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On Linear-Quadratic Stackelberg Games with

Time Preference Rates

Marc Jungers

Abstract

This note deals with linear-quadratic Stackelberg differential games including time preference rates

with an open-loop information structure. The properties of the characteristic matrix associated with the

necessary conditions for a Stackelberg strategy are pointed out. It is shown that such a matrix exhibits

a special symmetry property of its eigenvalues. Sufficient conditions to guarantee a predefined degree

of stability are given based on the distribution of the eigenvalues in the complex plane.

Index Terms

Game Theory, Stackelberg Strategy, Riccati Equation, Time Preference Rate,α-Stability, Hamilto-

nian Matrix.

I. I NTRODUCTION

The Stackelberg strategies are an elegant concept for dealing with hierarchical differential

games [1], [2]. In the framework of an open-loop information structure [3], the necessary

conditions are well known and could be obtained explicitly within the context of linear-quadratic

problems [1], [2]. Nevertheless it seems that explicit solution, coping with differential games

with criteria including time preference rates does not exist.

It was proved in [4] that the linear-quadratic optimal control problem with a single criterion

including a constant time preference rateα could be restated as a standard one, with a shift of

the eigenvalues of the drift matrix byα. The reformulation uses a change of variable, which is

closely connected with asymptotic stability of degreeα.

M. Jungers is with CRAN UMR 7039 CNRS - Nancy Université ENSEM, 2 avenue de la foret de Haye 54516 Vandoeuvre

cedex, France.
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Besides, a criterion with a time preference rate is quite frequent especially in economic

applications of game theory (see [5], [6], [7, p. 77] for more details) and are recognized as

the discount rate associated with the cost functionals. In order to emphasize the fact that each

player has its own objective, the time preference rates are not necessarily identical [8].

When there is no time preference rate, the necessary conditions for obtaining an open-

loop Stackelberg equilibrium, are characterized by a Hamiltonian matrix, (see [9]–[11] for an

overview). This leads to a symmetry of the eigenvalues with respect to the origin of the complex

plane. However, for the general case where time preference rates are different and not null, this

property does not hold. The main contribution of this note is to consider such general case. Two

points are examined. First, the eigenvalues distribution of the characteristic matrix associated

with an open-loop Stackelberg strategy applied on the differential game is studied. Second, it is

shown that a predefined degree of stability could be imposed to the controlled system.

The note is organized as follows. In section II, the Stackelberg strategy with an open-loop

information structure is recalled and the associated necessary conditions are derived. The cases

of finite and infinite time horizon are considered. The characteristic matrix and the corresponding

coupled Riccati equations are presented. A non trivial symmetry for the eigenvalues is described

in section III. Sufficient conditions for a strictα−stability are provided in the same section,

followed by an interpretation in terms of game theory. An example illustrates the main result.

Some concluding remarks make up section IV.

II. STACKELBERG STRATEGY

A. Problem statement

Consider a two-players linear-quadratic differential game, on a finite time horizon, defined by

ẋ (t) = Ax (t) + B1u1 (t) + B2u2 (t) , x (t0) = x0, (1)

wherex ∈ R
n, ui ∈ Uad,i ⊂ R

ri (i ∈ {1, 2} and n, ri ∈ N, Uad,i is the admissible set of the

controlsui) and with the cost functionalsJi (i ∈ {1, 2}) including a time preference rateαi

Ji =
1

2
xT

f e2αitf Kifxf +
1

2

∫ tf

t0

e2αit
(

xT Qix + uT
1 Ri1u1 + uT

2 Ri2u2

)

dτ, (2)

wherexf = x (tf ). All weighting matrices are constant and symmetric withQi = CT
i Ci ≥ 0,

Kif ≥ 0, Rij ≥ 0 (i 6= j) andRii > 0. The matricesCi are of full rankCi ∈ R
mi×n.
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Stackelberg strategy with an open-loop information structure is applied for the differential

game (1)-(2). Player 2 is assumed to be the leader while player 1 is the follower. The hierarchy

in the game comes from the fact that the leader knows the rational reaction of the follower and

reveals first his/her strategy. The follower does not know the rational reaction of the leader and

must optimize his/her criterionJ1 for a given controlu∗
2(t) of the leader. Define the rational

reaction set of the followerR1 (u)

{ũ1 | J1 (ũ1, u) ≤ J1 (u1, u) ,∀u1 ∈ Uad,1} . (3)

For a differential game with an open-loop information structure [12], i.e. the players are

committed to follow a predetermined strategy or no state measurements are available, the leader

(player 2) is seeking aJ2-minimizing strategyu∗
2 (t), as a function of time only, that he expresses

before the game starts knowing the follower’s rational reaction. The follower (player 1) will then

minimize his cost functionalJ1 with the strategyu∗
1 (t), a function of time only. Mathematically,

the definition of a Stackelberg equilibrium(u∗
1, u

∗
2) is



























u∗

1 ∈ R1 (u∗

2)

and

max
u1∈R1(u∗

2)
J2 (u1, u

∗
2) ≤ max

u1∈R1(u2)
J2 (u1, u2) , ∀u2 ∈ Uad,2.

(4)

The necessary conditions for a Stackelberg strategy with an open-loop information structure were

derived in [1], [2] (see also [5], chapter 5 for application in economy). Letψ1 be the costate

vector of the follower associated with the dynamic constraint (1) andψ2 and γ, the costate

vectors of the leader, associated respectively with the dynamic constraint (1) and the rational

reaction set of the followerR1(·). The open-loop Stackelberg controls are






u∗
1(t) = −R−1

11 BT
1 ψ1(t),

u∗
2(t) = −R−1

22 BT
2 ψ2(t),

(5)

with














ẋ

ψ̇1

ψ̇2

γ̇















= Mα1α2















x

ψ1

ψ2

γ















, (6)
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and the transversality conditions are


























x (t0) = x0,

ψ1 (tf ) = K1fxf ,

ψ2 (tf ) = K2fxf − K1fγ (tf ) ,

γ (t0) = 0,

(7)

where

Mα1α2
=















A −S1 −S2 0n

−Q1 −AT − 2α1In 0n 0n

−Q2 0n −AT − 2α2In Q1

0n −S21 S1 A − 2(α2 − α1)In















. (8)

The notationSij = BjR
−1
jj RijR

−1
jj BT

j andSi = Sii are used. The matrixMα1α2
defined by (6)

and (8) characterizes the two point boundary value problem, in association with conditions (7).

Note that forα1 = α2 = 0, one can recognize the Hamiltonian structure ofMα1α2
= M0,0

pointed out in [9].

These necessary conditions are also sufficient if the criteria are convex for a finite time horizon

[1], [2]. In the following subsections the determination of the open-loop Stackelberg controls is

examined for both finite and infinite time horizon cases.

B. Criteria on a finite horizon

The linearity of the differential equation (6) and of the transversality conditions (7) with

respect tox(t) andx(t0) allows to research Stackelberg controlsu∗
1(t) andu∗

2(t) as following.

Let us findK1 (t), K2 (t) andP (t) verifying


















ψ1 (t) = K1 (t) x (t) ,

ψ2 (t) = K2 (t) x (t) ,

γ (t) = P (t) x (t) .

(9)

From (9) and (8) we obtain the Riccati differential equations to be verified byK1(t), K2(t) and

P (t)


















K̇1 = −
(

AT + 2α1In

)

K1 − K1A − Q1 + K1S1K1 + K1S2K2,

K̇2 = −
(

AT + 2α2In

)

K2 − K2A − Q2 + Q1P + K2S1K1 + K2S2K2,

Ṗ = (A − 2 (α2 − α1) In) P − PA + PS1K1 + PS2K2 − S21K1 + S1K2,

(10)

October 4, 2007 DRAFT



REVISED VERSION SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 5

with 

















K1 (tf ) = K1f ,

K2 (tf ) = K2f − K1fP (tf ) ,

P (t0) = 0.

(11)

In this case, the Stackelberg controls can be formulated as






u∗
1 (t) = −R−1

11 BT
1 K1 (t) ξ (t, t0) x0,

u∗
2 (t) = −R−1

22 BT
2 K2 (t) ξ (t, t0) x0,

(12)

where 





ξ̇ (t, t0) =
(

A − S1K1 (t) − S2K2 (t)
)

ξ (t, t0) ,

ξ (t, t) = In.
(13)

These controls are not functions of the measurement of the statex (t) but of the pre-determined

stateξ (t, t0) x0, function of time.

The Coupled Riccati Equations (11) are associated with the matrixMα1α2
. In fact, decomposing

Mα1α2
into submatrices as follows

Mα1α2
=





M1 M2

M3 M4



 =















A −S1 −S2 0n

−Q1 −AT − 2α1In 0n 0n

−Q2 0n −AT − 2α2In Q1

0n −S21 S1 A − 2(α2 − α1)In















,

(14)

we could rewrite the equations (10) as a single non-symmetric Riccati equation










K̇1

K̇2

Ṗ











= M4











K1

K2

P











−











K1

K2

P











M1 + M3 −











K1

K2

P











M2











K1

K2

P











. (15)

Such an equation could be solved using the representation formula of solutions of Riccati

equations [10].

C. Criteria on an infinite horizon

In this subsection, the particular case of infinite horizontf → +∞ is considered. Since only

stabilizing controls are considered, the terminal costs1
2
xT

f e2αitf Kifxf in criteria (2) and the

transversality conditions (7) become irrelevant.
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With criteria on infinite horizon, it is possible to look for only constant solutions of (15), by

replacing the left hand side of (15) by a extended zero matrix. Some necessary conditions of

existence of solution of this equation are developped in [13].

If K1, K2 andP are constant solutions of the Coupled Riccati Equations (10), then eigenvalues

of (A − S1K1 − S2K2) are included in the4n of Mα1α2
. A method to find all solutionsK1,

K2 and P of the coupled Riccati equations is to study the invariant subspaces of the matrix

Mα1α2
, with the form















In

K1

K2

P















(see [10], [13] for more details). Therefore the distribution of

the eigenvalues ofMα1α2
has to be studied.

III. E IGENVALUES SYMMETRY AND CONDITIONS FOR STRICTα2-STABILITY

In this section, firstly a property of symmetry of the matrixMα1α2
is emphasized.

Theorem 1 (Symmetry):The matrix(Mα1α2
+ α2I4n) is Hamiltonian.

Proof: Let

Ãα1,α2
=





A + α2In −S1

−Q1 −AT + (α2 − 2α1)In



 , B̃ =





B2

0n×r2



 , C̃ =





C2 0m2×n

0r1×n R−1
11 BT

1



 .

The matrixMα1α2
verifies

Mα1α2
+ α2I4n =











Ãα1,α2
−B̃R−1

22 B̃

−C̃T





Im2
0m2×r1

0r1×m2
R21



 C̃ −ÃT
α1,α2











. (16)

By notingJ =





02n I2n

−I2n 02n



, (note thatJ T = −J = J −1), it is easy to verify that

J T (Mα1α2
+ α2I4n)J = − (Mα1α2

+ α2I4n)T

which proves that(Mα1α2
+ α2I4n) is an Hamiltonian matrix.

This Hamiltonian symmetry property depends only onα2, the time preference rate of the

leader. The hierarchical structure of the game allows the leader to impose his time preference

rate to the system (1). The follower’s time preference rate does not influence the symmetry.

October 4, 2007 DRAFT
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It may be seen as a further degree of freedom in the control design. To obtain aα-degree of

stability, one should only imposeα2 ≤ α.

It is well known that for a Hamiltonian matrix ifλ is an eigenvalue,−λ is also an eigenvalue.

Here, matrix(Mα1α2
+ α2I4n) is Hamiltonian and real. Therefore, the matrixMα1α2

admits the

point (−α2; 0) as a center of symmetry in the complex plane for its eigenvalues distribution.

However it is possible that eigenvalues of matrixMα1α2
has a real part equal to−α2. To

guarantee an exponential convergence rate of degree greater thanα2 for the system (13), one

should prove that at leastn eigenvalues ofMα1,α2
are located to the left of the vertical symmetry

axis−α2 + jR.

In the following, the sufficient conditions for strictα2-stability, associated with this Hamil-

tonian symmetry is studied. By notingλk (k ∈ {1, · · · , 4n}) the 4n eigenvalues ofMα1α2
, a

permutation allows to have

Re (λ1) ≤ · · · ≤ Re (λ2n) ≤ −α2 ≤ Re (λ2n+1) ≤ · · · ≤ Re (λ4n) . (17)

In the caseα1 = α2 = 0, the relation

Re (λ2n) < 0 < Re (λ2n+1) , (18)

is obtained if the pairs(C1, A) and (C2, A) are detectable and(A,B1) is stabilizable [10]. The

presence of eigenvalues on the vertical symmetry axis means that a predefined stability of degree

α2 cannot be guaranteed. Sufficient conditions to ensure that

Re (λ2n) < −α2 < Re (λ2n+1) . (19)

are derived hereafter.

The proof of the main theorem requires two lemmas.

Lemma 1:Assuming thatR > 0 andW > 0, the Hamiltonian matrix





P −DR−1D

−ET WE −P T





does not admit imaginary eigenvalue if

• the pair(E, P ) does not admit imaginary unobservable mode.

• the pair(P, D) does not admit imaginary uncontrolable mode.

This lemma is well known in LQ problem. A sketch of the proof can be found for example

in [10, p. 59].

October 4, 2007 DRAFT
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Lemma 2 (Sylvester’s Inequality):Let U1 andU2 beq×w andw×p matrices with coefficients

in the same field. Then by notingρ(U1) the rank of the matrixU1, one have

ρ(U1) + ρ(U2) − w ≤ ρ(U1U2) ≤ min (ρ(U1), ρ(U2)) . (20)

A proof of Sylvester’s Inequality can be found in [14].

Theorem 2 (General strictα2−stability): For each couple(α1, α2) ∈ R
2, the relation (19) is

verified under the sufficient conditions

i) the pair (C1, A + (2α1 − α2)In) does not admit imaginary unobservable mode,

ii) the pair (C2, A + α2In) does not admit imaginary unobservable mode,

iii) the pair (A + (2α1 − α2)In, B1) does not admit imaginary uncontrolable mode,

iv) and furthermore, ifα1 6= α2, it is assumed thatm1 ≤ r2 and that the triplet(A + α2In, B2, C1)

does not admit imaginary transition zero.

Proof: In order to avoid imaginary eigenvalues of the Hamiltonian matrix(Mα1α2
+ α2I4n),

the lemma 1 and the Hautus approach are used. The matrix(Mα1α2
+ α2I4n) defined by (16)

does not admit imaginary eigenvalues if for allω ∈ R,

• ρ
([

Ãα1,α2
− jωI2n B̃

])

= 2n,

• ρ









Ãα1,α2
− jωI2n

C̃







 = 2n.

The above matrices are rearranged to show Hautus matrices.

ρ









Ãα1,α2
− jωIn

C̃







 = ρ





























A + α2In − jωIn −B1R
−1
11 BT

1

−Q1 −AT + (α2 − 2α1 − jω)In

C2 0n

0r1×n R−1
11 BT

1





























= ρ





























A + α2In − jωIn 0n

C2 0n

−Q1 −AT + (α2 − 2α1 − jω)In

0r1×n R−1
11 BT

1





























.

October 4, 2007 DRAFT
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The conditions ii) and iii) in theorem 2 lead toρ









Ãα1,α2
− jωIn

C̃







 = 2n. Now the

condition on the pair
(

Ãα1,α2
− jωI2n, B̃

)

is studied.

[

Ãα1,α2
− jωI2n B̃

]

=





A + (α2 − jω)In −S1 B2

−Q1 −AT + (α2 − 2α1 − jω)In 0n×r2



 = U1U2,

with

U1 =





In 0n×m1
0n

0n −CT
1 −AT + (α2 − 2α1 − jω)In



 ∈ R
2n×(2n+m1), (21)

and

U2 =











A + (α2 − jω)In B2 −S1

C1 0m1×r2
0m1×n

0n 0n×r2
In











∈ R
(2n+m1)×(2n+r2). (22)

Condition i) in theorem 2 givesρ(U1) = 2n, and Condition iv) givesρ(U2) = 2n + m1. The

Sylvester’s Inequality in lemma 2 allows to verify thatρ(U1U2) = 2n.

Remark 1: It is noteworthy that for the caseα1 = α2 = α, the condition about the imaginary

transition zero is redundant. Matrix̃Aα,α is Hamiltonian. From lemma 1,(C1, A + αIn) has no

imaginary unobservable mode and(A + αIn) has no imaginary uncontrolable mode which is

enough to guarantee that̃Aα,α − jωI2n is invertible for everyω ∈ R and that

ρ
([

Ãα,α − jωI2n B̃

])

= 2n,

without consideration on the triplet(A + αIn, B2, C1).

Remark 2:Condition iv) can be interpreted in a gametheoretic sense. In fact, this triplet

corresponds to non-symmetric coupling between players. The action of the leader (matrixB2)

on the system (matrixA) can be viewed by the follower (matrixC1), if there is no imaginary

transition zero. Note that ifm1 > r2 holds, there is too follower’s outputs with respect to the

number of leader’s inputs. Then the leader is not able to impose arbitrary all the outputs of the

follower. The leader is not anymore omnipotent. That’s whym1 ≤ r2 is required.

Remark 3: It is worth noting that in all cases forα1 andα2, no conditions on the pair(A,B2)

are assumed. The controlability or only the stabilizability of the pair(A,B2) of the leader does

not influence the main result. This emphasizes the privileged position of the leader.

In order to illustrate the main result, the following example is taken.

October 4, 2007 DRAFT
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A =











1 2 1

2 −3 −1

2 1 −5











; B1 =











2

1

−1











; B2 =











1

2

−4











and

C1 =
[

1 1 1
]

; C2 =
[

2 −1 1
]

.

The pairs(C1, A) and(C2, A) are observable, and the pair(A,B1) is controlable. The different

conditions (except the condition about the imaginary zero transmission) of theorem 2 are verified

for all α1 andα2. The distribution of eigenvalues is computed for the couple(α1, α2) = (1, 2)

to illustrate the main result of symmetry. This couple verifies that the triplet(A + α2In, B2, C1)

does not admit imaginary eigenvalue. To sum up all assumptions of theorem 2 are verified. On

Fig. 1, the eigenvalues ofMα1α2
are represented. It is obvious that theα2-translated imaginary

axis is an axis of symmetry for the distribution of eigenvalues. Moreover there is no eigenvalue

on this axis of symmetry, as claimed in theorem 2.

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

Re(λ
k
)

Im
(λ

k)

Fig. 1. Distribution of eigenvalues for(α1, α2) = (1, 2).

IV. CONCLUSION

In this paper, the linear-quadratic games including time preference rates in the framework

of Stackelberg strategy with open-loop information structure is studied. The general case of

October 4, 2007 DRAFT
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different time preference rates is considered. It is shown that the time preference rate of the

leader imposes the symmetry of the eigenvalues of the characteristic matrix associated with the

necessary conditions. Also, sufficient conditions to guarantee a strictα-stability for this type of

differential games are derived.
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