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Sound emergence in clarinet-like instruments is investigated in this paper in terms of instability
of the static regime. Various models of a reed coupled to a resonator are indeed considered, from
the pioneering work of Wilson and Beavers to more recent modelling including refinements such as
visco-thermal bore losses, vena contracta at the reed inlet, and reed motion induced flow. Within
the framework of linear stability, the pressure threshold above which the model may oscillate as well
as the frequency of oscillation at threshold are calculated. The main conclusions confirm that the
reed damping plays an important role in the instrument functioning: it is deeply involved in the ease
of playing (defined as the pressure threshold) and in the selection of the register the instrument will
play on, through the interaction of the reed with one precise resonance of the bore. Another result
is that the most sophisticated models studied reduce discrepancies between Wilson and Beavers
experimental results and theory, but discrepancies still remain concerning the pressure threshold.
Finally, analytical approximations of the oscillating solution based on Fourier series expansion are
obtained in the vicinity of the threshold of oscillation. This allows to emphasize the conditions which
determine the nature of the bifurcation (direct or inverse) through which the note may emerge, with
therefore important consequences on the musical playing performances. As an illustration, it is
found that the closeness between the oscillation frequency and one resonance frequency of the bore
causes a direct bifurcation to occur.

PACS numbers: 43.75.Pq

I. INTRODUCTION

Sound production in the reed wind musical instru-
ments is a result of self-sustained reed oscillation. The
mechanical oscillator, the reed, acts as a valve which
modulates the air flow entering into the instrument, by
opening and closing a narrow slit defined between the
tip of the reed itself and the lay of the mouthpiece. The
phenomenon thus belongs to the class of flow-induced vi-
brations, which has been extensively studied both theo-
retically and experimentally (see, for example, Blevins7).
Various regimes can occur in such systems: static regime,
periodic oscillating regimes, and even complex chaotic
behaviours.

A first step to study this kind of oscillators, is to anal-
yse the stability of the trivial solution, the equilibrium
position of the reed, in order to find a threshold of insta-
bility associated to a set of control parameters defining
the embouchure (reed, mouthpiece, and player) and the
instrument itself. As an output of the threshold analysis,
a mouth pressure threshold can be found. It is relevant
from the musical playing performance: an estimation of
the threshold value is a first evaluation of the ease of play-
ing. In this paper are firstly investigated theoretically
the threshold of instability of the reed of a clarinet-like
system by revisiting the important pioneering work of
Wilson & Beavers43. Secondly, small oscillations beyond
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the instability threshold are considered.

To answer the question whether the reed equilibrium
is stable or not, several theoretical methods are available
and have been used to study reed wind instruments. Us-
ing the feedback loop analogy, it is known as the free os-
cillation linear stability problem in a closed loop obtained
when the nonlinear component of the loop is linearized
around the trivial solution. Then the linear stability of
the reed can be studied with respect to each resonance
of the input impedance of the resonator in frequency do-
main (see, for example, Refs. 3, 5, 10, 20, 34 and 38 for
reed instruments, Ref. 18 for lip-reed instruments and
Ref. 19 for a generic type of reeds). Using the dynamical
system representation where each resonance of the res-
onator is described as a simple second order oscillator in
time domain, the linear stability analysis involves solving
eigenvalue problems and analysing the sign of the eigen-
values real part (see, for example, Refs. 12 for lip-reed in-
struments and 33 for vocal folds). The theoretical results
can then be compared with experimental ones coming
from artificial mouth by playing them as gently as possi-
ble (see, for example, Refs. 3, 14, 15, 43 for reed instru-
ments; Ref. 12 for lip reed instruments; and Refs. 9, 29, 37
for vibrating vocal folds). The first attempt to derive
theoretically the spectrum of reed instruments beyond
the instability threshold is due to Worman44. His results
were at the origin of several works such as Refs. 6, 22, 28.

Despite a rather simple description of physical phe-
nomenon, pioneer theoretical and experimental results
concerning mouth pressure and frequency at oscillation
threshold were obtained by Wilson & Beavers43, show-
ing the important role of reed damping determining the
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clarinet-like or lingual pipe organ-like behaviour.
The theory of Wilson and Beavers (hereafter denoted

WB) is presented and discussed in section II. Then model
improvements from literature are added in the theory in
order to try to reduce discrepancies between WB exper-
iments and the theoretical results (section III). Section
IV is devoted to a study of small oscillations beyond the
instability threshold according to the direct bifurcation
behaviour of the clarinet-like instruments. Finally per-
spectives are discussed in the conclusion.

II. WILSON AND BEAVERS THEORY

A. Basic physical model

The physical model used by WB is reminded with some
comments related to more recent literature. It is based
on the description of three separate elements: the reed,
the bore and the airflow. The model used here is clas-
sical and extremely simplified, but is also proven to be
efficient in order to reproduce self sustained oscillations
(for sound synthesis examples, see Refs. 23, 35). Addi-
tional elements will be discussed in the next section.

Reed

Based upon the fact that reed displacement occurs in
the vertical direction mainly without torsion, WB, among
many authors, have assumed a single degree of freedom
motion. Reed-lip-mouthpiece system is thus modelled as
a lumped second-order mechanical oscillator with stiff-
ness per unit area K, damping parameter qr and nat-
ural angular frequency ωr, driven by the pressure drop
Pm − p(t) across the reed, with an inward striking be-
haviour:

d2y

dt2
+ qrωr

dy

dt
+ ω2

r (y(t) − y0) =
ω2

r

K
(p(t) − Pm) , (1)

p(t), Pm, y(t), y0, being the mouthpiece pressure, the
blowing pressure, the tip opening (denoted a(t) in WB’s
paper43) and the tip opening without any pressure dif-
ference, respectively. Pm is assumed to be constant.

Avanzini et al.
2 have numerically shown that this

lumped model is valid for a small vibration theory where
only the interaction between bore resonances and the first
flexion mode of the reed is investigated. Measured trans-
fer functions of a reed mounted on a mouthpiece also
shows a two degree of freedom response21.

Bore

The behaviour of the acoustical resonator is deter-
mined by an input impedance relationship between
acoustic quantities in the mouthpiece (acoustic pressure
p(t) and volume flow u(t), or P (ω) and U(ω), respec-
tively, in the frequency domain). WB assumed, for a
cylindrical bore representing a simplified clarinet body,

an expression given by Backus3:

Ze(ω) =
P (ω)

U(ω)
= jZc

1

1 − j
2Q

tan

(

ωL

c

(

1 − j

2Q

))

,

(2)
where j2 = −1, c and ρ, L, S and Zc = ρc/S are the
wave speed in free space, density of air, bore length, bore
cross section, and characteristic impedance, respectively.
The quality factor Q is assumed by WB to be frequency
independent, implying a damping proportional to the fre-
quency.

As it will be seen later, this assumption can be dis-
cussed, and improved models will be used, because pres-
sure thresholds are strongly influenced by bore losses
(which are directly linked to the value of parameter Q).

Airflow

As noted by Hirschberg25, in the case of clarinet-like
instruments, the control of the volume flow by the reed
position is due to the existence of a turbulent jet. Indeed,
a jet is supposed to form in the mouthpiece (pressure
pjet) after flow separation from the walls, at the end of
the (very short) reed channel. Neglecting the velocity
of air flow in the mouth compared to the jet velocity
vjet and assuming a downwards air flow (vjet > 0), the
Bernoulli theorem applied between the mouth and the
reed channel25 leads to:

Pm = pjet +
1

2
ρv2

jet where ρ is the air density. (3)

Assuming a rectangular aperture of width W and height
y(t), the volume flow u across the reed channel can be
expressed as follows:

u(t) = Wy(t)

√

2

ρ

√

Pm − pjet(t). (4)

Since the cross section of the mouthpiece is large com-
pared to the cross section of the reed channel, it can be
assumed that all the kinetic energy of the jet is dissi-
pated through turbulence with no pressure recovery (like
in the case of a free jet). Therefore, pressure in the
jet is (assuming pressure continuity) the acoustic pres-
sure p(t) imposed by the resonator response to the in-
coming volume flow u. This model is corroborated by
experiments17. Similar descriptions are used for double-
reeds instruments1 and buzzing lips11.

B. Characteristic equation and instability threshold

The conditions for which self-sustained oscillations be-
come possible are sought, that is, for a given configu-
ration of the experiment (ωr, qr and L being fixed), the
minimum value of blowing pressure required for the static
regime to be unstable is investigated. Common linear
stability analysis methods24 are used in this study, and
solutions having time dependence exp(jωt) are sought.
Cancellation of the imaginary part of ω corresponds to
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an oscillation that is neither damped nor amplified: it
characterizes the instability threshold of static regime.
Attention is drawn to the fact that this quantity may dif-
fer from the oscillation threshold. As a language abuse
this later is often used instead of the former. In Sec-
tion IV.B, the nature of the bifurcation is studied.

Assuming small vibrations around equilibrium state
(mean values of y and p are y0 − Pm/K and 0, respec-
tively), the volume flow relationship (4) is linearized. Di-
mensionless quantities are introduced here: θ, Ye, D are
the dimensionless frequency, input admittance and the
reed transfer function, respectively.

θ =
ω

ωr
, Ye(θ) =

Zc

Ze(θ)
and D(θ) =

1

1 + jqrθ − θ2
. (5)

There are two dimensionless control parameters: γ is the
ratio between mouth pressure and the pressure required
to completely close the reed channel in static regime,
while ζ mainly depends on mouthpiece construction and
lip stress on the reed (ζ equals quantity 2β in Ref. 43).

γ =
Pm

Ky0
and ζ = ZcW

√

2y0

Kρ
. (6)

Linearization of Eq. (4) leads to the so-called character-
istic equation:

Ye(θ) = ζ
√

γ

{

D(θ) − 1 − γ

2γ

}

, (7)

which can be split into real and imaginary parts:

ℑm (Ye(θ)) = ζ
√

γ ℑm (D(θ)) , (8)

ℜe (Ye(θ)) = ζ
√

γ

(

ℜe (D(θ)) − 1 − γ

2γ

)

. (9)

At last, a dimensionless length krL = ωrL/c is intro-
duced.

C. Numerical techniques

The unknowns θ, γ ∈ R
+ satisfying Eq. (7) are numer-

ically determined for a range of bore lengths, parame-
ters (qr, ζ, ωr) being set. They correspond to frequency
and mouth pressure at instability threshold of the static
regime. When various solutions exist for a given con-
figuration due to the interaction of the reed resonance
with the several bore resonances, the threshold observed
experimentally by increasing the blowing pressure is the
one having the minimum value of γ.

The characteristic equation is transcendental and may
have an infinite number of solutions. Zero-finding is done
using the Powell hybrid method32, which combines the
advantages of both Newton methods and scaled gradi-
ent ones. A continuation technique is adopted to provide
an initial value to the algorithm: the first resolution is
done for very high values of L (krL ≃ 30), i.e. for a
nearly dynamicless reed where f ≃ (2n − 1)c/4L and
γ ≃ 1/3 (with n ∈ N). Bore length is then progressively

FIG. 1. Dimensionless threshold frequencies (top) and pres-
sure (bottom) for a strongly damped reed: qr = 0.4, fr =
750Hz, β = 0.065. Results (dashed lines) and measurements
(squares) from Ref. 43; our numerical results (solid lines).

decreased and zero-finding for a given value of L is initial-
ized with the pair (θ, γ) solution of the previous solving
(bore slightly longer). Depending on the initialization of
the first resolution (krL = 30), it is possible to explore
the branches associated with the successive resonances of
the bore. When reed resonance and bore antiresonance
get closer to each closer (krL → nπ(n ∈ N)), fast varia-
tions of the pressure threshold requires to adjust the step
size.

D. Results

Two kinds of behaviour can be distinguished. For
strongly damped reeds (Figure 1), the threshold frequen-
cies (dashed lines) always lie near both the reed reso-
nance (θ = 1) and the first impedance peak frequency of
pipe (hyperbola θ = π/(2krL), not represented in Fig-
ure for readability), corresponding to the first register
of the instrument. When the length L decreases, pres-
sure threshold gradually reduces from values assumed
for the dynamicless reed model to a minimum point for
krL ∼ π/2, and then strongly increases as the pipe be-
comes shorter. When increasing γ from 0, the loss of sta-
bility of the static regime may give rise to an oscillating
solution which always corresponds to the first register,
since the instability thresholds of the higher registers oc-
cur for higher values of mouth pressure. On the contrary,
considering now lightly damped reeds (Figure 2), emerg-
ing oscillations can occur near higher pipe resonances.
Indeed, for certain ranges of L, pressure threshold asso-
ciated with one particular higher-order register is lower
than the pressure required to drive the air column in the
other registers. This lowest pressure threshold is asso-
ciated with the acoustic mode, the natural frequency of
which being the closest to the reed resonance.

These results show the influence of reed damping on
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FIG. 2. Dimensionless threshold frequencies and pressure for
a lightly damped reed: qr = 0.008, fr = 700Hz, β = 0.05. Re-
sults (dashed lines) and measurements (squares) from Ref. 43;
our numerical results (solid lines).

selecting:

• a clarinet-like behaviour with heavily damped cane
reed: preference is given to the chalumeau register,
i.e. the lowest register,

• or a lingual organ pipe behaviour with very lightly
damped metallic reed: tuning is performed by ad-
justing reed vibrating length by means of a wire
adjusted on reed, see Ref. 30 for further details.

This noticeable conclusion of Wilson & Beavers paper
gainsays Helmholtz, who states that the differences of
behaviour is linked to the mass of reed.

E. Discussion

Despite the important results obtained by WB, dis-
crepancies concerning numerical results and model limits
can be pointed out. In a validation phase of our nu-
merical algorithms, our results (see Figures 1 and 2)
were compared to their ones (the data being extracted
from their article), solving exactly the same equation.
Differences appear between numerical results concerning
threshold frequencies, approaching reed resonance when
length decreases. Assuming a lossless bore ℜe (Ye(ω)) =
0 in Eqs.( 8,9), the condition of positive pressure thresh-
old γ > 0 leads to the following required inequality:

(1 − θ2)2 + (qrθ)
2

(1 − θ2)2 + (qrθ)2 + 2(1 − θ2)
> 0. (10)

As a consequence, the denominator needs to be positive
too. It accepts two positive solutions θ1 and θ2 as well as
their opposite. Assuming a second-order approximation
in qr, their expression can be deduced:

θ1 = 1 + q2
r/4 and θ2 =

√
3
(

1 − q2
r/4
)

. (11)

For values of θ between these two limits, the system
accepts no solution, i.e. no oscillations are possible
within this frequency range. Considering bore losses only
slightly shifts these limits. This analytical derivation
means that frequency threshold would go above ωr as
ω1 = ωrθ1 = ωr(1 + q2

r/4). For heavily damped reeds
and very short pipe, one might be able to play much
sharper than WB results suggests. Our results were con-
firmed by a method based on the modal decomposition
of the resonator (see section IV.A).

Further investigations pointed out model limits the au-
thors do not take into account: linearization of flow re-
lationship is valid only while reed channel is not closed
at rest, i.e. when Pm < Ky0. Using the linear form
for higher values of Pm would be meaningless, even for
free reed aerophones: the opening function (linked to
the reed displacement) taking part in flow calculation
can never be negative. For instruments for which reed
beats against the mouthpiece, reed channel is completely
closed and then sustained oscillations cannot occur for
bore length where WB theory predicts pressure thresh-
old above static beating reed pressure, by extending lin-
earization beyond model limits. As a consequence, such
considerations do not allow to determine if it is possible
to play sharper than reed-lip-mouthpiece system reso-
nance frequency.

F. Minimum pressure threshold: Improved playability for
interacting resonances

For each value of qr, there exists one or more ranges of
bore lengths where playability is greatly improved. In-
deed, pressure threshold curves show a minimum for a
certain value of krL, denoting an increased easiness to
produce the note corresponding to this length. Associ-
ating a clarinet mouthpiece with a trombone slide, in-
formal experiments confirm that it is easier to produce
some notes than other ones. Analytical approximated
expression of this minimum have been investigated. Un-
der the assumption that this minimal value is obtained
for an emerging frequency located close to a reed reso-
nance, and therefore is mainly determined by reed damp-
ing, bore losses can be ignored ℜe (Ye(ω)) = 0, Eq. (9)
leading thus to:

γ =
1

1 + 2ℜe (D(θ))
. (12)

In the dynamicless reed model (D(θ) = 1), threshold
pressure is equal to 1/3 and frequencies corresponds to
frequencies for which the imaginary part of bore input
impedance vanishes, which is consistent with results al-
ready published27. The minimum pressure threshold oc-
curs at a maximum of ℜe (D(θ)) :

ℜe (D(θ)) =
1 − θ2

(1 − θ2)2 + (qrθ)2
, (13)

obtained for θ =
√

1 − qr (which is consistent with the
approximation θ ≃ 1), thus:

γ0 =
qr(2 − qr)

2 + qr(2 − qr)
, (14)
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nearly proportional to qr for lightly damped reeds.
Considering now a one-mode resonator with losses:

Ye(ω) = Yn

(

1 + jQn

(

ω

ωn
− ωn

ω

))

, (15)

where Yn is the admittance minimum amplitude and Qn

the quality factor, Eqs. (8,9) become:

Yn + ζ
1 − γ

2γ
= ζ

√
γ

1 − θ2

(1 − θ2)2 + (qrθ)2
(16)

Qn

(

θ

θn
− θn

θ

)

= −ζ
√

γ
qrθ

(1 − θ2)2 + (qrθ)2
. (17)

Ignoring the variation of Yn with frequency, the deriva-
tion of Eq. (16) with respect to krL leads to a minimum
value of the function γ = f(krL) for θ2

min = 1 − qr and
γmin solution of equation:

Yn

ζ
√

γmin
+

1 − γmin

2γmin
=

1

qr(2 − qr)
(18)

which first-order solution is given by:

γmin ≃ γ0

(

1 + 2
Yn

ζ

√
γ0

)

(19)

obtained for

ωn = ωr

(

1 − qr

2
+

1

2Qn
+

ζ

2YnQn
√

qr

)

. (20)

For an open/closed cylinder ωn = (2n − 1)πc/2L, the
result is:

(krL)min ≃ (2n − 1)
π

2

(

1 +
qr

2
− 1

2Qn
− ζ

2YnQn
√

qr

)

.

(21)
Typical values Yn = 1/25, ζ = 0.4 and qr = 0.4 lead to
an increase of γmin towards γ0 of about 8%, confirming
the preponderant effect of reed damping on the minimum
pressure threshold.

In order to understand how coupling acoustical and
mechanical resonances could reduce pressure threshold
upon a wider bore length range, the neighborhood of the
previously mentioned minimum has been studied. Using
again a single acoustical mode for the calculation, deriva-
tion of a parabolic approximation was possible. Writing
γ = γmin(1+ ε2), θ2 = θ2

min + δ and ωn = (ωn)min(1+ ν),
with ε, δ and ν small quantities, the Taylor expansion
of Eqs. (16,17) with respect to these values leads to the
next relationships:

ε2 ∼ δ2/(2q2
r), (22)

2q2
rYnQn(δ − 2ν) = −δζ

√
qr. (23)

Finally, near the minimum pressure threshold, depen-
dence to bore length is given by:

γ = γmin






1 +

2qr
(

q
3/2
r + ζ

2YnQn

)2

(

krL − krLmin

krLmin

)2






.

(24)

In a first approximation, the aperture of the approxi-
mated parabola, thus the width of the range for which
oscillation threshold is lowered, is mainly controlled by
the musician embouchure, i.e. by reed damping and lip
stress on the reed. This means that, thanks to its em-
bouchure, the player can expect an easier production of
tones for certain notes.

For a lossy cylindrical open/closed bore, modal ex-
pansion of input impedance gives YnQn = ωnL/2c =
(2n − 1)π/4, so that bore losses do not seem to have a
great influence on playing facility, at least when consid-
ering minimal blowing pressure γmin (Qn does not ap-
pear alone in first order calculation). On the contrary,
they are essential for the understanding of the extinc-
tion threshold phenomenon16, i.e. when the reed is held
motionlessly against the lay.

III. MODEL IMPROVEMENTS

Last four decades have been fruitful in physical mod-
elling of musical instruments, especially for single reed
instruments. Pipes have been the focus of a great num-
ber of studies since Benade4, as well as the description
of peculiarities of flow (Backus3, Hirschberg25, Dalmont
et al.

17). The aim is here to try to reduce discrepancies
between WB experiments and theory, based on some of
those investigations which look relevant to the study of
oscillation threshold.

A. Visco-thermal losses model and vena contracta

It should be noticed that there is a gap in pressure
threshold values between experiment and theory in WB
article. This occurs even for long bores, when reed
dynamical behaviour should not deviate from the ideal
spring model (because of an emerging frequency much
smaller than ωr). For that case, Kergomard et al.

28 pro-
vided an approximated formula taking into account both
reed dynamics and bore losses:

γ ≃ 1 − θ2
n

3 − θ2
n

+
2ℜe (Ye(θ))

3
√

3ζ
, θn = (2n − 1)

π

2krL
. (25)

θn corresponding to the nth resonance frequency of the
bore. In comparison with ideal model (lossless bore and
dynamicless reed, i.e. γ = 1/3), additional corrective
terms are considered in Eq. (25), one lowering pressure
threshold due to the collaboration of the resonant reed,
the other one requiring higher blowing pressure due to
dissipation in the bore. According to this approximated
expression, pressure thresholds depend on the mouth-
piece parameter and on bore dissipation at playing fre-
quency.

Now focus is done on using realistic values of ζ and
Ye(θ), assuming acoustic losses in clarinet-like bore to
be due mainly from visco-thermal dissipation (Benade4).
Others kinds of losses such as nonlinearity localized at
the open-end of a tube are negligible since study is done
at oscillation threshold, i.e. for very small amplitude os-
cillations. Simpler model ("Raman’s model") has been
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recently investigated by Dalmont et al.
16 and led to sat-

isfactory oscillation threshold of the fundamental regis-
ter of the clarinet, when operating frequencies are much
lower than reed natural frequency (the reed being con-
sidered as an ideal spring). In the present study, the
magnitude of the higher order impedance peaks needs
to be correctly estimated, so that neither Raman nor
Backus3 losses models may be realistic enough. Pressure
thresholds would be inaccurate when higher-order modes
of bore oscillate first.

The standard formula for the input impedance will be
hence considered:

Ze(ω) = jZc tan (kL) with jk =
jω

c
+ α

√

jω

c
(26)

where α is a coefficient quantifying the visco-thermal
boundary layers, equals to 0.0421 for a 7mm radius cylin-
der. This model introduces dissipation and dispersion,
and leads to a zero valued impedance at zero frequency,
which is still consistent with the linearization of flow re-
lationship for a zero mean value of acoustic pressure. In
this expression, visco-thermal effects are ignored in the
characteristic impedance (see Ref. 27). Eq. (26) leads
to peaks magnitudes inversely proportional to length L,
whereas they are not sensitive to L in Backus empirical
expression. A direct consequence is that pressure thresh-
old increases as resonator lenghtens.

Another effect may occur and modify pressure thresh-
old. Hirschberg25,26 brought to attention on vena con-
tracta phenomenon: due to sharpness of edges, flow
separation may result in the formation of a free jet
in reed channel, this contraction effect resulting in a
jet cross-sectional area smaller than the reed channel
opening. Recent investigations13 applying the lattice
Boltzmann method to the reed channel confirm previous
experiments40. The assumption of constant vena con-
tracta is valid in some specific cases, for short channel
geometry and about half a period for dynamic regimes.
Here small vibrations of the reed near oscillation thresh-
old are considered, that may induce little influence of the
flow unsteadiness on the measured pressure threshold.
So it is possible25 to include vena contracta phenomenon
by multiplying the area of the reed channel Wy(t) by
a coefficient nearby 0.6 , i.e. by multiplying ζ by this
coefficient.

Numerical investigations point out (see Figure 3) that
taking into account realistic losses and vena contracta
phenomenon reduces discrepancies in pressure thresh-
old, especially for high values of bore length and for
a strongly damped reed, i.e. when reed dynamics has
a small influence on oscillation threshold. Nevertheless
pressure values experimentally obtained by WB still re-
main quite higher than the ones corresponding to the
modified model, while frequencies are unaltered.

An attempt to explain the discrepancies in threshold
measurements will be provided in section IV.
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FIG. 3. Results with the model considering vena contracta
phenomenon (thin line) and visco-thermal losses (thick line)
(same conditions as Figure 1 ). WB results are also reminded
(dashed line).

B. Reed motion induced flow

The influence of the reed is not limited to its resonance.
Since Nederveen31 and Thompson39, it is proved that
flow entering through reed opening is divided in one part
exciting the resonator and another part induced by reed
motion. In fact, the vibration of the surface of the reed
produces an additional oscillating flow. Thus the entering
flow U can be written as:

U(ω) = Ye(ω)P (ω) + Sr(jωY (ω)), (27)

Sr being the effective area of vibrating reed related to
the tip displacement y(t). Alternately, a length ∆l can
be associated to the fictitious volume where reed swings.
Dalmont et al.

15 reported typical values of 10mm for a
clarinet. Nederveen31 linked ∆l to reed strength (or hard-

ness): ∆l may approximately vary from 6mm (strong
reeds) to 9mm (softer reeds). These values being small
compared to clarinet dimensions, reed motion induced
flow can be considered through a mere length correction
in common work, but its influence on the interaction be-
tween acoustic resonator and reed is not negligible on the
threshold frequency, as it is studied now.

In a first step, this effect is considered separately, all
losses are ignored (qr = 0 and α = 0). Eq. (27) coupled
to Eq. (7) leads to the following system:

− ℑm (Ye) = kr∆l
θ

1 − θ2
, (28)

1

1 − θ2
− 1 − γ

2γ
= 0 ⇔ γ =

1 − θ2

3 − θ2
. (29)

As seen previously, several frequency solutions θ exists for
different pressure thresholds γ. Examination of Eq. (29)
as a function γ = f(θ2) (for θ < 1) reveals that the
solution having the lowest threshold is the one being the
closest to reed frequency.
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Approximations can be derived in some situations.
When playing close to a bore resonance frequency θn ≪
1, right-hand term in Eq. (28) is small, so that, with
Ye = −j cot (θkrL), reed motion induced flow acts merely
as a length correction:

∆l
1

1 − θ2
n

where θn =
(2n − 1)π

2krL
. (30)

This approximation is valid when the considered bore
frequency θn remains smaller than unity. An equivalent
approximated length correction can be derived for the
effect of reed damping on frequencies from Eq. (8):

∆lq ≃ ζ
qr√
3kr

. (31)

Numerical estimations of length corrections from oscil-
lation frequency exhibit a higher value for the reed mo-
tion induced flow (∆l ≃ 12mm) than for the reed damp-
ing (∆lq ≃ 2mm) in the conditions of Figs. 1 and 5.
When acoustical and mechanical resonances are very
close (θ = 1 − ε and θn = 1 − εn), a second-order ex-
pression can be deduced:

ε =
εn

2

(

1 +

√

1 + 2
∆l

Lε2
n

)

, (32)

the apparition of a square root being typical of mode
coupling, making difficult the achievement of analytical
expressions. Then, when bore length decreases enough
so that one of its resonances increases above reed one
(θn > 1), the oscillation frequency approaches to the reed
one until interception point disappears for nπkrL = 1
(see Fig. 4). Near the reed resonance, first-order approx-
imations can be derived:

θ ≃ 1 − 1

2
kr∆l tan (krL), (33)

γ ≃ 1

2
kr∆l tan (krL). (34)

These expressions are valid if tan (krL) & 0 i.e. krL &
nπ. According to Eq. (29), when oscillation frequency ap-
proaches fr, the pressure threshold decreases to zero con-
trary to what happens when considering the reed damp-
ing effect.

Figures 5 and 6 show a numerical comparison of the
respective effects of reed motion induced flow and reed
damping. The first effect adjusts the frequency deviation
for both heavily and lightly damped reeds, even when ap-
proaching reed resonance, and is preponderant compared
to the second one. This justifies classical approaches for
the calculation of playing frequencies, ignoring the flow
due to pressure drop, and searching for eigenfrequencies
of the passive system including the bore and the reed
only. It can be noticed that Eq. (28) was already given by
Weber42 in the early nineteenth century (see page 216),
assuming a reed area equal to the cylindrical tube section.
This theory, used by several authors (see e.g. Miklos30),
was discussed by Helmholtz41 and Bouasse8, especially
concerning the lack of explanation concerning the pro-
duction of self-sustained oscillations. On the contrary,

1 rLk2/π=θ 1 rLk2/π2=θ 1 3 rLk2/π3=θ

θ

0

r )
2
θ−1(/l∆kθr )Lkθ(toc

FIG. 4. Graphical representation of Eq. (28) giving oscilla-
tion frequency at threshold: left hand term −ℑm (Y) (thick
lines), right hand term kr∆lθ/(1−θ2) (thin line) and solutions
(markers).

FIG. 5. Comparing reed motion induced flow effect and reed
damping effect (∆l = 12mm and other conditions as in Fig-
ure 1): reed motion induced flow only (dashed lines), reed
damping only (dash-dot lines), both effects (plain lines). WB
experimental results are reminded (squares).

threshold pressure curves exhibit that both phenomena
have influence on the pressure required for the reed to
oscillate. So a combination of damping and additional
flow has to be taken into account, none of them being
negligible in the considered domain.

IV. GOING BEYOND INSTABILITY THRESHOLD

A. Linear stability analysis with modal decomposition

Analysis of the instability threshold can be performed
using complex frequencies formalism. For a given con-
figuration of the whole system bore-reed-musician (L, r,
ωr, qr, γ and ζ being set), its complex eigenfrequencies
sn = jωn − αn can be determined. The imaginary part
of sn corresponds to the frequency, the real part αn be-
ing the damping of this mode, for the coupled, linearized
system close to the static equilibrium state. Classically,
when the mouth pressure is below the oscillation thresh-
old, all eigendampings αn are positive, the static regime
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FIG. 6. Comparing reed motion induced flow effect and reed
damping effect (∆l = 5mm and other conditions as in Fig-
ure 2): reed motion induced flow only (plain thin lines), reed
damping only (dashed thin lines), both effects (plain thick
lines). WB experimental results are reminded (squares).

being stable. An oscillation may appear when at least one
mode of the whole system becomes unstable, i.e. when
at least one of the αn becomes negative. Looking for in-
stability threshold can be done by varying a bifurcation
parameter (either L, γ or ζ) and examining the real part
of computed eigenfrequencies. Two examples are shown
in Figures 7 and 8. It is noticeable that the frequencies
evolves only slightly with the bifurcation parameter γ,
and are close to eigenfrequencies of either the bore or
the reed (ℑm (jω/ωr ≃ 1) ). For the first example, static
regime becomes unstable for γ ≃ 0.28 and a frequency
near the first resonance of the bore (dot-dashed curves).
Other acoustic resonances (their frequencies being odd
multiples of first one) and reed resonance have higher os-
cillation threshold and remain damped for this configura-
tion. For a longer tube (Figure 8), instability appears for
γ ≃ 0.3 at a frequency located near the third resonance
of the bore (solid line at ℑm (jω/ωr) ≃ 0.8 ≃ 3 ∗ 0.27),
the first resonance becoming unstable for a larger mouth
pressure. Frequency close to reed resonance (dot-dashed
curves) still remains damped.

Calculations may be simplified and accelerated by us-
ing a modal decomposition of the bore impedance Ze(ω):
this allows for the characteristic equation to be written
as a polynomial expression of jω, and optimized algo-
rithms for polynomial root finding can be used. Modal
expansion considers the N first acoustic resonances of the
bore:

Ze(ω)

Zc
= j tan

(

ωL

c
− jα(ω)L

)

(35)

≃ 2c

L

N
∑

n=1

jω

ω2
n + jqnωωn + (jω)2

(36)
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FIG. 7. Evolution of the complex eigenfrequencies as a func-
tion of mouth pressure γ. L = 16cm, r = 7mm, ωr =
2π × 1000rad/s, qr = 0.3, ζ = 0.2.
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FIG. 8. Evolution of the complex eigenfrequencies as a func-
tion of γ. L = 32cm, r = 7mm, ωr = 2π×1000rad/s, qr = 0.3,
ζ = 0.2.

where modal coefficients ωn and qn can be deduced ei-
ther from measured input impedance or from analytical
expression Eq. (35), assuming α(ω) to be a slowly varying
function of frequency.

Comparison between direct calculation of oscillation
threshold γth using WB method and estimation using
modal decomposition and complex eigenfrequencies com-
puting has been done. Whereas the difficulties for the
first method arise due to the transcendental characteris-
tic equation, the second one requires calculation of eigen-
values for various values of the mouth pressure γ, using
an iterative search of the instability threshold. The num-
ber of modes taken into account has been chosen such
that resolution of γth is less than 0.01, which is also the
tolerance used for the iterative search. An example is
given in Table I for a heavily damped and strong reed.
It shows very good agreement between the two methods
for both γ and θ. This validation allows the use of the
complex frequency approach, which results in an efficient
algorithm that can be easily applied to more complex res-
onator whenever modal description is available.

The writing of the characteristic equation for a sin-
gle acoustic mode exhibits the behaviour of the coupled
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krL θCF θWB ∆θ γCF γWB ∆γ

8.5 0.185 0.186 0.5% 0.43 0.43 0.1%

2 0.747 0.747 0.1% 0.30 0.30 0.6%

1 1.022 1.024 0.2% 3.86 3.82 1.0%

0.81 1.033 1.034 0.1% 8.77 8.71 0.7%

TABLE I. Comparison of pressure threshold and oscillation
frequency calculated using complex frequency formalism (in-
dexed by CF ) and Wilson & Beavers method (WB) for
r = 7mm, ωr = 2π × 750rad/s, qr = 0.4 and ζ = 0.13.

oscillators:

[

ω2
n + jω

(

qnωn +
c

L
ζ
1 − γ√

γ

)

− ω2

]

×
[

ω2
r + jqrωωr − ω2

]

= jω
2c

L
ω2

r

(

ζ
√

γ + jω
δL

c

)

.

(37)

Coupling realized by the flow in the reed channel mod-
ifies the damping of the acoustic mode: in addition to
the usual term (corresponding to visco-thermal losses and
eventually radiation), damping is increased by a quantity
related to mouth pressure and stress on the reed. This
may be regarded to as a resistive acoustic behaviour at
the bore entrance.

Assuming a linearized model is still relevant during
the growth of oscillations (before the saturation mech-
anism appears), this approach can be extended to in-
vestigate the transient response of the coupled system.
Characterizing the degree of instability of the system by
σ = minn αn, the slope of the curve σ = f(γ) gives an in-
formation about the instability degree of the system when
mouth pressure is slightly higher than oscillation thresh-
old. A great slope would correspond to a very unstable
configuration and a quick growth of oscillation, whereas
nearly constant curve would lead to a small amplifica-
tion coefficient and slowly rising vibrations and then to
longer transient attack before stabilization of the magni-
tude of oscillations. Links between the computed eigen-
frequencies of the coupled system presented here and the
transient behaviour have still to be investigated.

B. Mouth pressure required to obtain a given (small)
amplitude

The previous sections of the paper deal with the stabil-
ity of the static regime, looking for the condition to make
a bifurcation possible. Some developments concerning
the existence of oscillating regime above the threshold
are derived now. Neither stability of oscillation, nor tone
deviation issue will not be discussed here.

Grand et al.
22 suggested the introduction of the lim-

ited Fourier series of pressure in the massless reed case.
The technique is the harmonic balance applied to oscil-
lations of small amplitudes. Calculations are done here-
after by taking into account the reed dynamics in the

volume flow relationship, which does not appear in the
mentioned paper. Fourier series of volume flow depends
on Fourier components of signal Pm − p(t) and y(t). As-
suming steady state oscillations with angular frequency
ω, the signals are written as:

p(t) =
∑

n6=0

pnenjωt, u(t) = u0+
∑

n6=0

Ynpnenjωt, (38)

y(t) = y0 (1 − γ) + y0

∑

n6=0

Dnpnenjωt, (39)

where Yn = Ye(nω) and Dn = D(nω) are the values of
dimensionless bore admittance and reed dynamics for an-
gular frequency nω. Volume flow relationship is rewritten
as:

u2(t) = ζ2 (y(t)/y0)
2
(γ − p(t)). (40)

Sustained oscillations of very small amplitude are stud-
ied, assuming p1 is a non-vanishing coefficient considered
as a first-order quantity. Notations CEn and F(n

m) are

introduced:

CEn = Yn/(ζ
√

γ) +
1 − γ

2γ
− Dn, (41)

F(m
n) = F(n

m) = DnDm − 1 − γ

γ
(Dn + Dm) − YnYm

ζ2γ
(42)

Cancellation of CEn for given ω and γ means that the
characteristic equation (7) is solved for nω and γ. Ex-
panding Eq. (40) leads to:

0 =

[

u2
0

ζ2γ
− (1 − γ)2

]

+ 2(1 − γ)
∑

n6=0

[

u0Yn

ζ2γ(1 − γ)
− Dn +

1 − γ

2γ

]

pnenjωt

−
∑

n,m 6=0

F(n
m)pnpme(n+m)jωt

+
1

γ

∑

n,m,q 6=0

DnDmpnpmpqe
(n+m+q)jωt.

(43)

It is here assumed that pn is of order |n| (with p−n =
p∗n) (see e.g. Grand et al.

22). Continuous component of
volume flow is calculated up to order 2:

u2
0

ζ2γ
=(1 − γ)2 +

∑

n6=0

F“

+n
−n

”|pn|2

− 1

γ

∑

n,m,n+m 6=0

DnDmpnpmp∗n+m

≃(1 − γ)2 + 2F“

+1
−1

”|p1|2 + o(p2
1)

(44)

so that, considering u0 to be real:

u0 ≃ ζ
√

γ(1 − γ)



1 +

|p1|2 F“

+1
−1

”

(1 − γ)2



+ o(p2
1). (45)
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From Eq. (43), frequency (Nω) is extracted for N ≥ 1:

0 = 2(1 − γ)

[

DN − 1 − γ

2γ
− u0Yn

ζ2γ(1 − γ)

]

pN

+
∑

n6=0

F( n
N−n)pnpN−n

− 1

γ

∑

n,m 6=0

DnDmpnpmpN−n−m. (46)

For N ≥ 2, Taylor series expansion up to order N is
applied: in the first sum, only terms corresponding to
0 ≤ n ≤ N contribute at order N , while, in the second
one, the terms to consider are the ones for which 0 <
n < N and 0 < m < N − n. The component pN can be
deduced from the sequence (pn)0<n<N :

pN =
1

2(1 − γ)CEN

[

∑

0<n<N

F( n
N−n)pnpN−n

− 1

γ

∑

0<n<N
0<m<N−n

DnDmpnpmpN−n−m

]

+ o(pN
1 ). (47)

As an example, for N = 2, the second sum being empty:

p2 ≃
F(11)

p2
1

2(1 − γ)CE2
+ o(p2

1). (48)

As expected and in agreement with the so-called "Wor-
man rule"44, higher components appear to be higher or-
der quantities: order for 2 for p2, 3 for p3, 4 for p4, etc. . . )

Focus is now given to fundamental frequency. Calcu-
lations are done up to order 3:

0 =2(1 − γ)

[

D1 −
1 − γ

2γ
− u0Y1

ζ2γ(1 − γ)

]

p1

+
∑

n6=0,1

F( n
1−n)pnp1−n

− 1

γ

∑

1−n−m,n,m 6=0

DnDmpnpmp1−n−m

≃2(1 − γ)

[

D1 −
1 − γ

2γ
− u0Y1

ζγ(1 − γ)

]

p1

+ 2F( 2
−1)

p2p
∗
1 −

1

γ
D1p1|p1|2(D1 + 2D∗

1)

(49)

Replacing u0 and p2 gives:

|p1|2 ≃ 2(1 − γ)2 CE1

F(11)
F“

+2
−1

”

CE2
− Y1

ζ
√

γ
F“

+1
−1

” − 1 − γ

γ
(D2

1 + 2|D1|2)

.

(50)
The limitation to the the first harmonic method ignoring
the influence of pn≥2 on the amplitude |p1| leads to:

|p1|2 ≃ 2(1 − γ)2 CE1

− Y1

ζ
√

γ
F“

+1
−1

” − 1 − γ

γ
(D2

1 + 2|D1|2)
. (51)

In their paper, Grand et al.
22 stated that the procedure

used in a first simplified case can be applied for a model
including reed dynamics provided that Ze(ω) is replaced
by Ze(ω)D(ω). Conclusion is not so straightforward, as
reed dynamics also interferes with the volume flow rela-
tionship contributing for a more complex expression of
the first component amplitude. According to their work,
Dn terms would only occur with Yn in the expression of
|p1|2 which is not the case.

FIG. 9. Comparison of |p1| computed with the harmonic bal-
ance for small oscillations for various values of krL: from
thin to thick lines, krL = 9, 5, 4, 3, 2, 1.8, 1.5, 1.25 (∆l = 0,
qr = 0.4 and fr = 1050Hz).

On Figure 9 are shown the bifurcation diagrams for a
heavily damped reed. From the flattest tone (krL = 9.00)
to the sharpest computed (krL = 1.25), oscillations with
very small amplitudes are possible as the diagrams show
Hopf bifurcation that are supercritical, i.e. direct, for all
the computed cases. On the other hand, for cases where
oscillation frequency is closed to the reed one (Figure 10),
a subcritical Hopf bifurcations occurs for a range of bore
length, with a very small pressure threshold linked to
the interaction of reed resonance with the second bore
resonance: the bifurcation is there inverse.

In accordance with Grand et al.
22, it appears that the

bifurcation is not always direct. There exist configura-
tions for which computed bifurcation diagram shows a
subcritical pitchfork, i.e. small oscillations for values of
pressure below static regime instability threshold. The
boundary between the two cases are not trivial to ex-
plore analytically, requiring the mathematical study of
the Eq. (50). Alternately numerical exploration of pa-
rameter space can lead to some partial observations. One
of them is that the bifurcation seems to be direct when
oscillation frequency is closed to one of the bore reso-
nance.

The limit of calculations derived here needs to be em-
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FIG. 10. Comparison of |p1| computed with the harmonic bal-
ance for small oscillations for 14 values of krL regularly spaced
between 3.6 and 4.20, with a lightly damped reed (∆L = 0,
qr = 0.01 and fr = 1050Hz).

phasized. When |p1| tends to zero, the oscillation fre-
quency is the one for which the characteristic equation
is solved (CE1 = 0). Higher components (the second
one here at the first order approximation) have a non-
negligible influence only if CE2 becomes small too when
approaching oscillation threshold, i.e. if the character-
istic equation accepts the solutions ω and 2ω for two
close values of mouth pressure: CE1 and CE2 are small
simultaneously. Inverse bifurcation may occur in the de-
generate case of simultaneously destabilization of static
regime for a frequency and its octave. This considera-
tion can be extended to the more general case of CE1

and CEN (N ≥ 2) cancelling an equal mouth pressure
value.

As a conclusion, the nature of the bifurcation depends
on the roots of the characteristic equation (7): this gen-
eralizes the results of Grand et al.

22.

V. CONCLUSION AND PERSPECTIVES

Two components of the volume velocity at the input
of the resonator act on the oscillation threshold values:
the first one is due to the pressure drop between mouth
and mouthpiece, while the second one is due to the reed
movement. Roughly speaking, the first one has a mainly
resistive effect, either passive or active, the second one
having a mainly reactive effect. This remark can be re-
lated to the behaviour of the threshold pressures and fre-
quencies. Concerning the frequencies, the second effect
is preponderant, at least for the cases studied by Wilson

& Beavers, and it can justify the historical method due
to Weber42 regarding the playing frequencies as eigenfre-
quencies of a passive resonator. Concerning the pressure
thresholds, the flow due to pressure drop is essential, and
the model based upon Bernoulli equation used by Wil-
son & Beavers43 seems to be satisfactory, but taking into
account the flow due to reed movement is necessary, and
improves the results of the authors, mainly for lightly
damped reeds.

Discrepancies between Wilson & Beavers experimen-
tal results and numerical ones still remain. Can this be
due to the nature of the bifurcation at threshold? For a
clarinet-like functioning, i.e. for strongly damped reeds,
numerical calculation of small oscillations prove that it is
supercritical, confirming the works ignoring reed dynam-
ics, while it is not sure for lightly damped reeds. Further
experimental investigations are planned to conclude on
the nature of the bifurcation on real clarinets.

Concerning the possible generalization of this work,
other kinds of either resonators or reeds should be stud-
ied, as e.g. in Tarnopolsky et al.

38. Some authors of
the present paper recently obtained simplified theoreti-
cal results for a outward striking reed by using a similar
method of investigation based upon a single DOF reed
model36. Calculations with several DOFs for the reed re-
main to do, especially for lip reed instruments (see Cullen
et al.

12), even if recent works dedicated to vocal folds
have been done (see Ruty33). Finally, the study of tran-
sients sound can be made easier with a good knowledge
of the linearized functioning of reed instruments.
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