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This note deals with linear-quadratic Stackelberg differential games including time preference rates with an open-loop information structure. The properties of the characteristic matrix associated with the necessary conditions for a Stackelberg strategy are pointed out. It is shown that such a matrix exhibits a special symmetry property of its eigenvalues. Sufficient conditions to guarantee a predefined degree of stability are given based on the distribution of the eigenvalues in the complex plane.

I. INTRODUCTION

The Stackelberg strategies are an elegant concept for dealing with hierarchical differential games [START_REF] Simaan | On the Stackelberg strategy in nonzero-sum games[END_REF], [START_REF]Additional aspects of the Stackelberg strategy in nonzero-sum games[END_REF]. In the framework of an open-loop information structure [START_REF] Bas | Dynamic Noncooperative Game Theory[END_REF], the necessary conditions are well known and could be obtained explicitly within the context of linear-quadratic problems [START_REF] Simaan | On the Stackelberg strategy in nonzero-sum games[END_REF], [START_REF]Additional aspects of the Stackelberg strategy in nonzero-sum games[END_REF]. Nevertheless it seems that explicit solution, coping with differential games with criteria including time preference rates does not exist.

It was proved in [START_REF] Anderson | Optimal control: linear quadratic methods[END_REF] that the linear-quadratic optimal control problem with a single criterion including a constant time preference rate α could be restated as a standard one, with a shift of the eigenvalues of the drift matrix by α. The reformulation uses a change of variable, which is closely connected with asymptotic stability of degree α.

M. Jungers is with CRAN UMR 7039 CNRS -Nancy Université ENSEM, 2 avenue de la foret de Haye 54516 Vandoeuvre cedex, France. October 4, 2007 DRAFT Besides, a criterion with a time preference rate is quite frequent especially in economic applications of game theory (see [START_REF] Dockner | Differential games in economics and management science[END_REF], [START_REF] Clemhout | Handbook of Game Theory[END_REF], [7, p. 77] for more details) and are recognized as the discount rate associated with the cost functionals. In order to emphasize the fact that each player has its own objective, the time preference rates are not necessarily identical [START_REF] Clemhout | Dynamic policy Games in Economics[END_REF].

When there is no time preference rate, the necessary conditions for obtaining an openloop Stackelberg equilibrium, are characterized by a Hamiltonian matrix, (see [START_REF] Abou-Kandil | Analytical Solution for an Open-Loop Stackelberg Game[END_REF]- [START_REF] Engwerda | LQ Dynamic Optimization and Differential Games[END_REF] for an overview). This leads to a symmetry of the eigenvalues with respect to the origin of the complex plane. However, for the general case where time preference rates are different and not null, this property does not hold. The main contribution of this note is to consider such general case. Two points are examined. First, the eigenvalues distribution of the characteristic matrix associated with an open-loop Stackelberg strategy applied on the differential game is studied. Second, it is shown that a predefined degree of stability could be imposed to the controlled system.

The note is organized as follows. In section II, the Stackelberg strategy with an open-loop information structure is recalled and the associated necessary conditions are derived. The cases of finite and infinite time horizon are considered. The characteristic matrix and the corresponding coupled Riccati equations are presented. A non trivial symmetry for the eigenvalues is described in section III. Sufficient conditions for a strict α-stability are provided in the same section, followed by an interpretation in terms of game theory. An example illustrates the main result.

Some concluding remarks make up section IV.

II. STACKELBERG STRATEGY

A. Problem statement

Consider a two-players linear-quadratic differential game, on a finite time horizon, defined by

ẋ (t) = Ax (t) + B 1 u 1 (t) + B 2 u 2 (t) , x (t 0 ) = x 0 , (1) 
where

x ∈ R n , u i ∈ U ad,i ⊂ R r i (i ∈ {1, 2}
and n, r i ∈ N, U ad,i is the admissible set of the controls u i ) and with the cost functionals J i (i ∈ {1, 2}) including a time preference rate α i

J i = 1 2 x T f e 2α i t f K if x f + 1 2 t f t 0 e 2α i t x T Q i x + u T 1 R i1 u 1 + u T 2 R i2 u 2 dτ, (2) 
where x f = x (t f ). All weighting matrices are constant and symmetric with

Q i = C T i C i ≥ 0, K if ≥ 0, R ij ≥ 0 (i = j) and R ii > 0. The matrices C i are of full rank C i ∈ R m i ×n . October 4, 2007 DRAFT
Stackelberg strategy with an open-loop information structure is applied for the differential game (1)-(2). Player 2 is assumed to be the leader while player 1 is the follower. The hierarchy in the game comes from the fact that the leader knows the rational reaction of the follower and reveals first his/her strategy. The follower does not know the rational reaction of the leader and must optimize his/her criterion J 1 for a given control u * 2 (t) of the leader. Define the rational reaction set of the follower R 1 (u)

{ũ 1 | J 1 (ũ 1 , u) ≤ J 1 (u 1 , u) , ∀u 1 ∈ U ad,1 } . ( 3 
)
For a differential game with an open-loop information structure [START_REF] Ho | Survey paper: Differential games, dynamic optimization and generalized control theory[END_REF], i.e. the players are committed to follow a predetermined strategy or no state measurements are available, the leader (player 2) is seeking a J 2 -minimizing strategy u * 2 (t), as a function of time only, that he expresses before the game starts knowing the follower's rational reaction. The follower (player 1) will then minimize his cost functional J 1 with the strategy u * 1 (t), a function of time only. Mathematically, the definition of a Stackelberg equilibrium

(u * 1 , u * 2 ) is              u * 1 ∈ R 1 (u * 2 )
and

max u 1 ∈R 1( u * 2 ) J 2 (u 1 , u * 2 ) ≤ max u 1 ∈R 1 (u 2 ) J 2 (u 1 , u 2 ) , ∀u 2 ∈ U ad,2 . (4) 
The necessary conditions for a Stackelberg strategy with an open-loop information structure were derived in [START_REF] Simaan | On the Stackelberg strategy in nonzero-sum games[END_REF], [START_REF]Additional aspects of the Stackelberg strategy in nonzero-sum games[END_REF] (see also [START_REF] Dockner | Differential games in economics and management science[END_REF], chapter 5 for application in economy). Let ψ 1 be the costate vector of the follower associated with the dynamic constraint (1) and ψ 2 and γ, the costate vectors of the leader, associated respectively with the dynamic constraint (1) and the rational

reaction set of the follower R 1 (•). The open-loop Stackelberg controls are    u * 1 (t) = -R -1 11 B T 1 ψ 1 (t), u * 2 (t) = -R -1 22 B T 2 ψ 2 (t), (5) with  
      ẋ ψ1 ψ2 γ        = M α 1 α 2        x ψ 1 ψ 2 γ        , (6) 
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             x (t 0 ) = x 0 , ψ 1 (t f ) = K 1f x f , ψ 2 (t f ) = K 2f x f -K 1f γ (t f ) , γ (t 0 ) = 0, (7) 
where

M α 1 α 2 =        A -S 1 -S 2 0 n -Q 1 -A T -2α 1 I n 0 n 0 n -Q 2 0 n -A T -2α 2 I n Q 1 0 n -S 21 S 1 A -2(α 2 -α 1 )I n        . ( 8 
)
The notation

S ij = B j R -1 jj R ij R -1 jj B T j
and S i = S ii are used. The matrix M α 1 α 2 defined by ( 6) and ( 8) characterizes the two point boundary value problem, in association with conditions [START_REF] Bagchi | Stackelberg Differential Games in Economic Models[END_REF].

Note that for α 1 = α 2 = 0, one can recognize the Hamiltonian structure of M α 1 α 2 = M 0,0 pointed out in [START_REF] Abou-Kandil | Analytical Solution for an Open-Loop Stackelberg Game[END_REF]. These necessary conditions are also sufficient if the criteria are convex for a finite time horizon [START_REF] Simaan | On the Stackelberg strategy in nonzero-sum games[END_REF], [START_REF]Additional aspects of the Stackelberg strategy in nonzero-sum games[END_REF]. In the following subsections the determination of the open-loop Stackelberg controls is examined for both finite and infinite time horizon cases.

B. Criteria on a finite horizon

The linearity of the differential equation ( 6) and of the transversality conditions [START_REF] Bagchi | Stackelberg Differential Games in Economic Models[END_REF] with respect to x(t) and x(t 0 ) allows to research Stackelberg controls u * 1 (t) and u * 2 (t) as following. Let us find K 1 (t), K 2 (t) and P (t) verifying

         ψ 1 (t) = K 1 (t) x (t) , ψ 2 (t) = K 2 (t) x (t) , γ (t) = P (t) x (t) . (9) 
From ( 9) and ( 8) we obtain the Riccati differential equations to be verified by K 1 (t), K 2 (t) and

P (t)          K1 = -A T + 2α 1 I n K 1 -K 1 A -Q 1 + K 1 S 1 K 1 + K 1 S 2 K 2 , K2 = -A T + 2α 2 I n K 2 -K 2 A -Q 2 + Q 1 P + K 2 S 1 K 1 + K 2 S 2 K 2 , Ṗ = (A -2 (α 2 -α 1 ) I n ) P -P A + P S 1 K 1 + P S 2 K 2 -S 21 K 1 + S 1 K 2 , ( 10 
) October 4, 2007 DRAFT with          K 1 (t f ) = K 1f , K 2 (t f ) = K 2f -K 1f P (t f ) , P (t 0 ) = 0. (11) 
In this case, the Stackelberg controls can be formulated as

   u * 1 (t) = -R -1 11 B T 1 K 1 (t) ξ (t, t 0 ) x 0 , u * 2 (t) = -R -1 22 B T 2 K 2 (t) ξ (t, t 0 ) x 0 , (12) 
where

   ξ (t, t 0 ) = A -S 1 K 1 (t) -S 2 K 2 (t) ξ (t, t 0 ) , ξ (t, t) = I n . (13) 
These controls are not functions of the measurement of the state x (t) but of the pre-determined state ξ (t, t 0 ) x 0 , function of time.

The Coupled Riccati Equations ( 11) are associated with the matrix M α 1 α 2 . In fact, decomposing

M α 1 α 2 into submatrices as follows M α 1 α 2 =   M 1 M 2 M 3 M 4   =        A -S 1 -S 2 0 n -Q 1 -A T -2α 1 I n 0 n 0 n -Q 2 0 n -A T -2α 2 I n Q 1 0 n -S 21 S 1 A -2(α 2 -α 1 )I n        , (14) 
we could rewrite the equations ( 10) as a single non-symmetric Riccati equation

     K1 K2 Ṗ      = M 4      K 1 K 2 P      -      K 1 K 2 P      M 1 + M 3 -      K 1 K 2 P      M 2      K 1 K 2 P      . ( 15 
)
Such an equation could be solved using the representation formula of solutions of Riccati equations [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF].

C. Criteria on an infinite horizon

In this subsection, the particular case of infinite horizon t f → +∞ is considered. Since only stabilizing controls are considered, the terminal costs 1 2 x T f e 2α i t f K if x f in criteria (2) and the transversality conditions (7) become irrelevant. [START_REF] Chen | Linear System Theory and Design[END_REF] DRAFT

With criteria on infinite horizon, it is possible to look for only constant solutions of (15), by replacing the left hand side of (15) by a extended zero matrix. Some necessary conditions of existence of solution of this equation are developped in [START_REF] Jungers | Properties of coupled Riccati equations in Stackelberg games with time preference rate[END_REF].

If K 1 , K 2 and P are constant solutions of the Coupled Riccati Equations ( 10), the n eigenvalues of (A -S 1 K 1 -S 2 K 2 ) are included in the 4n of M α 1 α 2 . A method to find all solutions K 1 , K 2 and P of the coupled Riccati equations is to study the invariant subspaces of the matrix

M α 1 α 2 , with the form        I n K 1 K 2 P       
(see [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF], [START_REF] Jungers | Properties of coupled Riccati equations in Stackelberg games with time preference rate[END_REF] for more details). Therefore the distribution of the eigenvalues of M α 1 α 2 has to be studied.

III. EIGENVALUES SYMMETRY AND CONDITIONS FOR STRICT α 2 -STABILITY

In this section, firstly a property of symmetry of the matrix M α 1 α 2 is emphasized.

Theorem 1 (Symmetry):

The matrix (M α 1 α 2 + α 2 I 4n ) is Hamiltonian.

Proof: Let Ãα 1 ,α 2 =   A + α 2 I n -S 1 -Q 1 -A T + (α 2 -2α 1 )I n   , B =   B 2 0 n×r 2   , C =   C 2 0 m 2 ×n 0 r 1 ×n R -1 11 B T 1   .
The matrix M α 1 α 2 verifies

M α 1 α 2 + α 2 I 4n =      Ãα 1 ,α 2 -BR -1 22 B -CT   I m 2 0 m 2 ×r 1 0 r 1 ×m 2 R 21   C -ÃT α 1 ,α 2      . ( 16 
) By noting J =   0 2n I 2n -I 2n 0 2n   , (note that J T = -J = J -1
), it is easy to verify that

J T (M α 1 α 2 + α 2 I 4n ) J = -(M α 1 α 2 + α 2 I 4n ) T which proves that (M α 1 α 2 + α 2 I 4n ) is an Hamiltonian matrix.
This Hamiltonian symmetry property depends only on α 2 , the time preference rate of the leader. The hierarchical structure of the game allows the leader to impose his time preference rate to the system (1). The follower's time preference rate does not influence the symmetry.

October 4, 2007 DRAFT

It may be seen as a further degree of freedom in the control design. To obtain a α-degree of stability, one should only impose α 2 ≤ α.

It is well known that for a Hamiltonian matrix if λ is an eigenvalue, -λ is also an eigenvalue.

Here, matrix (M α 1 α 2 + α 2 I 4n ) is Hamiltonian and real. Therefore, the matrix M α 1 α 2 admits the point (-α 2 ; 0) as a center of symmetry in the complex plane for its eigenvalues distribution.

However it is possible that eigenvalues of matrix M α 1 α 2 has a real part equal to -α 2 . To guarantee an exponential convergence rate of degree greater than α 2 for the system (13), one should prove that at least n eigenvalues of M α 1 ,α 2 are located to the left of the vertical symmetry axis -α 2 + jR.

In the following, the sufficient conditions for strict α 2 -stability, associated with this Hamiltonian symmetry is studied. By noting

λ k (k ∈ {1, • • • , 4n}) the 4n eigenvalues of M α 1 α 2 , a permutation allows to have Re (λ 1 ) ≤ • • • ≤ Re (λ 2n ) ≤ -α 2 ≤ Re (λ 2n+1 ) ≤ • • • ≤ Re (λ 4n ) . (17) 
In the case α 1 = α 2 = 0, the relation

Re (λ 2n ) < 0 < Re (λ 2n+1 ) , (18) 
is obtained if the pairs (C 1 , A) and (C 2 , A) are detectable and (A, B 1 ) is stabilizable [START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory[END_REF]. The presence of eigenvalues on the vertical symmetry axis means that a predefined stability of degree α 2 cannot be guaranteed. Sufficient conditions to ensure that

Re (λ 2n ) < -α 2 < Re (λ 2n+1 ) . (19) 
are derived hereafter.

The proof of the main theorem requires two lemmas.

Lemma 1: Assuming that R > 0 and W > 0, the Hamiltonian matrix

  P -DR -1 D -E T W E -P T  
does not admit imaginary eigenvalue if

• the pair (E, P ) does not admit imaginary unobservable mode.

• the pair (P, D) does not admit imaginary uncontrolable mode.

This lemma is well known in LQ problem. A sketch of the proof can be found for example in [10, p. 59].

October 4, 2007 DRAFT Lemma 2 (Sylvester's Inequality): Let U 1 and U 2 be q×w and w×p matrices with coefficients in the same field. Then by noting ρ(U 1 ) the rank of the matrix U 1 , one have

ρ(U 1 ) + ρ(U 2 ) -w ≤ ρ(U 1 U 2 ) ≤ min (ρ(U 1 ), ρ(U 2 )) . (20) 
A proof of Sylvester's Inequality can be found in [START_REF] Chen | Linear System Theory and Design[END_REF].

Theorem 2 (General strict α 2 -stability):

For each couple (α 1 , α 2 ) ∈ R 2 , the relation (19) is verified under the sufficient conditions i) the pair (C 1 , A + (2α 1 -α 2 )I n ) does not admit imaginary unobservable mode, ii) the pair (C 2 , A + α 2 I n ) does not admit imaginary unobservable mode,
iii) the pair (A + (2α 1α 2 )I n , B 1 ) does not admit imaginary uncontrolable mode, iv) and furthermore, if α 1 = α 2 , it is assumed that m 1 ≤ r 2 and that the triplet

(A + α 2 I n , B 2 , C 1 )
does not admit imaginary transition zero.

Proof: In order to avoid imaginary eigenvalues of the Hamiltonian matrix

(M α 1 α 2 + α 2 I 4n ),
the lemma 1 and the Hautus approach are used. The matrix (M α 1 α 2 + α 2 I 4n ) defined by ( 16)

does not admit imaginary eigenvalues if for all ω ∈ R,

• ρ Ãα 1 ,α 2 -jωI 2n B = 2n, • ρ     Ãα 1 ,α 2 -jωI 2n C     = 2n.
The above matrices are rearranged to show Hautus matrices.

ρ     Ãα 1 ,α 2 -jωI n C     = ρ               A + α 2 I n -jωI n -B 1 R -1 11 B T 1 -Q 1 -A T + (α 2 -2α 1 -jω)I n C 2 0 n 0 r 1 ×n R -1 11 B T 1               = ρ               A + α 2 I n -jωI n 0 n C 2 0 n -Q 1 -A T + (α 2 -2α 1 -jω)I n 0 r 1 ×n R -1 11 B T 1               . October 4, 2007 DRAFT
The conditions ii) and iii) in theorem 2 lead to ρ

    Ãα 1 ,α 2 -jωI n C     = 2n
. Now the condition on the pair Ãα 1 ,α 2 -jωI 2n , B is studied.

Ãα 1 ,α 2 -jωI 2n B =   A + (α 2 -jω)I n -S 1 B 2 -Q 1 -A T + (α 2 -2α 1 -jω)I n 0 n×r 2   = U 1 U 2 ,
with

U 1 =   I n 0 n×m 1 0 n 0 n -C T 1 -A T + (α 2 -2α 1 -jω)I n   ∈ R 2n×(2n+m 1 ) , (21) 
and Remark 2: Condition iv) can be interpreted in a gametheoretic sense. In fact, this triplet corresponds to non-symmetric coupling between players. The action of the leader (matrix B 2 )

U 2 =      A + (α 2 -jω)I n B 2 -S 1 C 1 0 m 1 ×r 2 0 m 1 ×n 0 n 0 n×r 2 I n      ∈ R (2n+m 1 )×(2n+r 2 ) . (22 
on the system (matrix A) can be viewed by the follower (matrix C 1 ), if there is no imaginary transition zero. Note that if m 1 > r 2 holds, there is too follower's outputs with respect to the number of leader's inputs. Then the leader is not able to impose arbitrary all the outputs of the follower. The leader is not anymore omnipotent. That's why m 1 ≤ r 2 is required.

Remark 3: It is worth noting that in all cases for α 1 and α 2 , no conditions on the pair (A, B 2 ) are assumed. The controlability or only the stabilizability of the pair (A, B 2 ) of the leader does not influence the main result. This emphasizes the privileged position of the leader.

In order to illustrate the main result, the following example is taken. to illustrate the main result of symmetry. This couple verifies that the triplet (A + α 2 I n , B 2 , C 1 )

October 4, 2007 DRAFT A =      1 2 1 2 -3 -1 2 1 -5      ; B 1 =      2 1 -1      ; B 2 =      1 
does not admit imaginary eigenvalue. To sum up all assumptions of theorem 2 are verified. On Fig. 1, the eigenvalues of M α 1 α 2 are represented. It is obvious that the α 2 -translated imaginary axis is an axis of symmetry for the distribution of eigenvalues. Moreover there is no eigenvalue on this axis of symmetry, as claimed in theorem 2. 

IV. CONCLUSION

In this paper, the linear-quadratic games including time preference rates in the framework of Stackelberg strategy with open-loop information structure is studied. The general case of [START_REF] Chen | Linear System Theory and Design[END_REF] DRAFT different time preference rates is considered. It is shown that the time preference rate of the leader imposes the symmetry of the eigenvalues of the characteristic matrix associated with the necessary conditions. Also, sufficient conditions to guarantee a strict α-stability for this type of differential games are derived.

)Remark 1 :

 1 Condition i) in theorem 2 gives ρ(U 1 ) = 2n, and Condition iv) gives ρ(U 2 ) = 2n + m 1 . The Sylvester's Inequality in lemma 2 allows to verify that ρ(U 1 U 2 ) = 2n. It is noteworthy that for the case α 1 = α 2 = α, the condition about the imaginary transition zero is redundant. Matrix Ãα,α is Hamiltonian. From lemma 1, (C 1 , A + αI n ) has no imaginary unobservable mode and (A + αI n ) has no imaginary uncontrolable mode which is enough to guarantee that Ãα,α -jωI 2n is invertible for every ω ∈ R and that ρ Ãα,α -jωI 2n B = 2n, without consideration on the triplet (A + αI n , B 2 , C 1 ).

C 1 = 1 1 1 ; C 2 = 2 -1 1 .

 11221 The pairs (C 1 , A) and (C 2 , A) are observable, and the pair (A, B 1 ) is controlable. The different conditions (except the condition about the imaginary zero transmission) of theorem 2 are verified for all α 1 and α 2 . The distribution of eigenvalues is computed for the couple (α 1 , α 2 ) =[START_REF] Simaan | On the Stackelberg strategy in nonzero-sum games[END_REF][START_REF]Additional aspects of the Stackelberg strategy in nonzero-sum games[END_REF] 

Fig. 1 .

 1 Fig. 1. Distribution of eigenvalues for (α1, α2) = (1, 2).