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The hadronic k ⊥ -spectrum inside a high energy jet is determined including corrections of relative magnitude O ( √ αs) with respect to the Modified Leading Logarithmic Approximation (MLLA), in the limiting spectrum approximation (assuming an infrared cut-off Q0 = Λ QCD ) and beyond (Q0 = Λ QCD ). The results in the limiting spectrum approximation are found to be, after normalization, in impressive agreement with preliminary measurements by the CDF collaboration, unlike what occurs at MLLA, pointing out small overall non-perturbative contributions. Within the same framework, 2-particle correlations inside a jet are also predicted at NMLLA and compared to previous MLLA calculations.

I. INTRODUCTION

The production of jets -a collimated bunch of hadrons -in e + e -, e -p and hadronic collisions is an ideal playground to investigate the parton evolution process in perturbative QCD (pQCD). One of the great successes of pQCD is the existence of the hump-backed shape of inclusive spectra, predicted in [START_REF] Yu | Coherent effects in the perturbative QCD parton jets[END_REF] within the Modified Leading Logarithmic Approximation (MLLA), and later discovered experimentally (for review, see e.g. [START_REF] Khoze | Perturbative QCD approach to multiparticle production[END_REF]). Refining the comparison of pQCD calculations with jet data taken at LEP, Tevatron and LHC will ultimately allow for a crucial test of the Local Parton Hadron Duality (LPHD) hypothesis [START_REF] Ya | Similarity of Parton and Hadron Spectra in QCD Jets[END_REF] and for a better understanding of color neutralization processes.

Progress towards this goal has been achieved recently. On the theory side, the inclusive k ⊥ -distribution of particles inside a jet has been computed at MLLA accuracy [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], as well as correlations between two particles in a jet [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. Analytic calculations have first been done in the limiting spectrum approximation, i.e. assuming an infrared cutoff Q 0 equal to Λ QCD (λ ≡ ln Q 0 /Λ QCD = 0). Subsequently, analytic approximations for correlations were obtained beyond the limiting spectrum using the steepest descent method [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF]. Experimentally, the CDF collaboration at Tevatron reported on k ⊥ -distributions of unidentified hadrons in jets produced in pp collisions at √ s = 1.96 TeV [7]. MLLA corrections, of relative magnitude O √ α s with respect to the leading double logarithmic approximation (DLA), were shown to be quite substantial for single-inclusive distributions and 2-particle correlations [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF][START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. Therefore, it appears legitimate to wonder whether corrections of order O (α s ), that is next-to-next-to-leading or next-to-MLLA (NMLLA), are negligible or not.

The starting point of this analysis is the MLLA evolution equation for the generating functional of QCD jets [START_REF] Yu | Basics of Perturbative QCD[END_REF]. Together with the initial condition at threshold, it determines jet properties at all energies. At high energies one can represent the solution as an expansion in √ α s . Then, the leading (DLA) and next-to-leading (MLLA) approximations are complete. The next terms (NMLLA) are not complete but they include an important contribution which takes into account energy conservation and an improved behavior near threshold. An example of a solution for the single inclusive spectrum from the MLLA equation is the so-called "limiting spectrum" (for a review, see [START_REF] Yu | Basics of Perturbative QCD[END_REF]) which represents a perturbative computation of the spectrum at λ = 0 with complete leading and next-to-leading asymptotics. Some results for such NMLLA terms have been studied previously for global observables and have been found to better account for recoil effects. They were shown to drastically affect multiplicities and particle correlations in jets: this is in particular the case in [START_REF] Cuypers | Recoil effect on multiplicity correlation[END_REF], which deals with multiplicity correlators of order 2, and in [START_REF] Yu | Improved QCD treatment of the KNO phenomenon[END_REF], where multiplicity correlators involving a higher number of partons are studied; in particular, the higher this number, the larger turn out to be NMLLA corrections.

The present study makes use of this evolution equation to estimate NMLLA contributions to our differential observables. It presents the complete calculations of the single inclusive k ⊥ -distribution leading to the main results published in [START_REF] Arleo | Hadronic single inclusive k ⊥ distributions inside one jet beyond MLLA[END_REF], and extends them to 2-particle correlations inside a high energy jet.

The paper is organized as follows. First, Section II presents a system of evolution equations including O (α s ) corrections, which allows for the computation of the inclusive spectrum, G, beyond MLLA accuracy. Section III is devoted to the NMLLA evaluation of the color currents of quark and gluon jets and, from them, to the inclusive k ⊥ -distribution in the limiting spectrum approximation. These predictions are also compared to preliminary measurements performed recently by the CDF collaboration. Going beyond the limiting spectrum is the subject of Section IV, in which inclusive k ⊥ -distributions are computed at an arbitrary λ. The 2-particle correlations including NMLLA corrections are determined in Section V. Finally, the present approach and the results obtained in this paper are discussed in detail and summarized in Section VI.

II. EVOLUTION EQUATIONS A. Logic and energy conservation

As a consequence of the probabilistic shower picture, the notion of Generating Functional (GF) was proved suitable to understand and include higher order corrections to DLA asymptotics (see [START_REF] Yu | Basics of Perturbative QCD[END_REF] and references therein).

The single inclusive spectrum and the n-particle momentum correlations can be derived from the MLLA Master Equation for the GF Z = Z(u) [START_REF] Yu | Basics of Perturbative QCD[END_REF] after successively differentiating with respect to a certain probing function u = u(k); k denotes the quadri-momentum of one parton inside the shower and the solution of the equations are written as a perturbative expansion in α s . At high energies this expansion can be resummed and the leading contribution be represented as an exponential of the anomalous dimension γ(α s ); since further details to this logic can be found in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF][START_REF] Yu | Basics of Perturbative QCD[END_REF], we only give the symbolic structure of the equation for the GF and its solution as

dZ dy ≃ γ 0 (y)Z ⇒ Z ≃ exp y γ(α s (y ′ ))dy ′ (1) 
where γ(α s ) can be written as an expansion in powers of

√ α s γ(α s ) = √ α s + α s + α 3/2 s + α 2 s + . . . (2) 
The equation in [START_REF] Yu | Coherent effects in the perturbative QCD parton jets[END_REF] applies to each vertex of the cascade and its solution represents the fact that successive and independent partonic splittings inside the shower, such as the one displayed in Fig. 1, exponentiate with respect to the evolution-time parameter dy = dΘ/Θ; Θ ≪ 1 is the angle between outgoing couples of partons. The choice of y follows from Angular Ordering (AO) in intrajet cascades; it is indeed the suited variable for describing time-like evolution in jets. Thus, Eq. ( 1) incorporates the Markov chains of sequential angular ordered partonic decays which are singular in Θ and γ(α s ) determines the rate of inclusive quantities growth with energy.

While DLA treats the emission of both particles as independent by keeping track of the first term ∼ √ α s in (2) without constraint, the exact solution of the MLLA evolution equation (partially) fulfills the energy conservation in each individual splitting process (z + (1 -z) = 1) by incorporating higher order (α n/2 s , n > 1) terms to the anomalous dimension. Symbolically; the first two analytical steps towards a better account of these corrections in the MLLA, NMLLA evolution, which we further discuss in II C, can be represented in the form

∆γ ≃ (α s + α s ℓ -1 ln z)dz ∼ α s + α 3/2 s ,
where ℓ = ln(1/x) ∼ α -1/2 s with x ≪ 1 (fraction of the jet energy taken away by one hadron), z ∼ 1 for hard partons splittings such as g → q q. . . (this is in fact the region where the two partons are strongly correlated).

Energy conservation is particularly important for energetic particles as the remaining phase space is then very limited. On the other hand, a soft particle can be emitted with little impact on energy conservation. Some consequences of this behavior have also been noted in [START_REF] Khoze | Perturbative description of particle spectra at LEP-1.5[END_REF]: (i) the soft particles follow the features expected from DLA;

(ii) there is no energy dependence of the soft spectrum;

(iii) the ratio of soft particles r = N g /N q in gluon and quark jets is consistent with the DLA prediction N c /C F = 9/4 (see the measurement by DELPHI [START_REF] Abdallah | Coherent soft particle production in Z decay into three jets[END_REF]). This is quite different from the ratio of global multiplicities which acquires large corrections beyond DLA (see, for example Fig. 18 in the second reference given in [START_REF] Dremin | Quantum chromodynamics and multiplicity distributions[END_REF]). For this quantity the HERWIG parton shower model corresponding to MLLA and exact energy conservation (same Fig. 18) and the full summation of the perturbative series of MLLA evolution equation (see also [START_REF] Lupia | Unified QCD description of hadron and jet multiplicities[END_REF]) come close to the data at r = N g /N q ≈ 1.5 at LEP energies. As an intermediate example, we can mention the successful description of the semi-soft particle ln(1/x) distribution ("humpbacked plateau") where the first correction (MLLA), despite the large value of the expansion parameter √ α s ≈ 0.35, already gives a good description of the data at the Z 0 peak (Q = 91.2 GeV) of the e + e -annihilation into a q q pair [START_REF] Akrawy | A study of coherence of soft gluons in hadron jets[END_REF].

B. MLLA evolution

We study the formation of hadrons inside a jet produced in high-energy scattering processes, such as e + e -annihilation or pp and pp collisions. A jet of total opening angle Θ 0 is initiated by a parton A (either a quark, Q, or a gluon, G) with energy E; A then splits into partons B and C, with energy fractions z and (1 -z) respectively, forming a relative angle Θ (see Fig. 1). At the end of the cascading process, the parton B fragments into a hadron h with energy xE, with the fragmentation function

B(z) = x z D h B x z , zEΘ 0 , Q 0 , (B = Q, G) (3) 
which describes the distribution of the hadron h inside the sub-jet B with an energy-fraction x/z. As a consequence of AO in parton cascades, the functions Q(z) and G(z) satisfy the system of two-coupled integro-differential evolution equations [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]:

B h Θ Θ C 0 E zE (1 -z)E xE A = (Q, G)
Q y ≡ dQ dy = 1 0 dz α s π Φ g q (z) Q(1 -z) -Q + G(z) , (4) 
G y ≡ dG dy = 1 0 dz α s π Φ g g (z)(1 -z) G(z) + G(1 -z) -G + n f Φ q g (z) 2Q(z) -G , (5) 
with α s , the running coupling constant of QCD, given by

α s ≡ α s (ℓ, y) = 2π 4N c β 0 (ℓ + y + λ) , (6) 
and where we define

ℓ = ln (1/x) , y = ln k ⊥ Q 0 = ln xEΘ 0 Q 0 , λ = ln Q 0 Λ QCD , (7) 
following the notations of Ref. [START_REF] Yu | Basics of Perturbative QCD[END_REF]; the MLLA equations above follow from the GF logic commented in the introductory paragraph. The scale Q 0 appearing in (7) is the collinear cut-off parameter, Λ QCD is the non-perturbative scale of QCD which we set to 250 MeV in this work [32] , and

β 0 = 1 4N c 11 3 N c - 4 3 T R (8) 
is the first term in the perturbative expansion of the β-function (N c is the number of colors, T R = n f /2 where n f = 3 is the number of light quark flavors). We only consider in this work the 1-loop expression for the running coupling constant, assuming that the role of the conservation of energy is much more important than the effects of 2-loop corrections to α s , as seen for instance in the case of multiplicity distributions [START_REF] Dremin | Quantum chromodynamics and multiplicity distributions[END_REF]; we shall discuss this further in Section VI A. The coupling constant α s is also linked to the DLA anomalous dimension γ 0 of twist-2 operators by

γ 2 0 (ℓ, y) = 2N c α s (ℓ, y) π = 1 β 0 (Y Θ + λ) , Y Θ = ℓ + y = ln EΘ Q 0 . (9) 
In Eqs. ( 4) and ( 5), Φ B A (z) represent the one-loop DGLAP splitting functions [START_REF] Yu | Basics of Perturbative QCD[END_REF] and we note:

Q ≡ Q(1) = xD h q (x, EΘ 0 , Q 0 ), G ≡ G(1) = xD h g (x, EΘ 0 , Q 0 ).
In the small x ≪ z limit which we consider here, the fragmentation functions behave as

B(z) x≪z ≈ ρ h B ln z x , ln zEΘ 0 Q 0 = ρ h B (ln z + ℓ, y) , (10) 
where ρ h B is a slowly varying function of the two logarithmic variables ln(z/x) and y [START_REF] Yu | Coherent effects in the perturbative QCD parton jets[END_REF] that describes the hump-backed plateau.

C. Taylor expansion

The resummation scheme at MLLA is discussed in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF], in which G(z) and G(1 -z) were replaced by G(1) in the non-singular part of the integrands in Eqs. ( 4) and [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. In the present work, we calculate next-to-MLLA (NMLLA) corrections from the Taylor expansion of ρ h B in the variables ln z and ln(1 -z) in the domain:

z ∼ 1 -z ∼ 1, x ≪ 1 ⇒ ℓ ≫ | ln z| ∼ | ln(1 -z)|
corresponding to hard parton splittings. To first order,

ρ(ln z) = ρ(ln z = 0) + ∂ρ(ln z) ∂ ln z ln z=0 ln z + O ln 2 z , (11) 
ρ(ln(1 -z)) = ρ ln(1 -z) = 0 + ∂ρ(ln(1 -z)) ∂ ln(1 -z) ln(1-z)=0 ln(1 -z) + O ln 2 (1 -z) , (12) 
or, equivalently, for the function B(z):

B(z) | ln z|≪ℓ ≈ B(1) + B ℓ (1) ln z + O ln 2 z , (13) 
B(1 -z) | ln(1-z)|≪ℓ ≈ B(1) + B ℓ (1) ln(1 -z) + O ln 2 (1 -z) . (14) 
The derivative with respect to ln z or ln(1 -z) has been replaced by the one with respect to ℓ because of [START_REF] Yu | Improved QCD treatment of the KNO phenomenon[END_REF] and the property that, at low x, B is a function of (ln z + ℓ) or (ln(1 -z) + ℓ). Since ℓ = O 1/ √ α s (see [START_REF] Yu | Basics of Perturbative QCD[END_REF]) the above expansion can be written symbolically

B (z) ∼ B (1 -z) ≃ c 1 + c 2 ( √ α s ) + O(α s ), c 1 , c 2 = O(1).
The terms proportional to B ℓ thus provide NMLLA corrections to the solutions of the MLLA evolution equations ( 4) and [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF].

D. Evolution equations including NMLLA corrections

Quark jet

In order to determine NMLLA corrections to the evolution equation ( 4), the 1-loop splitting functions (see [START_REF] Yu | Basics of Perturbative QCD[END_REF]) are written

Φ g q (z) = C F 2 z + φ g q (z) , (1 -z)Φ g g (z) = 2N c 1 z + φ g g (z) ,
where φ g q (z) = (z -2) and φ g g (z) = (z -1) (2 -z(1 -z)) are regular functions of z. The term proportional to G(z) in the integrand of (4) becomes

1 0 dz α s π Φ g q (z) G(z) = 2C F 1 0 dz z α s π G(z) + C F 1 0 dz α s π φ g q (z) G(z), (15) 
the second part of which is expanded according to [START_REF] Abdallah | Coherent soft particle production in Z decay into three jets[END_REF]. Replacing α s /π = γ 2 0 /2N c (see 9), one gets

1 0 dz α s π Φ g q (z) G(z) ≈ C F N c 1 0 dz z γ 2 0 G(z) - 3 4 γ 2 0 G + 7 8 γ 2 0 G ℓ + . . . , (16) 
where

G ℓ ≡ G ℓ (1) and Q ℓ ≡ Q ℓ (1)
. The first integral in the r.h.s of ( 16) provides the DLA (leading) term as z → 0, while the second and third terms correspond to higher powers of √ α s , that is MLLA and NMLLA corrections respectively. The z-dependence of α s in ( 16) has only been taken into account in the singular (DLA) part dominated by small z. On the contrary, for the non-singular parts corresponding to branching processes in which z ∼ 1 -z = O (1), α s has been taken out of the z integral [33] as done in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. The dependence on the other variables, k ⊥ , Θ, is of course unchanged.

Likewise, the term proportional to Q(1 -z) -Q in (4) can be expanded according to [START_REF] Abdallah | Coherent soft particle production in Z decay into three jets[END_REF], leading to

1 0 dz α s π Φ g q (z) Q(1 -z) -Q ≈ 1 0 dz α s π Q ℓ Φ g q (z) ln(1 -z) ≈ C F N c 2 γ 2 0 5 8 - π 2 6 G ℓ . (17) 
In the second line of (17), we have used the approximated formula

Q ℓ ≈ C F /N c G ℓ +O(γ 2 0
) that holds at DLA because subleading terms would give O(γ 4 0 ) corrections which are beyond NMLLA (see also appendix A). Finally, plugging ( 16) and ( 17) into (4), we obtain

Q y = C F N c 1 0 dz z γ 2 0 G(z) - 3 4 γ 2 0 G + 7 8 + C F N c 5 8 - π 2 6 γ 2 0 G ℓ , (18) 
where the term proportional to γ 2 0 G ℓ = O(γ 3 0 ) constitutes the new NMLLA correction. It is quite sizable and should be taken into account in the coming calculations.

Gluon jet

Along similar steps, we now evaluate NMLLA corrections to Eq. ( 5). The first term in the integral can be cast in the form

1 0 dz α s π Φ g g (z)(1 -z) G(z) + G(1 -z) -G ≈ 1 0 dz z γ 2 0 G(z) - 11 12 γ 2 0 G + 67 36 - π 2 6 γ 2 0 G ℓ , (19) 
and the second into

n f 1 0 dz α s π Φ q g (z) 2Q(z) -G ≈ 2 3 n f T R 2N c γ 2 0 (2Q -G) - 13 18 
n f T R N c γ 2 0 Q ℓ . (20) 
Summing [START_REF] Yu | On the sensitivity of the inclusive distributions in parton jets to the coherence effects of QCD gluon cascades[END_REF] and [START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF], replacing like before Q by its DLA formula Q ≈ C F /N c G (see appendix A for further details), the evolution equation for particle spectra inside a gluon jet reads

G y = 1 0 dz z γ 2 0 G(z) - 11 12 + n f T R 3N c 1 -2 C F N c γ 2 0 G + 67 36 - π 2 6 - 13 18 
n f T R N c C F N c γ 2 0 G ℓ . (21) 
The first term in parenthesis in [START_REF] Dremin | Average multiplicities in gluon and quark jets in higher order perturbative QCD[END_REF] and ( 21) is, as stressed before, the main (double logarithmic) contribution.

According to the Low-Barnett-Kroll theorem [START_REF] Low | Bremsstrahlung of Very Low-Energy Quanta in Elementary Particle Collisions[END_REF], the dz/z term, which is of classical origin, is universal, that is, independent of the process and of the partonic quantum numbers. The other two (single logarithmic) contributions, which arise from hard parton splitting, are quantum corrections. It should also be noticed that, despite the large size of NMLLA corrections coming from g → gg and g → q q splittings, a large cancellation occurs in their sum [START_REF] Alessandro | physics performance report[END_REF]. The coefficients of the terms proportional to G ℓ in [START_REF] Dremin | Average multiplicities in gluon and quark jets in higher order perturbative QCD[END_REF] and in [START_REF] Alessandro | physics performance report[END_REF] are in agreement with [START_REF] Dremin | Average multiplicities in gluon and quark jets in higher order perturbative QCD[END_REF].

NMLLA system of evolution equations

Once written in terms of ℓ ′ = ln(z/x) and y ′ = ln (xEΘ/Q 0 ), the system of two-coupled evolution equations ( 18) and ( 21) finally reads,

Q(ℓ, y) = δ(ℓ) + C F N c ℓ 0 dℓ ′ y 0 dy ′ γ 2 0 (ℓ ′ + y ′ ) 1 -ã1 δ(ℓ ′ -ℓ) + ã2 δ(ℓ ′ -ℓ)ψ ℓ (ℓ ′ , y ′ ) G(ℓ ′ , y ′ ), (22) 
G(ℓ, y) = δ(ℓ) + ℓ 0 dℓ ′ y 0 dy ′ γ 2 0 (ℓ ′ + y ′ ) 1 -a 1 δ(ℓ ′ -ℓ) + a 2 δ(ℓ ′ -ℓ)ψ ℓ (ℓ ′ , y ′ ) G(ℓ ′ , y ′ ), (23) 
with ψ ℓ ≡ G ℓ /G and the MLLA and NMLLA coefficients [34] given by:

ã1 = 3 4 , (24a) 
a 1 = 11 12 + n f T R 3N c 1 -2 C F N c n f =3 ≈ 0.935, (24b) ã2 
= 7 8 + C F N c 5 8 - π 2 6 ≈ 0.42, (24c) 
a 2 = 67 36 - π 2 6 - 13 18 
n f T R N c C F N c n f =3 ≈ 0.06. ( 24d 
)
As can be seen, the NMLLA coefficient a 2 is very small This may explain a posteriori why the MLLA "hump-backed plateau" agrees very well with experimental data [START_REF] Yu | Coherent effects in the perturbative QCD parton jets[END_REF][START_REF] Yu | On the sensitivity of the inclusive distributions in parton jets to the coherence effects of QCD gluon cascades[END_REF]. Therefore, the NMLLA solution of ( 23) can be approximated by the MLLA solution of G (i.e. taking a 2 = 0), which will be used in the following to compute the inclusive k ⊥distribution as well as two-particle correlations inside a jet [START_REF]Finding the analytical solution of these equations including NMLLA corrections is beyond the scope of this paper[END_REF]. The MLLA gluon inclusive spectrum is given by [START_REF] Yu | Basics of Perturbative QCD[END_REF]:

G(ℓ, y) = 2 Γ(B) β 0 π 2 0 dτ π e -Bα F B (τ, y, ℓ), (25) 
where the integration is performed with respect to τ defined by α = 1 2 ln y ℓ + iτ and with

F B (τ, y, ℓ) =     cosh α - y -ℓ y + ℓ sinh α ℓ + y β 0 α sinh α     B/2 I B (2 Z(τ, y, ℓ)), Z(τ, y, ℓ) = ℓ + y β 0 α sinh α cosh α - y -ℓ y + ℓ sinh α ,
B = a 1 /β 0 and I B is the modified Bessel function of the first kind. To get a quantitative idea on the difference between MLLA and NMLLA gluon inclusive spectrum, the reader is reported to Appendix B where a simplified NMLLA equation ( 23) with a frozen coupling constant is solved. The magnitude of ã2 , however, indicates that the NMLLA corrections to the inclusive quark jet spectrum may not be negligible and should be taken into account. After solving [START_REF] Konishi | Jet Calculus: A Simple Algorithm for Resolving QCD Jets[END_REF], the solution of [START_REF]CMS physics technical design report: Addendum on high density QCD with heavy ions[END_REF] reads

Q(ℓ, y) = C F N c G(ℓ, y) + a 1 -ã1 G ℓ (ℓ, y) + a 1 a 1 -ã1 + ã2 -a 2 G ℓℓ (ℓ, y) + O(γ 2 0 ). ( 26 
)
It differs from the MLLA expression given in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF] by the term proportional to G ℓℓ , which can be deduced from the subtraction of (C F /N c )× [START_REF] Konishi | Jet Calculus: A Simple Algorithm for Resolving QCD Jets[END_REF] to Eq. [START_REF]CMS physics technical design report: Addendum on high density QCD with heavy ions[END_REF].

III. SINGLE-INCLUSIVE k ⊥ -DISTRIBUTION IN THE LIMITING SPECTRUM
While MLLA calculations show that, asymptotically, the shape of the inclusive spectrum becomes independent of λ [START_REF] Yu | Basics of Perturbative QCD[END_REF][START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF], setting the infrared cutoff Q 0 of cascading processes as low as the intrinsic QCD scale Λ QCD is a daring hypothesis, since it is tantamount to assuming that a perturbative treatment can be trusted in regions of large running α s . However, it turns out that, experimentally, this shape is very well described by λ = 0. We shall show below that this remarkable property is also true for the single-inclusive k ⊥ -distribution. This will be further confirmed in section IV in which non-vanishing values of λ are considered.

A. Double-differential distribution

The double differential distribution d 2 N/(dx d ln θ) for the production of a single hadron h at angle Θ in a high energy jet of total energy E and opening angle Θ 0 ≥ Θ, carrying the energy fraction x, is obtained by integrating the inclusive double differential 2-particle cross section (see [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF]) [36]. Then, the single-inclusive k ⊥ -distribution of hadrons inside a jet is obtained by integrating d 2 N/(dx dln θ) over all energy-fractions x:

dN d ln k ⊥ q or g = dx d 2 N dx d ln k ⊥ q or g ≡ YΘ 0 -y ℓmin dℓ d 2 N dℓ d ln k ⊥ q or g . ( 27 
)
As in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], a lower bound of integration, ℓ min , is introduced since the present calculation is only valid in the small-x region, and therefore cannot be trusted when ℓ ≡ ln(1/x) becomes "too" small. We shall discuss this in more detail in Section III C and Appendix G.

According to [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], d 2 N dx d ln Θ can be expressed as

d 2 N dx d ln Θ = d d ln Θ F h A0 (x, Θ, E, Θ 0 ) , (28) 
where F h A0 , which represents the inclusive production of h in the sub-jet of opening angle Θ inside the jet A 0 of opening angle Θ 0 , is given by a convolution product of two fragmentation functions [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF]:

F h A0 (x, Θ, E, Θ 0 ) ≡ A 1 x du D A A0 (u, EΘ 0 , uEΘ) D h A x u , uEΘ, Q 0 . ( 29 
)
The convolution expresses the correlation between the energy flux of the jet and one particle within it. Eq. ( 29) is schematically depicted in Fig. 2: u is the energy-fraction of the intermediate parton A, D A A0 describes the probability to emit A with energy uE off the parton A 0 (which initiates the jet) taking into account the evolution of the jet between Θ 0 and Θ, and D h A describes the probability to produce the hadron h off A with energy fraction x/u and transverse momentum k ⊥ ≈ uEΘ ≥ Q 0 ; k ⊥ is defined with respect to the jet axis which is, in this context, identified with the direction of the energy flux. As discussed in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], the convolution ( 29) is dominated by u = O (1). Therefore, D A A0 (u, EΘ 0 , uEΘ) is given by DGLAP evolution equations. On the contrary, since x ≪ u = O (1) in the small-x limit where MLLA evolution equations are valid, D h A behaves as (see [START_REF] Yu | Improved QCD treatment of the KNO phenomenon[END_REF])

D A 0 D Θ 0 h A A xE h (Jet Axis) Θ A 0 E uE A
D h A x u , uEΘ, Q 0 x≪u ≈ u x ρ h A ln u x , ln u + Y Θ . (30) 
Since Y Θ + ln u = ℓ + ln u + y, the hump-backed plateau ρ h A depends on the two variables ℓ + ln u and y, and we conveniently define D as:

Dh A (ℓ + ln u, y) ≡ x u D h A x u , uEΘ, Q 0 . (31) 
The Taylor expansion of ρ h A to the second order in ln u for u ∼ 1 ⇔ | ln u| ≪ 1, that is, one step further than in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], leads to

xF h A0 (x, Θ, E, Θ 0 ) ≈ x F h A0 (x, Θ, E, Θ 0 ) + 1 2 A du u(ln 2 u)D A A0 (u, EΘ 0 , uEΘ) d 2 Dh A (ℓ, y) dℓ 2 , (32) 
where

x F h A0 (x, Θ, E, Θ 0 ) ≈ A du u 1 + (ln u)ψ A,ℓ (ℓ, y) D A A0 (u, EΘ 0 , uEΘ) Dh A (ℓ, y) (33) 
is the MLLA distribution calculated in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF]. In (33) we have introduced first logarithmic derivatives of Dh

A ψ A,ℓ (ℓ, y) = 1 Dh A (ℓ, y) d DA (ℓ, y) dℓ = O( √ α s ). (34) 
Thus, as in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], in the soft limit the correlation disappears and the convolution ( 29) is reduced to the factorized expression in (32). The second term in the r.h.s. of (32) is the new NMLLA correction calculated in this paper. Since x/u is small, the inclusive spectrum Dh A (ℓ, y) occurring in (32) should be taken as the next-to-MLLA solution of the evolution equations ( 22) and [START_REF] Konishi | Jet Calculus: A Simple Algorithm for Resolving QCD Jets[END_REF]. However, as already mentioned and shown in Appendix B, the MLLA inclusive spectrum for a gluon jet can be used as a good approximation for (23) (with a 1 = 0, a 2 = 0) such that, in (33), it is enough to use this level of approximation. So, we shall therefore use Eqs. ( 25) and ( 26) in the following.

The NMLLA correction in (32) globally decreases |xF h A0 | in the perturbative region (y ≥ 1.5). Indeed, while the MLLA part proportional to ln u in (33) is negative [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], it is instead, there, positive because of the positivity of u and ln 2 u and

d 2 Dh A dℓ 2 ≃ d 2 G
dℓ 2 (see Fig. 18 in Appendix C). The NMLLA contribution therefore tempers somehow the size of the MLLA corrections when y is large enough.

B. Color currents

The function F h A0 is related to the inclusive gluon distribution via the color currents defined as [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF][START_REF] Yu | Basics of Perturbative QCD[END_REF] 

xF h A0 = C A0 N c G(ℓ, y). (35) 
The color current can be seen as the average color charge carried by the parton A due to the DGLAP evolution from A 0 to A. Introducing the first and second logarithmic derivatives of Dh A ,

(ψ 2 A,ℓ + ψ A,ℓℓ )(ℓ, y) = 1 Dh A (ℓ, y) d 2 DA (ℓ, y) dℓ 2 = O(α s ), (36) 
which are MLLA and NMLLA corrections, respectively, Eq. ( 32) can now be written

xF h A0 ≈ A u A A0 + u ln u A A0 ψ A,ℓ (ℓ, y) + 1 2 u ln 2 u A A0 (ψ 2 A,ℓ + ψ A,ℓℓ )(ℓ, y) Dh A (ℓ, y),
where

u ln i u A A0 ≡ 1 0 du (u ln i u) D A A0 (u, EΘ 0 , uEΘ) . ( 37 
)
Unlike in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF] at MLLA, using the approximation u = O (1) to replace in (37) uEΘ by EΘ requires here some care, since the resulting scaling violation of the DGLAP fragmentation functions also provides O(α s ) corrections to u . Explicit calculations (see Appendix D) show that they never exceed 5% of the leading term. Accordingly, we neglect them in the following and replace (37) by

u ln i u A A0 ≃ 1 0 du (u ln i u) D A A0 (u, EΘ 0 , EΘ) . (38) 
The total average color current C A0 of partons caught by the calorimeter decomposes accordingly into three terms which can be written:

C A0 = C LO A0 + δ C MLLA-LO A0 + δ C NMLLA-MLLA A0 . (39) 
The leading order (LO) O (1) and MLLA O √ α s contributions to the color currents have been determined in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF]. The new NMLLA O (α s ) correction evaluated in this paper reads

δ C NMLLA-MLLA A0 = N c u ln 2 u g A0 (ψ 2 g,ℓ + ψ g,ℓℓ ) + C F u ln 2 u q A0 (ψ 2 q,ℓ + ψ q,ℓℓ ), ( 40 
) assuming Q = C F /N c G.
We checked that using instead the NMLLA exact formula [START_REF] Dremin | Jet calculus problems of the perturbative quantum chromodynamics[END_REF] for the quark inclusive spectrum Q actually leads to negligible corrections to the color currents (see Appendix E). Eq. ( 40) can be obtained from the Mellin-transformed DGLAP fragmentation functions

D A A0 (j, ξ) = 1 0 du u j-1 D A A0 (u, ξ),
through the formula

u ln 2 u A A0 = d 2 dj 2 D A A0 (j, ξ(EΘ 0 ) -ξ(EΘ)) j=2 ≡ 1 0 du u ln 2 uD A A0 (u, ξ). (41) 
Given the rather lengthy expressions, the complete analytic results for C NMLLA-MLLA A0 for quark and gluon jets are given in Appendix F.

For illustrative purposes, the color currents are plotted in Fig. 3 in the limiting spectrum approximation (λ = 0). The LO (solid line), MLLA (dash-dotted) and NMLLA (dashed) currents are computed for a quark (left) and for a gluon jet (right) with energy Y Θ0 = 6.4 -corresponding to Tevatron energies -and at fixed ℓ = 2. As can be seen in Fig. 3, NMLLA O (α s ) corrections to the MLLA color currents are clearly not negligible, yet of course somewhat smaller than the MLLA O √ α s corrections to the LO result. In the perturbative region (y > 1.5), these corrections are positive and consequently decrease the difference with the LO estimate. On the contrary, at small y ≤ 1.5, the corrections are rather large and negative coming from the negative sign of G ℓℓ (ℓ, y) (see Fig. 18 in Appendix C). However, it should be kept in mind that as y goes to 0, k ⊥ gets closer to Λ QCD (remind that Q 0 = Λ QCD in the limiting spectrum approximation) and, thus, the present perturbative predictions may not be reliable in this domain.

Note also that both the MLLA and NMLLA corrections vanish at y = 0 (since G ℓ = G ℓℓ = 0) and when Θ = Θ 0 . Another interesting property to mention is the decrease of MLLA and NMLLA corrections as ℓ increases, that is, when partons get softer and recoil effects more negligible. From the color currents, the NMLLA double-differential 1-particle distribution at small x (see Eq. ( 28)),

d 2 N dℓ dy A0 = 1 N c C A0 d dy G(ℓ, y) + 1 N c G(ℓ, y) d dy C A0 , (42) 
can be determined for any value of λ. The NMLLA behavior of d 2 N/dℓdy is therefore easily deduced from C A0 and its y-dependence, d C A0 /dy.

C. k ⊥ -distributions

The k ⊥ -distributions of hadrons are computed from the numerical integration of the double-differential cross section, Eq. (42). On Fig. 4 are shown the MLLA (dashed lines) and NMLLA (solid lines) dN/dy distributions for a quark (left) and a gluon jet (right) with Y Θ0 = 4.3 and Y Θ0 = 6.4. The size of NMLLA corrections proves quite substantial over the whole y-range. We find in particular that at large y (or k ⊥ ), the distributions at NMLLA are lower than at MLLA (and larger at small y). This softening of the spectra can be understood physically by the role of energy conservation in jets. With respect to DLA, MLLA and NMLLA take better into account the recoil of the emitting parton at each step of the cascading process. The fraction of energy carried away by the emitted soft partons gets reduced, which finally damps the final emission of hadrons at large k ⊥ [37]. As already stressed in Section III A, the value of the lower limit of integration ℓ min below which the present small-x calculation may not be trusted cannot be directly predicted. In [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF], the appearance of positivity problems in the double-differential distribution at small ℓ led us to consider a minimal value ℓ min such that d 2 N/dℓ d ln k ⊥ is kept positive for all ℓ ≥ ℓ min , leading to [START_REF]calculation of the k ⊥ -distribution, such that[END_REF] ℓ min ≃ 2.5. For consistency, the same criterion is used in the present paper. We find that smaller values of ℓ actually fulfill the positivity requirement, roughly ℓ min ≃ 2 and ℓ min ≃ 1 for quark and gluon jets at Tevatron energies.

It is interesting to note that the range over which NMLLA calculations appear sensible extends to smaller ℓ, therefore to larger x, than at MLLA; this also corresponds to larger y at fixed Y . One could therefore expect the present NMLLA predictions to agree with experimental results in a larger domain of k ⊥ . This is discussed in the coming Section.

D. Comparison with CDF preliminary data

The CDF collaboration at Tevatron recently reported on preliminary data of hadronic single-inclusive k ⊥distributions inside jets produced in pp collisions at √ s = 1.96 TeV [7]. The measurements cover a wide domain of jet energies, with hardness Q = EΘ 0 ranging from Q = 19 GeV to Q = 155 GeV. The CDF results, including systematic errors, are plotted in Fig. 5 together with the MLLA predictions of [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF] calculations (solid lines). Data and theory are normalized to the same bin, ln k ⊥ = -0.1, because of presently too large normalization errors in the CDF preliminary data. The experimental measurements reflect a mixing of quark and gluon jets:

dN d ln k ⊥ mix = ω dN d ln k ⊥ g + (1 -ω) dN d ln k ⊥ q (43)
characterized by one Q-dependent mixing-parameter ω, estimated from PYTHIA [39], used in the theoretical calculation. The agreement between the CDF results and the NMLLA distributions over the whole k ⊥ -range is excellent. The NMLLA calculation is in particular able to capture the shape of CDF spectra at all Q. Conversely, predictions at MLLA prove only reliable at not too large k ⊥ . The domain of validity of the predictions has been enlarged to larger k ⊥ (and thus to larger x since Y is fixed) computing from MLLA to NMLLA accuracy [40] . It is however to be mentioned that, due to the normalization at the first bin, this extension of the domain of prediction only concerns, strictly speaking, the shape of the distribution. Equally importantly, the agreement between NMLLA calculations and experimental results brings further support to the Local Parton Hadron Duality (LPHD) picture [START_REF] Ya | Similarity of Parton and Hadron Spectra in QCD Jets[END_REF]. We indeed find it remarkable to observe that the entire k ⊥ -domain probed experimentally can be very well described by strict perturbation theory, leaving out only limited non-perturbative dynamics in the production of hadrons inside a jet, at least for inclusive enough observable like single-particle k ⊥ -distributions.

E. Theoretical uncertainties

The spectacular agreement between our NMLLA calculations and preliminary data should not hide the theoretical uncertainties that affect the former.

First, we did not take into account all NMLLA corrections. While scaling violations have already been dealt with in subsection III B and Appendix D, other NMLLA corrections arise from varying Λ QCD in the expression of α s . In Figs. 6 is plotted the inclusive k ⊥ -distribution (Q = 119 GeV) at values of Λ QCD ranging from 150 to 500 MeV (left), as well as the ratio to its value at the default Λ QCD = 250 MeV (right). All curves have been normalized to the bin ln(k ⊥ /1GeV) = -0.1. In the largest bin ln(k ⊥ /1GeV) = 3, varying Λ QCD varies from 150 to 400 MeV does not yield a relative variation larger than 20%. The corresponding curves still fall within the experimental systematic errors. Note that the fact that variations seem only important at large k ⊥ only comes from the normalization procedure in the bin ln(k ⊥ /1GeV) = -0.1. A more delicate matter concerns the dominance of the type of NMLLA corrections that we have taken into account. Some remarks will concerning this point are postponed to the general discussion in section VI. The second point concerns the jet axis, which is defined here as the direction of the energy flow. It is implicitly determined by a summation over all secondary hadrons in energy-energy correlations. At the opposite, the jet axis is experimentally determined exclusively from all particles inside the jet. Whether these two definitions match within NMLLA accuracy, O (α s ), is a matter which deserves further investigation. This goes however beyond the scope of the present work. Last, cutting the integral [START_REF] Acton | A Study of two particle momentum correlations in hadronic Z 0 decays[END_REF] at small ℓ may look somewhat arbitrary. However, at the end of Appendix G, we provide in Figs. 21 curves which show the variation of the inclusive k ⊥ -distribution at MLLA and NMLLA when ℓ g min is changed. Varying it from 1 to to 1.75 does not modify the NMLLA spectrum at large k ⊥ by more than 20%. Variations are more dramatic at MLLA.

IV. SINGLE-INCLUSIVE k ⊥ -DISTRIBUTIONS BEYOND THE LIMITING SPECTRUM

A. Inclusive spectrum So far, the calculations have been performed in the limiting spectrum approximation, Q 0 = Λ QCD or λ = 0. This assumption, which cuts off hadronic yield below Q 0 should be valid as long as the mass of the produced hadrons is not too large as compared to Λ QCD . This is the case when dealing mostly with pions. We perform in this Section the exact calculation of single-inclusive spectra as well as k ⊥ -distributions beyond this approximation, λ = 0, that is for hadrons with mass m h ≃ Q 0 = Λ QCD [START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF]. The inclusive gluon spectrum was given in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] a compact Mellin representation:

G (ℓ, y) = (ℓ + y + λ) dω dν (2πi) 2 e ωℓ+νy ∞ 0 ds ν + s ω (ν + s) (ω + s) ν 1/β0(ω-ν) ν ν + s a1/β0 e -λs ,
from which an analytic approximated expression was found using the steepest descent method [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF]. However, G(ℓ, y) is here determined exactly from an equivalent representation in terms of a single Mellin transform (which reduces to [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF] 

as λ → 0) [20] G(ℓ, y) = ℓ + y + λ β 0 B (B + 1) ǫ+i∞ ǫ-i∞ dω 2πi e ωℓ × Φ(-A + B + 1, B + 2, -ω(ℓ + y + λ)) K(ω, λ) (44) 
which is better suited for numerical studies. The function K appearing in Eq. (44) reads

K(ω, λ) = Γ(A) Γ(B) (ω λ) B Ψ(A, B + 1, ω λ), (45) 
where A = 1/(β 0 ω), B = a 1 /β 0 , and Φ and Ψ are the confluent hypergeometric function of the first and second kind, respectively. The single-inclusive spectrum at MLLA is plotted in Fig. 7 for various values of λ, λ = 0, 0.2, 0.5, 1, for a gluon jet with Y Θ = 6.4. Increasing λ reduces the emission in the infrared region and therefore favors hard particle production at ℓ ≪ Y /2 (asymptotic position of the peak of the hump-backed plateau). Still, it is worth remarking that the global shape of G at finite λ remains similar to that obtained in the limiting spectrum approximation. Note also that there is a discrete part at finite λ, proportional to δ(ℓ), corresponding to the finite probability for no parton emission when Q 0 = Λ QCD , the parton multiplicity becoming infrared finite at λ = 0 (see the second reference in [START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF]). 

B. Color currents

The color currents, Eq. ( 39), can now be determined beyond the limiting spectrum from the inclusive spectrum calculated in the previous section. In Fig. 8 (right), for different values λ = 0, 0.5, 1. Fig. 8 clearly indicates that the larger the values of λ, the smaller the MLLA (and NMLLA) corrections. In particular, MLLA (NMLLA) corrections can be as large as 50% (30%) in the limiting spectrum but no more than 20% (10%) for λ = 1. This is not surprising since λ = 0 (Q 0 = Λ QCD ) reduces the parton emission in the infrared sector and, consequently, higher-order corrections. As discussed in Sect. III B, the large and negative corrections to the color currents in the limiting spectrum lead to negative double-differential spectra, d 2 N/dℓdy, at small y. Interestingly, at λ = 0, the infrared sensitivity is somehow weakened. As a consequence, d 2 N/dℓdy is no longer negative at finite λ, as illustrated in Fig. 9. Another interesting consequence is the disappearance of the infrared divergence at y = 0 in the limiting spectrum, coming from the running of α s : since Q 0 = Λ QCD , α s and therefore d 2 N/dℓdy remain finite over the full momentum-space. 

C. k ⊥ -distributions

The absolute k ⊥ -distributions of "massive" hadrons is computed in Fig. 10 (left) for various values of λ for jets with hardness Q = 119 GeV. As expected, as λ gets larger, soft gluon emission is strongly suppressed such that the distribution flattens at small k ⊥ , while more hadrons are produced at large k ⊥ , making in turn the distributions harder. We also compare in Fig. 10 (right) these calculations with CDF preliminary data, all normalized to the log(k ⊥ /1GeV) = -0.1 bin as before. The best description is reached in the limiting spectrum approximation, or at least for small values of λ 0.5. This is not too surprising since these inclusive measurements mostly involve pions.

Predictions beyond the limiting spectrum were shown to describe very well the hump-backed shape of the inclusive spectra for various hadron species; in particular, the hadron-mass variation of the peak turned out to be in good agreement with QCD expectations (see e.g. [START_REF] Khoze | Perturbative QCD approach to multiparticle production[END_REF]). The softening of the k ⊥ -spectra with increasing hadron masses predicted in Fig. 10 is an observable worth to be measured, as this would provide an additional and independent check of the LPHD hypothesis beyond the limiting spectrum. This could only be achieved if the various species of hadrons inside a jet can be identified experimentally. Fortunately, it is likely to be the case at the LHC, where the ALICE [START_REF] Alessandro | physics performance report[END_REF] and CMS [START_REF]CMS physics technical design report: Addendum on high density QCD with heavy ions[END_REF] experiments at the Large Hadron Collider have good identification capabilities at not too large transverse momenta. 

V. 2-PARTICLE CORRELATIONS A. Correlators and evolution equations

We work, like in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF], with the normalized correlators

C g = G (2) G 1 G 2 , C q = Q (2) Q 1 Q 2 (46)
where G i , Q i , i = 1, 2 are the inclusive spectra relative to the outgoing hadrons h 1 and h 2 , and G (2) , Q (2) are the 2-particle distributions in gluon and quark jets, respectively. The former are obtained by a single differentiation of the "MLLA" generating functional Z, and the latter by differentiating it twice [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] (see also the discussion introduced in II). Z satisfies the evolution equation described in section (2) of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]: dZ A /d ln Θ for the jet initiating parton A is expressed as an integral over z involving the DGLAP splitting functions Φ BC A (z) and Z B and Z C associated to the products B and C of the splitting process; B carries away the fraction z of the energy E of A and C the fraction (1 -z) (see Fig. 11). The topology of Fig. 11 respects the exact AO constraint over the successive emission angles of partons (Θ ≥ Θ 1 ≥ Θ 2 ). In practice, suitably differentiating the master evolution equation for Z A , which arises as a consequence of exact AO in parton cascades, yields, for the correlation functions [8]

G (2) -G 1 G 2 ≡ (C g -1) G 1 G 2 , Q (2) -Q 1 Q 2 ≡ (C q -1) Q 1 Q 2 , (47) 
the system of coupled evolution equations:

Θ Θ 1 2 ω 1 E (1-z)E zE ω 2 Θ A B C Figure 11: 2-particle correlations inside a jet (Q (2) -Q 1 Q 2 ) y = 1 0 dz α s π Φ g q (z) G (2) (z) + Q (2) (1 -z) -Q (2) (48) + G 1 (z) -Q 1 Q 2 (1 -z) -Q 2 + G 2 (z) -Q 2 Q 1 (1 -z) -Q 1 , (G (2) -G 1 G 2 ) y = 1 0 dz α s π Φ g g (z) G (2) (z) -zG (2) + G 1 (z) -G 1 G 2 (1 -z) -G 2 + 1 0 dz α s π n f Φ q g (z) 2 Q (2) (z) -Q 1 (z)Q 2 (z) -G (2) -G 1 G 2 + 2Q 1 (z) -G 1 2Q 2 (1 -z) -G 2 . ( 49 
)
The derivative is taken with respect to y = Y -ℓ rather than with respect to ln Θ, since it is more convenient when a collinear cutoff is imposed (see Section (2.1) of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]). Like for the inclusive spectra, the notations have been lightened to a maximum, with G (2) standing for G (2) (z = 1) and likewise for Q (2) . The notation x i , ℓ i , . . . refers to the ℓ i = ln(1/x i ) of the outgoing parton (hadron) i.

B. Including NMLLA corrections

We follow the same logic, exposed in Section II C, for the 2-particle distributions Q (2) , G (2) , as the one used for the inclusive spectra B in Section III A. Therefore, the expansion at small x 1 , x 2 is performed for

x1 z Q 1 x1 z x2 z Q 2 x2 z and x1 z G 1 x1 z x2 z G 2 x2 z
as well as for

x1 z x2 z Q (2) x1 z , x2 z and x1 z x2 x G (2) x1 z , x2
z , similarly to Eq. ( 11).

Quark jet

Operating like for ( 16) and ( 17), the first (MLLA) term in the r.h.s. of (48) can be cast in the form

1 0 dz α s π Φ g q (z) G (2) (z) + Q (2) (1 -z) -Q (2) = C F N c 1 0 dz z γ 2 0 G (2) (z) - 3 4 C F N c γ 2 0 G (2) + C F N c 7 8 + C F N c 5 8 - π 2 6 γ 2 0 G (2) ℓ + C F N c 2 C F N c -1 5 8 - π 2 6 γ 2 0 (G 1 G 2 ) ℓ , (50) 
where we have plugged the DLA formula [19]

Q (2) ℓ = C F N c G (2) ℓ + C F N c C F N c -1 (G 1 G 2 ) ℓ + O(γ 2 0 ) (51)
in the r.h.s. of (50); the terms in (51) of relative order O(γ 0 ) are neglected because their contribution provide corrections to (50) beyond NMLLA (see also appendix H). The second and third terms in the r.h.s. of (48) provide the NMLLA correction:

1 0 dz α s π Φ g q (z) G 1 (z) -Q 1 Q 2 (1 -z) -Q 2 = α s π 1 0 dz Φ g q (z) ln(1 -z) (G 1 -Q 1 )Q 2,ℓ = C F N c 2 1 - C F N c 5 8 - π 2 6 γ 2 0 G 1 G 2,ℓ , (52) 
where the DLA expression

Q ℓ = CF Nc G ℓ + O(γ 2 0
) is used [START_REF] Yu | On the sensitivity of the inclusive distributions in parton jets to the coherence effects of QCD gluon cascades[END_REF]; further corrections (O(γ 2 0 )) to this formula are here again dropped out because their inclusion goes beyond the present resummation logic. Likewise, we have

1 0 dz α s π Φ g q (z) G 2 (z) -Q 2 Q 1 (1 -z) -Q 1 = C F N c 2 1 - C F N c 5 8 - π 2 6 γ 2 0 G 1,ℓ G 2 . ( 53 
)
Gathering ( 50), ( 52) and (53) yields

Q (2) -Q 1 Q 2 y = C F N c 1 0 dz z γ 2 0 G (2) (z) - 3 4 C F N c γ 2 0 G (2) + C F N c 7 8 + C F N c 5 8 - π 2 6 γ 2 0 G (2) ℓ , (54) 
which is written in a form similar to [START_REF] Dremin | Average multiplicities in gluon and quark jets in higher order perturbative QCD[END_REF].

Gluon jet

The structure of (49) can be worked out in the same way. The first integral term in its r.h.s. is the same as that in [START_REF] Yu | On the sensitivity of the inclusive distributions in parton jets to the coherence effects of QCD gluon cascades[END_REF], such that we can simply set

1 0 dz α s π Φ g g (z) G (2) (z) -zG (2) = 1 0 dz z γ 2 0 G (2) (z) - 11 12 γ 2 0 G (2) + 67 36 - π 2 6 γ 2 0 G (2) 
ℓ .

(55)

The second term provides a contribution

γ 2 0 2N c G 1ℓ G 2ℓ 1 0 dz Φ g g (z) ln z ln(1 -z) = 11π 2 36 - 395 108 + 2ζ(3) γ 2 0 G 1ℓ G 2ℓ = O(γ 4 0 ),
that is beyond NMLLA and therefore dropped out here. The second line of (49) simplifies to

1 0 dz α s π n f Φ q g (z) 2 Q (2) (z) -Q 1 (z)Q 2 (z) -G (2) -G 1 G 2 = n f T R 3N c γ 2 0 × 2 Q (2) -Q 1 Q 2 -G (2) -G 1 G 2 - 13 18 
n f T R N c γ 2 0 Q (2) -Q 1 Q 2 ℓ , (56) 
and the third one gives

1 0 dz α s π n f Φ q g (z) 2Q 1 (z) -G 1 2Q 2 (1 -z) -G 2 = n f T R 3N c γ 2 0 2Q 1 -G 1 2Q 2 -G 2 - 13 18 
n f T R N c γ 2 0 (2Q 1 -G 1 )Q 2ℓ + (2Q 2 -G 2 )Q 1ℓ . (57) 
Gathering ( 55), ( 56), (57) and setting (see appendix H for further explanations)

Q ≈ C F N c G + O(γ 0 ), Q (2) = C F N c G (2) + C F N c C F N c -1 G 1 G 2 + O(γ 0 ) (58)
in the subleading pieces, we obtain the NMLLA equation for the gluonic correlator

G (2) -G 1 G 2 y = 1 0 dz z γ 2 0 G (2) (z) - 11 12 + n f T R 3N c 1 -2 C F N c γ 2 0 G (2) + 2n f T R 3N c 1 - C F N c 1 -2 C F N c γ 2 0 G 1 G 2 + 67 36 - π 2 6 - 13 18 
n f T R N c C F N c γ 2 0 G (2) ℓ + 13 9 
n f T R N c C F N c 1 - C F N c γ 2 0 (G 1 G 2 ) ℓ . ( 59 
)
The way to get the equations for the correlators C g and C q , to be solved iteratively, proceeds like in Section 4 and Appendices A and B of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF].

C.

NMLLA correlators

Gluon correlator Cg

The differential expression for [START_REF] Alessandro | physics performance report[END_REF] reads

G ℓy = γ 2 0 G -a 1 γ 2 0 ψ ℓ -β 0 γ 2 0 G + a 2 γ 2 0 ψ 2 ℓ + ψ ℓℓ -β 0 γ 2 0 ψ ℓ G. ( 60 
)
Differentiating ( 59) with respect to ℓ gives the following NMLLA differential equation

G (2) -G 1 G 2 ℓy = γ 2 0 G (2) -a 1 γ 2 0 G (2) ℓ -β 0 γ 2 0 G (2) + (a 1 -b 1 )γ 2 0 (G 1 G 2 ) ℓ -β 0 γ 2 0 G 1 G 2 + a 2 γ 2 0 G (2) ℓℓ -β 0 γ 2 0 G (2) ℓ + b 2 γ 2 0 (G 1 G 2 ) ℓℓ -β 0 γ 2 0 (G 1 G 2 ) ℓ , (61) 
where a 1 , a 2 are given by ( 24b) and (24d), and with the following coefficients:

b 1 = 11 12 - n f T R 3N c 1 - 2C F N c 2 n f =3 = 0.915, b 2 = 13 9 n f T R N c C F N c 1 - C F N c n f =3 ≈ 0.18. ( 62 
)
Noting ψ = ln G and χ = ln C g , the second line of (61) can be rewritten in terms of logarithmic derivatives of G and of C g (see Appendix I) from which Eq. ( 61) is solved iteratively. Setting G (2) = C g G 1 G 2 in both members and making use of (60) leads to the analytical solution of (61), valid for arbitrary λ

C g -1 = 1 -δ 1 -b 1 ψ 1,ℓ + ψ 2,ℓ -[β 0 γ 2 0 ] -[a 1 χ ℓ + δ 2 ] + δ 3 1 + ∆ + δ 1 + a 1 (χ ℓ + [β 0 γ 2 0 ]) + δ 2 + δ 4 , (63) 
where, like in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF], we introduce η = ℓ 2 -ℓ 1 . δ 3 and δ 4 are the new NMLLA corrections:

δ 3 (ℓ 1 , ℓ 2 ; η) = a 2 f 1 (ℓ 1 , ℓ 2 ; η) + b 2 f 2 (ℓ 1 , ℓ 2 ; η) = O(γ 2 0 ), δ 4 (ℓ 1 , ℓ 2 ; η) = -a 2 f 3 (ℓ 1 , ℓ 2 ; η) = O(γ 2 0 ), (64) 
and f 1 , f 2 and f 3 are defined in (I1) of appendix I. Setting δ 3 = δ 4 = 0 in (63), one recovers the exact analytical solution of the corresponding MLLA gluon equation (with a 2 = b 2 = 0 in (61)); to derive this formula we have used the same method that was, for the first time, implemented in the appendix A of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. The other quantities and their order of magnitude are (see [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF])

χ = ln C g , χ ℓ = dχ dℓ = O(γ 2 0 ), χ y = dχ dy = O(γ 2 0 ), ( 65 
)
ψ i = ln G i , ψ i,ℓ = 1 G i dG i dℓ = O(γ 0 ), ψ i,y = 1 G i dG i dy = O(γ 0 ), (i = 1, 2), ( 66 
) ∆ = γ -2 0 ψ 1,ℓ ψ 2,y + ψ 1,y ψ 2,ℓ = O(1), (67) 
δ 1 = γ -2 0 χ ℓ (ψ 1,y + ψ 2,y ) + χ y (ψ 1,ℓ + ψ 2,ℓ ) = O(γ 0 ), ( 68 
)
δ 2 = γ -2 0 χ ℓ χ y + χ ℓ y = O(γ 2 0 ). ( 69 
)
To evaluate (65) we consider the bare correlator:

χ = ln 1 + 1 -b 1 (ψ 1,ℓ + ψ 2,ℓ ) + [b 1 β 0 γ 2 0 ] 1 + ∆ + [a 1 β 0 γ 2 0 ]
. the derivatives of which are calculated numerically to eventually determine (68) and ( 69). The analytical result (63) for C g will be numerically displayed for the limiting spectrum λ = 0 in section V D by using [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF]. For the case λ = 0, we report the reader to [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF] where it has been treated in MLLA by the steepest descent method.

Quark correlator Cq

The differential expression of [START_REF] Dremin | Average multiplicities in gluon and quark jets in higher order perturbative QCD[END_REF] reads

Q ℓy = C F N c γ 2 0 G - 3 4 γ 2 0 (ψ ℓ -β 0 γ 2 0 )G + ã2 γ 2 0 (ψ 2 ℓ + ψ ℓℓ -β 0 γ 2 0 ψ ℓ )G . ( 70 
)
Differentiating ( 59) with respect to ℓ gives the NMLLA differential equation

(Q (2) -Q 1 Q 2 ) ℓy = C F N c γ 2 0 G (2) - 3 4 γ 2 0 G (2) ℓ -β 0 γ 2 0 G (2) + ã2 γ 2 0 G (2) ℓℓ -β 0 γ 2 0 G (2) ℓ , (71) 
to be solved iteratively. Setting

Q (2) = C q Q 1 Q 2 in
both members and using (70), one gets the analytical solution (71), valid for arbitrary λ

Cq -1 = Nc C F Cg 1 -3 4 ψ 1,ℓ + ψ 2,ℓ + [χ ℓ ] -[β0γ 2 0 ] + δ3 C F Nc G 1 Q 1 C F Nc G 2 Q 2 -δ1 -[ δ2] ∆ + 1 -3 4 ψ 1,ℓ -[β0γ 2 0 ] + δ4,1 C F Nc G 1 Q 1 + 1 -3 4 ψ 2,ℓ -[β0γ 2 0 ] + δ4,2 C F Nc G 2 Q 2 + δ1 + [ δ2] , (72) 
where δ3 and δ4 are the new NMLLA coefficients (ã 2 is given by (24c))

δ3 (ℓ 1 , ℓ 2 ; η) = ã2 f 1 (ℓ 1 , ℓ 2 ; η) = O(γ 2 0 ), δ4,i (ℓ 1 , ℓ 2 ; η) = ã2 f 4 (ℓ 1 , ℓ 2 ; η). = O(γ 2 0 ). (73) 
Setting δ3 = δ4,i = 0 in (72), one recovers the exact analytical solution of the corresponding MLLA quark equation (ã 2 = 0 in (71)) that was obtained in the appendix B of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. We have introduced (see [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF])

∆ = γ -2 0 ϕ 1,ℓ ϕ 2,y + ϕ 1,y ϕ 2,ℓ = O(1), (74) δ1 
= γ -2 0 σ ℓ (ϕ 1,y + ϕ 2,y ) + σ y (ϕ 1,ℓ + ϕ 2,ℓ ) = O(γ 0 ), (75) δ2 
= γ -2 0 σ ℓ σ y + σ ℓ y = O(γ 2 0 ), (76) 
with ϕ k = ln Q k and σ = ln C q . For the numerical computation of σ, we take

σ = ln    1 + Nc CF C g 1 -3 4 ψ 1,ℓ + ψ 2,ℓ + [χ ℓ -β 0 γ 2 0 ] CF Nc G1 Q1 CF Nc G2 Q2 ∆ + 1 -3 4 ψ 1,ℓ -[β 0 γ 2 0 ] CF Nc G1 Q1 + 1 -3 4 ψ 2,ℓ -[β 0 γ 2 0 ] CF Nc G2 Q2    , (77) 
in which one uses the NMLLA expression [START_REF] Dremin | Jet calculus problems of the perturbative quantum chromodynamics[END_REF] for G and Q deduced from ( 22) and ( 23), and the exact expression (63) for C g (ℓ 1 , y 2 , η).

The numerical solution of (72) is given in section V D for λ = 0. We make the approximation ϕ ℓ ≈ ψ ℓ , ϕ y ≈ ψ y that is justified in Appendix E through (E2). We can therefore also use [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF]. The case λ = 0 was also dealt with at MLLA for a quark jet in [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF].

Finally, taking x 1 = x 2 in (63,72) and going to the asymptotic limit Q → ∞ (Y → ∞), one finds the implicit overall normalization of these observables to be given by those of the multiplicity correlators [START_REF] Konishi | Jet Calculus: A Simple Algorithm for Resolving QCD Jets[END_REF] 

C g Y →∞ → n g (n g -1) n g 2 = 4 3 , C q Y →∞ → n q (n q -1) n q 2 = 1 + N c 3C F ,
for the gluon and quark jets respectively. The statement above can be easily explained; the asymptotic expressions of (63,72) are respectively the DLA formulae(see [START_REF] Yu | Basics of Perturbative QCD[END_REF])

C g (x 1 , x 2 ) Y →∞ ≈ 1 + 1 1 + ∆(x 1 , x 2 ) , C q (x 1 , x 2 ) Y →∞ ≈ 1 + N c C F 1 1 + ∆(x 1 , x 2 )
, and ∆(x 1 , x 2 ) = 2 for x 1 = x 2 in the same limit.

D. NMLLA corrections versus MLLA

Throughout this analysis, we have consistently incorporated a set of NMLLA corrections. These were not calculated in the previous work [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] which was done at MLLA accuracy for λ = 0. The philosophy and the basic technique are, however, the same (as well as in [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF]). We comment below on the role of these corrections for 2-particle correlations. Both δ 3 and δ3 are dominated by their leading term, such that

δ 3 ≈ (a 2 + b 2 )(ψ 1,ℓ + ψ 2,ℓ ) 2 = O(γ 2 0 ), δ3 ≈ ã2 (ψ 1,ℓ + ψ 2,ℓ ) 2 = O(γ 2 0 ).
Since both a 2 + b 2 and ã2 are positive and ψ ℓ increases as ℓ → 0, NMLLA corrections are expected to increase the MLLA solution of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] in the limit ℓ 1 + ℓ 2 → 0, as can be seen in ( 63) and (72). Thus, as found for the single-inclusive k ⊥ -distribution, the (x 1 , x 2 ) domain in which the two particles are "correlated", i.e. C g,q -1 > 0, becomes larger than at MLLA. In the limit ℓ 1 + ℓ 2 → 2Y , the role of the new corrections is, on the contrary, expected to vanish since

ψ ℓ → 0 when ℓ → Y .
This is indeed what appears on Figs. 12 and 14, which compare the MLLA and NMLLA solutions at the Tevatron energy scale (Q = 155 GeV). While Eqs.( 63) and (72) are general analytical solutions of the evolution equations at λ = 0, the numerical results displayed below are calculated at the limiting spectrum λ = 0, by plugging the formula [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF] for the inclusive spectrum into (63) and (72). The four lines in Fig. 13 show the positions in (ℓ 1 , ℓ 2 ) space corresponding to the curves of Figs 12 and 14. The two upper curves of Fig. 12 correspond to line 2, its two lower curves to line 1; the two upper curves of Fig. 14 correspond to line 3 and its two lower curves to line 4. The correlations displayed in Fig. 12 and 14 appear more important in NMLLA than in MLLA. Physically, because the recoil of each emitting parton is better taken into account in the former approximation, less energy becomes available and the multiplicity of emitted particles is expected to decrease. Consequently, inside a bunch of a fewer number of particles, two among them get more correlated.

E. Dependence on ΛQCD

We have tested the dependence of the gluonic correlation function C g on Λ QCD , by varying it from 150 MeV to 500 MeV. The results are displayed on Fig. 15, as a function of ℓ 1 + ℓ 2 (left) and ℓ 1 -ℓ 2 (right). Variations are seen to stay below 10%.

F. Comparison with Fong and Webber MLLA predictions

The comparison with the predictions by Fong and Webber [START_REF] Fong | One and two particle distributions at small x in QCD jets[END_REF] is also instructive. Let us recall that their calculation is done at MLLA, yet obtained from the exact result of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] when the two outgoing partons are taken to be close to the peak of the inclusive spectrum, and when the exact solution is expanded at first order in √ α s . From the present results and that of [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF], we can conclude that:

• the convergence of the series obtained by expanding the exact MLLA result in powers of √ α s is very bad; if one proceeds in this way, NMLLA corrections may be as large as MLLA, making the series meaningless; note that similar conclusions have been obtained in [START_REF] Cuypers | Recoil effect on multiplicity correlation[END_REF] when dealing with recoil effects and, more precisely, with the role of exact kinematics in the bounds of integrations; 0.9 
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Figure 12: 2-particle correlations for a quark jet (left) and a gluon jet (right) as a function of ℓ1 + ℓ2 for ℓ1 = ℓ2; the MLLA, NMLLA and Fong and Webber [START_REF] Fong | One and two particle distributions at small x in QCD jets[END_REF] predictions are shown as solid lines.

• instead, in the procedure that has been adopted here, i.e. finding exact NMLLA solutions of the (approximate) MLLA evolution equations, NMLLA corrections turn out to be under control and their inclusion brings the predictions closer to Fong and Webber's.

The present study, together with [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF], consequently stresses out the importance of dealing with exact solutions of the evolution equations in jet calculus.

VI. DISCUSSION AND SUMMARY

A. Discussion

Energy conservation is a fundamental issue in jet calculus. While it is well known that the complete neglect of the recoil of the emitting parton leads to DLA (taking only into account the singular parts of the splitting functions), the MLLA, in which "single logarithms" are added to DLA, takes partial account of the recoil. Corrections appearing at higher orders in an expansion in powers of √ α s come from (i) the shifts by ln z and ln(1 -z) in the arguments of the hadronic fragmentation functions; (ii) the non-singular terms in the splitting functions; (iii) the running of α s . Our line of approach in this paper was accordingly the following:

• we considered MLLA evolution equations as kinetic equations of QCD, and expanded their (exact) analytical solutions in powers of √ α s up to the order O (α s ). Contributions that do not fit into such an framework are discarded;

• we stuck to the logic advocated in [START_REF] Dremin | Quantum chromodynamics and multiplicity distributions[END_REF][START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF][START_REF] Dremin | Jet calculus problems of the perturbative quantum chromodynamics[END_REF]] that, at small x and for | ln z| ∼ | ln(1 -z)| ≪ ln(1/x), the successive corrections, MLLA, NMLLA . . . , which better and better account for energy conservation, are taken care of by a systematic expansion in powers of ln z and ln(1 -z).

The size of the NMLLA terms depends on the precise definition of Λ QCD : a rescaling of Λ QCD would change the terms at this order. Systematically solving this problem would require a 2-loop calculation which has not been obtained so far for any multiplicity-related observable. We therefore have to consider here Λ QCD as a phenomenological parameter. The sensitivity of our results to variations of Λ QCD have been studied and found moderate (20% for inclusive k ⊥distribution and less than 10% for correlations) when Λ QCD → 2Λ QCD . We left aside the question of the matching of the two definitions of the jet axis, "inclusive" direction of the energy flow in this work, and "exclusive" fixing from all outgoing hadrons in experiments.

Last, hints that NMLLA corrections that has been considered here are the dominant one can already be found in the work [START_REF] Yu | Improved QCD treatment of the KNO phenomenon[END_REF] where this type of NMLLA recoil effects was shown to drastically affect particle multiplicities and particle correlations through a factor proportional to the number of partons involved in the process. This however only concerns a priori 2-particle correlations. Spanning a gate between KNO phenomenon and the techniques that we have used here stays a challenging task which we hope to achieve in the future.

Since calculated NMLLA corrections proved to be quite substantial, a natural question arises concerning the magnitude of higher order corrections. There, in correlation with the remarks at the end of the introduction of section II, it seems legitimate to consider that, since this observable is mainly sensitive to soft particles, the corrections are expected to be moderate. This can be different for integrated quantities like multiplicities.

B. Summary

In this work, we have computed next-to-MLLA (NMLLA) corrections to the single-inclusive k ⊥ -distributions as well as 2-particle momentum correlations inside a jet at high energy colliders. It comes as a natural extension of [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF] and [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] in which MLLA results are provided. In particular, it exploits the same logic of using, at small energy fraction x of the emitted hadron, exact solutions to (approximate) evolution equations for the inclusive spectrum. The technique used is based on a systematic expansion in powers of √ α s which neglects non-perturbative effects. Nevertheless, it proves to be remarkably efficient to describe the preliminary measurements of (the shape of) the k ⊥ -differential inclusive cross section performed by CDF [7]. This is an indication that non-perturbative contributions play a small role in this observable, and concentrates in the overall normalization (LPHD hypothesis is tantamount to stating that in this universal factor lies the trace of the (soft and local) hadronization process). The transition from MLLA to next-to-MLLA enlarges considerably the domain where the computations agree with the experimental data, both in the transverse momentum of hadrons and in their energy fraction x. In our analysis, single-inclusive x-distributions as well as k ⊥ -spectra have been determined exactly beyond the limiting spectrum approximation, i.e. for arbitrary Q 0 = Λ QCD . This should in particular be relevant when dealing with distributions of rather massive hadrons [START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF]. In this respect, experimental identification of outgoing hadrons could provide precious additional tests of LPHD and of the physical interpretation of the infrared cutoff Q 0 as the "hadronization scale". As far as 2-particle correlations inside a jet are concerned, future results from LHC, in addition to the ones of OPAL [START_REF] Acton | A Study of two particle momentum correlations in hadronic Z 0 decays[END_REF] and recent ones from CDF [START_REF] Aaltonen | Two-particle momentum correlations in jets produced in pp collisions at √ s = 1.96 TeV[END_REF], are waited for to be compared with the NMLLA predictions presented in this study.

The limitations of the method are in particular:

• neglecting non-perturbative contributions may prove less justified for not so inclusive observables. In that respect, forthcoming data on 2-particle correlations from LHC promise to be very instructive. While incorporating some non-perturbative contributions is not excluded a priori, a systematic way to handle them is of course still out of reach;

• the absolute normalization of the distributions, which involve non-perturbative effects (hadronization) is not predicted;

• the calculation is performed in the small-x limit and extrapolation to larger x may become problematic. The Q=155 GeV, 0 < l 1 -l 2 < 0.1 transition to larger x, or from MLLA to DGLAP evolution equations, is undoubtedly also a very important issue. It may be tempting to proceed in this direction by going to higher orders in the expansion initiated in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF][START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF][START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF] and extended in the present work. However, the universality of MLLA evolution equations as kinetic equations of QCD should be cast on firmer grounds.
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C. Perspective: going to larger x A Taylor expansion, when used inside evolution equations, was already advocated long ago to better account for energy conservation [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF][START_REF] Dremin | Jet calculus problems of the perturbative quantum chromodynamics[END_REF]. It appears fairly easy to realize that pushing it at higher and higher orders of ln u at small x inside the convolution integral (29) should play a role in it extending the domain of reliability of the solution to larger and larger values of x. Indeed, in [START_REF] Albino | Resummation of Soft Gluon Logarithms in the DGLAP Evolution of Fragmentation Functions[END_REF], one integrates from u = x to u = 1 a certain function F (ln u -ln x). F is expanded at large | ln x| around | ln u| = 0, which corresponds to u = 1. If one increases x, the domain of integration shrinks closer and closer to its upper bound u = 1. Suppose that we set x = 1 -ǫ. The integral becomes 1 1-ǫ duF (ln u -ln(1 -ǫ)). Now, in the argument of F , for all u in the domain of integration | ln u| ∼ | ln x|, such that a reliable expansion of F , if it exists (it depends of its radius of convergence), must involve a large number of terms. This is like expanding a function f (t -a) around f (-a): for |a| ∼ | ln x| ≫ t ∼ ln u ≈ ln 1, a few powers of t provide a good approximation to f (t -a), but when a decreases, expanding f (t -a) around f (-a) uses an expansion parameter t of the same order of magnitude as a itself. We conclude that increasing x requires going to higher and higher orders in the expansion of F in powers of | ln u|. Conversely, going to higher and higher order in this expansion is expected to yield a solution valid in a larger and larger domain of x.

When applied to the evolution equations themselves, and to the similar expansion in powers of (ln z) that we did in section II, the same kind of arguments apply, which are not unrelated with the link between MLLA and DGLAP evolution equations. Since NMLLA corrections to 2-particle correlations, unlike the ones for the inclusive k ⊥ distribution, are directly connected with NMLLA corrections to the evolution equations themselves, it is worth giving a few comments concerning this issue. a/ That MLLA evolution equations ( 4) and ( 5) are, at least for inclusive enough observables, valid in a much broader x domain than expected has been known for a long time [START_REF] Yu | Basics of Perturbative QCD[END_REF]. It was furthermore noticed some years ago [START_REF] Lupia | Unified QCD description of hadron and jet multiplicities[END_REF] that, for parton multiplicities, the exact numerical solution of MLLA evolution equations perfectly matched experimental results in a very large domain, and that, accordingly, the MLLA evolution equations contain more information than expected and the problems of finding their analytical solutions are essentially of technical nature; b/ at small x MLLA evolution equations are identical to DGLAP evolution equations but for a shift by ln z (z is the integration variable) of the variable Y = y + ℓ which controls the evolution of the jet hardness [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF][START_REF] Yu | Basics of Perturbative QCD[END_REF]; c/ for soft outgoing hadrons (x small ⇔ |ℓ| ≡ | ln x| large), this shift is negligible in the hard parton region (| ln z| < | ln x|). However, when going to harder hadrons, that is when x grows, |ℓ| decreases and | ln z| is no longer negligible. When it is so, the function to integrate is no longer safely approximated by its 0 th order expansion (corresponding to ln z = 0) and higher powers of ln z are needed. This provides, in addition to the argumentation at the beginning of this subsection, another link between this expansion at higher orders and going to larger x; d/ accordingly, the Taylor expansion that we used inside MLLA evolution equations, which extends their "validity" to larger x, may contribute to spanning a bridge between them and DGLAP evolution equations (see for example [START_REF] Albino | Resummation of Soft Gluon Logarithms in the DGLAP Evolution of Fragmentation Functions[END_REF][START_REF] Yu | Revisiting parton evolution and the large-x limit[END_REF]).

Acknowledgments: It is pleasure to thank Yu.L. Dokshitzer, I.M. Dremin and W. Ochs for illuminating discussions. We also thank S. Jindariani (CDF) for an invaluable exchange of information concerning CDF data. Finally, (D1) can be approximated by We can now estimate the order of magnitude of this correction, taking, for example, the analytic form of D q q (u) (non-singlet combination of quark distributions) in the u → 1 limit [START_REF] Yu | Basics of Perturbative QCD[END_REF][START_REF] Ellis | QCD and Collider Physics[END_REF] D q q (u) ∼ Taking, for instance, ξ(Y Θ0 = 6, Y Θ = 3) = 0.08, which is a typical value at LEP or Tevatron energy scales, one finds δI/I ≈ 0.04. When Y Θ → Y Θ0 , this ratio tends very fast to 0, such that the role of this correction at larger k ⊥ is negligible. (physical) characteristic of the system under concern (gluon or quark jet), it is only an ad-hoc parameter below which poor credibility can be attached to the results. One notices in Table I that, at a given Q, the ℓ min for a quark jet is always larger than the one for a gluon jet; this only means that our calculations can be pushed to larger x for gluons than for quarks without encountering problems of positivity. The question then arises whether, in calculating the inclusive k ⊥ distribution of a mixed jet, one should attach the same ℓ min to each of its components, which can only be, of course, the larger one, that is, the one of the quark component, or give to each component its proper value of ℓ min as given in Table 1. The simple answer to this question comes from the fact that the two choices give, in practice, extremely close results. Deeper considerations on which ℓ min should be chosen are thus irrelevant.

For the sake of completeness, we plot in Fig. 21 the inclusive gluon k ⊥ -distribution at Y Θ0 = 6, for different values of ℓ g min , both at MLLA (left) and NMLLA (right). Changing ℓ g min from 1 to 1.5 modifies the NMLLA spectrum by no more than 20% for log(k ⊥ /1GeV)=2.5. At MLLA, the dependence proves much more dramatic, Like for the variation with Λ QCD in subsection III E, that the variations with ℓ min seem to increase with k ⊥ is only an artifact due to the normalization at the first bin.

(H2) was obtained in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] and displayed later in [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF]. Working out the structure of (H2) after we have inserted (H1), leads to

Q (2) = C F N c G (2) + C F N c C F N c -1 G 1 G 2 + C F N c (b 1 -a 1 )(ψ ℓ1 + ψ ℓ2 ) 1 + ∆ 2 + ∆ (G (2) -G 1 G 2 ) + C F N c (a 1 -ã1 )(ψ ℓ,1 + ψ ℓ,2 )(G (2) -G 1 G 2 ) + C 2 F N 2 c (a 1 -ã1 )(ψ ℓ1 + ψ ℓ2 )G 1 G 2 + O(γ 2 0 ). ( H3 
)
As already mentioned in [START_REF] Ramos | Single inclusive distribution and two-particle correlations inside one jet at modified leading logarithmic approximation of quantum chromodynamics: II. Steepest descent evaluation at small x[END_REF], the coefficient (b 1 -a 1 ), which is color suppressed, is ≃ 10 -2 , ψ ℓ ≃ 10 -1 and 1+∆ 2+∆ ≃ 3 4 . Thus, the whole correction is roughly ≃ 10 -4 . This is why it is not taken into account here, which allows for analytic results. Introducing the terms of (H3) ∝ (a 1 -ã1 ) in the r.h.s. of (56) provides extra terms

. . . + 2n f T R 3N c C F N c (a 1 -ã1 )(ψ ℓ,1 + ψ ℓ,2 )γ 2 0 (G (2) -G 1 G 2 ) + 2n f T R 3N c C 2 F N 2 c (a 1 -ã1 )γ 2 0 (G 1 G 2 ) ℓ
which add to the r.h.s. of (59). They are both, in particular, color suppressed, the first one by a factor ∝ 1/N 2 c and the second one, by ∝ 1/N 3 c . Thus, for example, taking ψ ℓ ≃ 10 -1 , taking into account that 2n f T R /3 = 1 for n f = 3, the coefficient a 2 defined in (24d) and which also appears in the r.h.s. of (61) would be modified to the close value a 2 ≈ 0.07. Finally, since in the above

. . . + 2n f T R 3N c C F N c C F N c -1 (a 1 -ã1 )γ 2 0 (G 1 G 2 ) ℓ ≈ -0.01 × γ 2 0 (G 1 G 2 ) ℓ ,
b 2 defined in (62) would be changed to the value b 2 ≈ 0.17, which only represents a 1% variation. The derivatives of (H1) and (H2) with respect to ℓ are therefore respectively approximated by

Q ℓ = C F N c G ℓ + O(γ 2 0 ), Q (2) ℓ 
= C F N c G (2) ℓ + C F N c C F N c -1 (G 1 G 2 ) ℓ + O(γ 2 0 ), (H4) 
because the inclusion of higher order contributions (coming from the derivatives of the above O(γ 0 ) terms) in the non-singular parts of the equations (such as [START_REF] Low | Bremsstrahlung of Very Low-Energy Quanta in Elementary Particle Collisions[END_REF], ( 20), ( 52) and (57)) would yield corrections beyond the precision of our approach.
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 1 Figure 1: Parton A with energy E splits into parton B (respectively, C) with energy zE (respectively, (1 -z)E) which fragments into a hadron h with energy xE.

Figure 2 :

 2 Figure 2: Inclusive production of hadron h at an angle Θ inside a high energy jet of total opening angle Θ0.

Figure 3 :

 3 Figure 3: Color currents at LO (solid lines), MLLA (dash-dotted), and NMLLA (dashed) for a quark (left) and gluon jet (right) with YΘ 0 = 6.4 and ℓ = 2.

Figure 4 :

 4 Figure 4: MLLA (green) and NMLLA (blue) inclusive y-distributions for a quark (left) and a gluon jet (right) with YΘ 0 = 4.3 (Q = 19 GeV) and YΘ 0 = 6.4 (Q = 155 GeV).

Figure 5 :

 5 Figure5: CDF preliminary results on hadronic single-inclusive k ⊥ -distributions, compared with MLLA (dashed lines) and NMLLA (solid lines) calculations at the limiting spectrum; the boxes are the systematic errors (their lower limits are cut at large k ⊥ for the sake of clarity)

ΛΛFigure 6 :

 6 Figure 6: The dependence on Λ QCD , absolute (left) and relative (right).

Figure 7 :

 7 Figure 7: Inclusive spectrum for a gluon jet (YΘ 0 = 6.4) for different values of λ.

  are displayed the MLLA corrections to the LO color current, δ C MLLA-LO A0 / C LO A0 (left), and NMLLA corrections to the MLLA color currents, δ C NMLLA-MLLA A0 / C MLLA A0

Figure 8 :

 8 Figure 8: MLLA (left) and NMLLA (right) normalized corrections to the LO and MLLA color currents, respectively, for different values of λ.

Figure 9 :

 9 Figure 9: MLLA double differential distribution for a quark jet YΘ 0 = 6.4 computed at λ = 0 (solid line) and λ = 1 (dashed line).

⊥Figure 10 :

 10 Figure 10: Absolute (left) and normalized (right) inclusive k ⊥ -distribution beyond the limiting spectrum approximation at NMLLA in a jet of hardness Q = 119 GeV.

Figure 13 :

 13 Figure 13: Positions in (ℓ1, ℓ2) space of Figs. 12 and 14.
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 142 Figure 14: 2-particle correlations for a quark jet (left) and a gluon jet (right) as a function of ℓ1 -ℓ2; MLLA, NMLLA and Fong-Webber prediction.

Figure 15 :

 15 Figure 15: dependence of the gluonic 2-particle correlation function Cg on ΛQCD.

Figure 16 :

 16 Figure 16: Single inclusive spectrum at fixed αs as a function of y at YΘ 0 = 7.5 and ℓ = 2.5.

Figure 17 : 1 x; 29 - 5 G 5 Figure 18 :

 171295518 Figure 17: Logarithmic derivatives ψ ℓ (left) and ψy (right) of the inclusive spectrum G(ℓ, YΘ 0 ) at YΘ 0 = 7.5.

1 x 1 x

 11 du u D A A0 (u, EΘ 0 , uEΘ) ≈ du u D A A0 (u, EΘ 0 , EΘ) (u = 1) + O(α 2 s ).

( 1 -b ln YΘ 0 YΘ . We need to compare I = 1 x 1 x

 1011 u) -1+4CF ξ with ξ = ξ(u = 1) = 1 du u(1 -u) -1+4CF ξ with δI = 4C F b(ℓ + y + λ) du u ln u ln(1 -u) (1 -u) -1+4CF ξ(u=1) .
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 2019 Figure 20: d 2 N dℓdy for a gluon jet (left) and a quark jet (right) as a function of y for three values of ℓ.

⊥Figure 21 :

 21 Figure 21: The dependence of the inclusive gluon k ⊥ distribution at YΘ 0 = 6 on ℓ g min .
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  + ψ g,ℓℓ ),where the expression and behavior of the function (ψ 2 g,ℓ + ψ g,ℓℓ ) are given in Appendix C.Appendix G: FIXING AND VARYING ℓminOur small x calculation cannot be trusted below a certain ℓ min , otherwise, as shown in Fig.20, d2 N/dℓdy gets negative in the perturbative domain. We give in Table1values of ℓ min as they come out from the requirement of
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Appendix A: NMLLA CORRECTIONS NEGLECTED IN THE DERIVATION OF THE APPROXIMATE EQUATIONS FOR THE INCLUSIVE SPECTRUM

To get a self-contained equation for the inclusive spectrum inside a gluon jet, one needs consistently to plug in

respectively, in the first and second terms of the r.h.s. of [START_REF] Yu | Phenomenology of the particle spectra in QCD jets in a modified leading logarithmic approximation[END_REF]. Taking into account the correction proportional to ψ ℓ in (A1) would provide an extra term . . . + 2 3

which adds to the r.h.s. of ( 21) and slightly changes the value of a 2 (24d) from 0.06 to 0.08; this number is also small, such that the approximation that we justify in Appendix B keeps valid. We solve the self-contained gluon equation ( 23) with frozen α s by performing the Mellin's transform

The contour of integration (C) lies to the right of all poles, and G(ω, ν) is the "propagator" in Mellin's space. Plugging (B1) into [START_REF] Konishi | Jet Calculus: A Simple Algorithm for Resolving QCD Jets[END_REF] yields

The simplest way to estimate the previous Mellin's representation is by substituting the DLA saddle point ω 0 = γ 0 y ℓ into the MLLA (∝ a 1 ) and NMLLA (∝ a 2 ) terms. Doing so, the steepest descent evaluation of the inclusive spectrum at fixed α s in the limit ℓ ≫ 1 (x ≪ 1) leads to

The result, plotted on Fig. 16 together with the DLA and MLLA results (still at fixed α s ), shows no significant difference between the MLLA and NMLLA solutions. We can therefore safely use the exact MLLA solution [START_REF] Dremin | Cumulant and factorial moments in perturbative gluodynamics[END_REF] to compute the NMLLA inclusive k ⊥ -distribution. Likewise, the logarithmic derivatives

which are used to evaluate two-particle correlation, are displayed on Fig. 17 as a function of ℓ = Y Θ -y. There, again, the difference between MLLA and NMLLA is negligible, such that the exact MLLA expression of the single inclusive distribution can be taken as a good approximation in the evaluation of NMLLA two-particle correlations.

Appendix C: SECOND DERIVATIVE OF THE SPECTRUM Gℓℓ AT λ = 0

The expression of the second derivative of the inclusive spectrum for a gluon jet reads

I B is the modified Bessel function of the first kind. G ℓℓ is displayed in Fig. 18 as a function of y for three values of ℓ. We notice that it is negative at small values of y and gets positive at larger y.

Appendix E: EXACT VERSUS APPROXIMATE NMLLA COLOR CURRENTS

Using (26) yields the following exact (in the sense that it takes into account all subleading corrections coming from ( 26)) expression for the color currents

+ a 1 a 1 -ã1 + ã2 -a 2 ψ 2 g,ℓ + ψ g,ℓℓ (ℓ, y)

where i = g, q, and u q i is given in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]. The approximate expression, used in the core of the paper, only keeps (C F /N c ) G in [START_REF] Dremin | Jet calculus problems of the perturbative quantum chromodynamics[END_REF].

On Fig. 19, the exact and approximate color currents are shown to be in practice indistinguishable, which justifies the use of the latter in the core of the paper. We also performed the following approximation to evaluate the color current:

In fact, (a 1 -ã1 ) ≈ 0.18 and

). These approximations were also made and numerically tested in [START_REF] Pérez Ramos | MLLA inclusive hadronic distributions inside one jet at high energy colliders[END_REF][START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF] (see, for example, Fig. 20 in [START_REF] Ramos | Two particle correlations inside one jet at Modified Leading Logarithmic Approximation of Quantum Chromodynamics; I: Exact solution of the evolution equations at small x[END_REF]).

Appendix F: EXPRESSION OF δ C NMLLA-MLLA

A0

A straightforward calculation that follows from (41) gives respectively, for the gluon and quark jets, the following results:

+ 356.711 -0.0369486 -

The approximations we have made in (58) needs further comments; one has indeed to replace Q and Q (2) by the full MLLA expressions

respectively. b 1 is defined in (62) and

Appendix I: LOGARITHMIC DERIVATIVES OF THE INCLUSIVE SPECTRUM

The logarithmic derivatives of G, that are used in Section V C, read

The functions introduced in (64) and (73) are the following:

f 1 (ℓ 1 , ℓ 2 ; η) = (ψ 1,ℓ + ψ 2,ℓ + χ ℓ ) 2 + ψ 1,ℓℓ + ψ 2,ℓℓ -β 0 γ 2 0 (ψ 1,ℓ + ψ 2,ℓ + χ ℓ ) + χ ℓℓ = O(γ 2 0 ), f 2 (ℓ 1 , ℓ 2 ; η) = (ψ 1,ℓ + ψ 2,ℓ ) 2 + ψ 1,ℓℓ + ψ 2,ℓℓ -β 0 γ 2 0 (ψ 1,ℓ + ψ 2,ℓ ) = O(γ 2 0 ), f 3 (ℓ 1 , ℓ 2 ; η) = 2ψ 1,ℓ ψ 2,ℓ + 2χ ℓ (ψ 1,ℓ + ψ 2,ℓ ) + χ ℓℓ + χ 2 ℓ -β 0 γ 2 0 χ ℓ = O(γ 2 0 ), f 4 (ℓ 1 , ℓ 2 ; η) = ψ 2 i,ℓ + ψ i,ℓℓ -β 0 γ 2 0 ψ i,ℓ = O(γ 2 0 ).

(I1)