncertainty is dealt with (perturbations or
neglected dynamics) while the system’s model is sup-
posed to be well known. For linear-quadratic zero-sum
games with structured uncertainties, sufficient condi-
tions are provided in [2] to guarantee a bound for the
cost function of each player. Finding such a bound is
based on the existence of a solution for an appropriately
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parameterized Riccati equation.

The purpose of this paper is to design robust controls
inspired by Nash strategy for systems exhibiting param-
eters uncertainties in their models. The main difficulty
here is to minimize the deviation from the equilibrium
point, thus guaranteeing an upper bound for the payoffs.
For differential games, sufficient conditions for obtain-
ing a Nash equilibrium are well known [5,17,16,1]. How-
ever, variational calculus or dynamic programming are
not well adapted to deal with parameters uncertainties
in the dynamic model.

The outline of the paper is as follows: in section 2, the
general setting for a Nash equilibrium with a closed loop
information structure is recalled for linear-quadratic
games with exactly known dynamics. It is shown that
obtaining the Nash control is equivalent to solving a
non-convex optimization problem. In section 3, Linear
Matrix Inequalities (LMI) are used to reformulate the
problem of determining Nash controls as a sequence
of decoupled convex optimization problems. This new
formulation allows to design robust controls inspired
by Nash equilibrium in the case of uncertain polytopic
systems (section 4). A numerical algorithm is given in
section 5 based on iterative solution of Semi-Definite
Programming (SDP) problems. An upper bound for the
cost functions is derived and the properties of the pro-
posed solution are discussed in section 6. An example is
treated in section 7 to illustrate the obtained theoretical
results.

2 Nash Strategy for certain system

Consider a two-players linear-quadratic differential
nonzero-sum game, on an infinite time horizon:

{

ẋ (t) = Ax (t) + B1u1 (t) + B2u2 (t) ,

x (t0) = x0,
(1)

where x(t) ∈ R
n, ui ∈ L2 ([t0,+∞), Rri) (i, j ∈ {1, 2}

verifying i 6= j and n, ri ∈ N
∗) and with the costs func-

tionals :

Ji =

∫ +∞

t0

(

xT Qix + uT
1 Ri1u1 + uT

2 Ri2u2

)

dτ. (2)

All weighting matrices are constant and symmetric with
Qi > 0, Rij = DT

ijDij ≥ 0 and Rii = DT
i Di > 0.

The pair (u∗

1, u
∗

2) corresponds to a Nash equilibrium
[5,11,12] if the following relations are satisfied for each

admissible controls 2 (u1, u2) :

{

J1 (u1, u
∗

2) ≥ J1 (u∗

1, u
∗

2) ,

J2 (u∗

1, u2) ≥ J2 (u∗

1, u
∗

2) .
(3)

Thus, at Nash equilibrium with (u∗

1, u
∗

2), the player
who chooses to change his/her strategy cannot improve
his/her payoff.

If there exist positive definite matrices (P1, P2), sat-
isfying the Coupled Algebraic Riccati type Equations
(CARE)

0n = N1(P1, P2) = N2(P1, P2), (4)

where

N1(P1, P2) =AT P1 + P1A + Q1 + P2S12P2

− P2S2P1 − P1S2P2 − P1S1P1, (5)

N2(P1, P2) =AT P2 + P2A + Q2 + P1S21P1

− P1S1P2 − P2S1P1 − P2S2P2, (6)

(with Sij = BjR
−1
jj RijR

−1
jj BT

j , and Si = BiR
−1
ii BT

i ),
then the controls

u∗

i (t) = −R−1
ii BT

i Pix(t), (7)

constitute a set of Nash equilibrium strategies within the
class of admissible control functions mentioned in foot-
note 2 if the game has a closed-loop information struc-
ture. So, in particular, the matrix (A − S1P1 − S2P2)
is stable. The proof is similar as the one shown in the
theorem 6. In this case, the criteria associated with the
equilibrium verify

Ji(u
∗

1, u
∗

2) = xT
0 Pix0. (8)

Equations (4) are hard to solve due to the presence of
quadratic coupling terms between P1 and P2. To the best
of our knowledge there is no explicit conditions guar-
anteeing the existence of solutions for CARE (4). Im-
plicit conditions and special cases are provided in [9] and
[10]. Only numerical algorithms without proof of con-
vergence, are available to solve these equations [10,13].

3 Formulation of CARE via coupled nonconvex
optimization problems

This section provides a reformulation of sufficient con-
ditions for a Nash strategy with closed-loop information

2 A couple of admissible controls is defined as a couple of
controls which stabilizes the system (1) and allows the exis-
tence of both finite criteria J1 and J2.
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structure, given by (7), whenever positive definite solu-
tions P1 and P2 can be found for CARE (4). This new
formulation is particularly interesting to deal with un-
certain systems, as will be shown later.

Theorem 1 Assume that the coupled nonconvex opti-
mization problems Π1 and Π2 below admit a solution
(E1,W1, Y1) and (E2,W2, Y2), then

{

N1(E1, E2) ≤ 0n,

N2(E1, E2) ≤ 0n,
(9)

are satisfied. In addition if (A + BjKj , Bi, Czi
), where

Kj is defined by (16), are minimal, then the equalities of
(9) are achieved, that is (4) are solved.

Π1: Minimize Tr(E1), with respect to (E1,W1, Y1), sub-
ject to:

W1 > 0n, (10)
[

E1 In

In W1

]

≥ 02n, (11)

M1,2
(A,B1,B2)

(Y1,W1,K2) ≤ 02n+r1
, (12)

Π2: Minimize Tr(E2), with respect to (E2,W2, Y2), sub-
ject to:

W2 > 0n, (13)
[

E2 In

In W2

]

≥ 02n, (14)

M2,1
(A,B1,B2)

(Y2,W2,K1) ≤ 02n+r2
, (15)

under the coupling conditions

K1 = Y1W
−1
1 , K2 = Y2W

−1
2 , (16)

with K1 and K2 corresponding to the feedback controls of
the two players. The matrices in LMI (12) and (15) are
defined by

Mi,j
(A,B1,B2)

(Yi,Wi,Kj) =






















BiYi + Y T
i BT

i

+Wi(A + BjKj)
T

+(A + BjKj)Wi









(Czi
Wi + Dzi

Yi)
T

Czi
Wi + Dzi

Yi −I















,
(17)

where

Czi
=

[

(Qi + KT
j RijKj)

1/2

0ri×n

]

, Dzi
=

[

0n×ri

Di

]

,

(18)

Proof Since both nonconvex optimization problems in
Theorem 1 are symmetric, only the proof of the first one,
corresponding to the first inequality in (3) is proposed.
By using the Schur Complement on the LMI (12), we
obtain

W1(A − B2K2)
T + (A − B2K2)W1 + B1Y1 + Y T

1 BT
1

+(Cz1
W1 + Dz1

Y1)
T (Cz1

W1 + Dz1
Y1) ≤ 0n.

(19)
A simple completion-of-squares argument [6, p.115] [3]
allows to show that

Y1 = −(DT
z1

Dz1
)−1BT

1 = −R−1
11 BT

1 . (20)

In the same way, we obtain for Π2 :

Y2 = −(DT
z2

Dz2
)−1BT

2 = −R−1
22 BT

2 . (21)

Injecting these two last expressions and the coupling
conditions (16) into (19), inequalities (9) are satisfied.

By fixing Kj in problem Πi, the obtained LMI can be
rearranged as a standard Riccati equation for the sys-
tem (A+BjKj ,Ki, Czi

). If this system is minimal, then
according to [6, p. 114], the bound of inequalities (9) is
achieved. 2

Remark 2 By noting

z1 = Cz1
x + Dz1

u1, (22)

an other proof can be provided by interpreting the first
inequality in (3) as the energy of the fictitious output z1

of the system when the control u2 = K2x is applied [6,
section 7.4.1]. We obtain in this case that this energy
does not exceed

xT
0 W−1

1 x0, (23)

under the constraints (10) and (12). This bound
is achieved for a state-feedback u1 = K1x, where
K1 = Y1W

−1
1 .

Remark 3 As for the solution of the CARE (4), the so-
lution of the coupled nonconvex optimization problems
Π1 and Π2 is not necessarily unique and numerically
difficult. However, a Semi-Definite Programming (SDP)
version of the iterative algorithm in [1, p. 340] can be ob-
tained from Theorem 1 by subsequently solving Π1 and
Π2 with fixed values of K2 and K1, respectively. Although
no proof of convergence exists for this iterative procedure,
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numerical experiments have shown the ability to numer-
ically solve the CARE or equivalently, the coupled non-
convex optimization problems Π1 and Π2 iteratively. This
kind of numerical procedure can be particularly adapted
to obtain a Nash control strategy in the case of uncertain
polytopic systems, as shown in the next sections.

4 Guaranteed costs for uncertain linear systems

Consider an uncertain linear dynamical system de-
scribed by a N−polytopic model. The system (1) be-
comes

{

ẋ (t) = A(λ)x (t) + B1(λ)u1 (t) + B2(λ)u2 (t) ,

x (t0) = x0.
(24)

The initial state x0 is assumed to be known. The vector
λ = (λ1, · · · , λN ) corresponds to the unknown parame-
ters of the system:

[

A(λ) B1(λ) B2(λ)
]

∈

Co
{[

A1 B1,1 B2,1

]

, · · · ,
[

AN B1,N B2,N

]}

,

(25)
where Co denotes the convex hull of the N vertices. We
note then

[

A(λ) B1(λ) B2(λ)
]

=

N
∑

k=1

λk

[

Ak B1,k B2,k

]

, (26)

with λ ∈ Λ =

{

λ

∣

∣

∣

∣

∣

λk ∈ [0, 1],∀k ∈ {1, · · · , N},
N

∑

k=1

λk = 1

}

. (27)

All weighting matrices in the criteria Ji (i = 1, 2), de-
fined by (2), are exactly known. We extend the notation
Ji(u1, u2) to Ji(u1, u2, λ), when the parameter λ is ap-
plied to the system (24).

We propose to provide here a design for a couple of con-
trols (ũ∗

1, ũ
∗

2) inspired by the SDP formulation of Nash
equilibrium. These controls, which are independent of λ
lead to a guaranteed level of criteria J1 and J2 for poly-
topic uncertainties, with arbitrary evolution.

Remark 4 Except in the particular case of a single ver-
tex polytope, (ũ∗

1, ũ
∗

2) may not be associated with a Nash
equilibrium.

5 Numerical Algorithm

The iterative procedure for solving problems Π1 and Π2,
summarized before in the case of precisely known sys-
tem, is now adapted for treating the case of uncertain

systems. The basic idea consists of subsequently solving
each problem Πi, repeating inequalities (12) and (15)
for each vertex of polytope Co (Ak, B1,k, B2,k). To de-
termine the controls ũ∗

1 and ũ∗

2, the SDP Π1 and Π2 are
solved alternately under the constraints (12) and (15)
for all vertices and K1 or K2 is updated with the cou-
pling conditions (16). The algorithm is as follows 3 :

Initialization: Set K2 = 0r2×n. 4

Step 1: Solve the SDP
Π̃1: Minimize Tr(E1), with respect to (E1,W1, Y1),

subject to:

W1 > 0n, (28)
[

E1 In

In W1

]

≥ 02n, (29)



















M1,2
(A1,B1,1,B2,1)

(Y1,W1,K2) ≤ 02n+r1
,

...

M1,2
(AN ,B1,N ,B2,N )(Y1,W1,K2) ≤ 02n+r1

.

(30)

Compute K1 = Y1W
−1
1 .

Step 2: Solve the SDP
Π̃2: Minimize Tr(E2), with respect to (E2,W2, Y2),

subject to:

W2 > 0n, (31)
[

E2 In

In W2

]

≥ 02n, (32)



















M2,1
(A1,B1,1,B2,1)

(Y2,W2,K1) ≤ 02n+r2
,

...

M2,1
(AN ,B1,N ,B2,N )(Y2,W2,K1) ≤ 02n+r2

.

(33)

Compute K2 = Y2W
−1
2 .

Step 3: Repeat Steps 1 and 2, until all LMI (28-33) are
simultaneously satisfied.

When the algorithm stops, the last variables are noted
Y ∗

i , E∗

i = (W ∗

i )−1 and K∗

i . The controls ũ∗

1 and ũ∗

2 are
given by ũ∗

i (t) = K∗

i x(t).

Remark 5 For a system without uncertainty (only one
vertex), the algorithm is a set of coupled optimization
problems where at each step the solution of a single Ric-
cati equation is computed. This simplified algorithm is

3 As usual in the literature, we note not strict inequalities,
however the strict inequalities are used by the LMI solver
4 Other initial values for K2 may be considered for initializ-
ing the algorithm, the obtained solution being dependent on
the choosen initial value. The choice K2 = 0r2×n means that,

in the first iteration Π̃1 solves a standard LQR problem.
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a Semi-Definite Programming version of a classical al-
gorithm [1, p. 340]. To the best of our knowledge, there
exists no condition which guarantees that the algorithm
stops.

6 Properties of solution

Theorem 6 (Stability) When the controls ũ∗

1 and ũ∗

2
are applied, the evolution matrix

A∗(λ) = A(λ) + B1(λ)K∗

1 + B2(λ)K∗

2 (34)

is Hurwitz for any λ ∈ Λ. Furthermore, the corre-
sponding closed-loop control system is stable, even if the
uncertainty parameter vector is arbitrary time-variant:
λ = λ(t) ∈ Λ,∀t ≥ 0.

Proof By rearranging the inequalities (30) and using
Schur complement, we obtain the Lyapunov inequality

(A∗(λ))
T

E∗

i + E∗

i (A∗(λ))

≤ −Qi − (K∗

i )T RiiK
∗

i − (K∗

j )T RijK
∗

j < 0.
(35)

The result ensues from the positive definiteness of E∗

i
and Qi. Even if λ varies, the associated Lyapunov’s func-
tion implies the quadratic stability of the system [6, sec-
tion 5.1]. Theorem 6 guarantees also that J1 and J2

are finite for every vector λ by applying the controls
ũ∗

i (t) = K∗

i x(t).

Theorem 7 (Upper Bound of Criteria) When the
controls ũ∗

i (t) = K∗

i x(t) are applied on the system de-
pending on λ,

Ji(ũ
∗

1, ũ
∗

2, λ) = xT
0 Gi(λ)x0 ≤ xT

0 E∗

i x0, (36)

where Gi(λ) is given by the solving of the Lyapunov equa-
tion

A∗(λ)T Gi(λ) + Gi(λ)A∗(λ) =

−(Qi + (K∗

i )T RiiK
∗

i + (K∗

j )T RijK
∗

j ).
(37)

Proof

Injecting the equation (37) into (35), we obtain

A∗(λ)T ((W ∗

i )−1−Gi(λ))+((W ∗

i )−1−Gi(λ))A∗(λ) ≤ 0.

Since A∗(λ) is stable, we have (W ∗

i )−1 ≥ Gi(λ), which
ensures xT

0 (W ∗

i )−1x0 = xT
0 E∗

i x0 ≥ xT
0 Gi(λ)x0. 2

7 Example

In this section, we consider an extension of an example
given in [1, p. 341] including a polytopic model composed
of three vertices.

A1 =















−0.086 0.027 0.018 −0.455

−0.051 −1.510 −0.047 −4.020

0.100 −0.214 −0.757 1.322

0 0 1.000 0















,

A2 =















0.013 0.027 0.018 −0.455

0.148 −0.510 0.052 −4.020

0.100 0.785 −0.657 1.322

0 0 1.000 0















,

A3 =















−0.036 0.127 0.018 −0.455

0.058 −1.000 1.002 −4.020

0.100 0.485 −0.607 1.422

0 0 1.000 0















,

B1,1 =
(

0.342 2.844 −5.020 0
)T

,

B1,2 =
(

0.542 3.244 −6.020 0
)T

,

B1,3 =
(

4.442 1.044 −4.520 0
)T

,

B2,1 =
(

0.176 −7.692 5.290 0
)T

,

B2,2 =
(

0.176 −7.492 4.690 0
)T

,

B2,3 =
(

0.376 −7.592 4.890 0
)T

.

The weighting matrices are given by

Q1 = diag(3.5; 2; 4; 5), Q2 = diag(1.5; 6; 3; 1),

R11 = 1;R12 = 0.25;R21 = 0.6;R22 = 2,

x0 =
(

1 0 1 1
)T

.

The algorithm stops after 17 steps, for this example. We
obtain

xT
0 E∗

1x0 = 20.3306, xT
0 E∗

2x0 = 11.7189,

K∗

1 =
(

−0.2193 0.0401 0.1730 0.2574
)

,

K∗

2 =
(

0.9143 2.2963 −0.8192 −2.3623
)

.
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The performance of the controls (ũ∗

1, ũ
∗

2) is shown in
Fig. 1 and Fig. 2. The figures depict two surfaces cor-
responding to Ji(ũ

∗

1, ũ
∗

2, λ) = xT
0 Gi(λ)x0 and the upper

bound xT
0 E∗

i x0, for each λ ∈ Λ.
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Fig. 1. Performance on J1(ũ
∗

1, ũ
∗

2, λ).
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Fig. 2. Performance on J2(ũ
∗

1, ũ
∗

2, λ).

8 Conclusion

Control design inspired by Nash equilibrium for sys-
tems with a polytopic representation of uncertainty is
proposed. To determine such robust controls for poly-
topic uncertain systems, a reformulation of the noncon-
vex optimization problem associated with Nash strategy
is provided. Such a formulation allows the introduction
of parameters uncertainty in the system’s model, by de-
composing the nonconvex optimization problem into a
sequence of convex ones. SDP leads to an efficient al-
gorithm to compute robust controls, inspired by Nash
strategies.
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