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Abstract— It is widely admitted that most of chaotic cryptosystems
belong to the class of symmetric key ciphers but few of them have really
been compared with standard existing ones. As a consequence, their
design often resorts to empirical approaches with trial-and-error settings.
This paper must be considered as an attempt to handle such a situation.
An in-depth comparison between a fully-fledged self-synchronous stream
cipher called Mosquito and one of the most promising chaotic cryp-
tosystem, namely hybrid message-embedding, is carried out. It is given
a correspondence between the design parameters involved in the two
respective schemes, in particular the size of the secret key, the required
memory, the dimension of the system. Furthermore, we put a special
emphasis on the link between the notion of relative degree of a dynamical
system and the concept of pipelining.

I. I

When looking into conventional cryptography (see the book of
Menezes [6] for a pretty good account), it turns out that symmetric-
key ciphers are extensively used in secure transmission requiring
high throughput. Among a variety of symmetric-key ciphers, the self-
synchronous stream ciphers (denoted SSSC for short) are of special
interest. They admit at the transmitter side, the recursion

{

zk = fK(ck−M , . . . , ck−1)
ck = e(zk,mk)

(1)

where fK is a function parameterized by the secret (also called
static) key K. fK is called the key stream generator function. It
depends on a fixed number of past ciphertexts ck−i (i = 1, . . . ,M)
of ck and delivers zk . The sequence {zk} is called the key stream
and zk is named the running key because, as opposed to the static
key K, it is time-varying. The encryption function e, which depends
on zk , converts the plaintext mk into the ciphertext ck. SSSCs are
interesting because they get inherent ability to self-synchronizing
([6]). Thereby the communication does not require any additional
synchronization flags or interactive protocols for recovering lost
synchronization induced for instance by bit slips.

On the other hand, it is well admitted that performances of many
chaotic cryptosystems in terms of speed and security are still rather
poor and serious cryptanalytic works have revealed strong weakness.
The reader may refer to [1] for getting acquainted with some relevant
attacks and the related references. One of the main reasons stems
from the fact that not enough attention has been payed on the basic
rules borrowed from standard cryptography a chaos-based encryption
scheme should obey. Furthermore, even though most of chaotic
cryptosystems belong to the class of symmetric key ciphers, few of
them have really been compared with standard existing ones. As a
result, their design often resorts to empirical approaches with trial-
and-error settings. A first connection has been recently brought out in
[7] between the Hybrid Message-Embedded (HME for short) chaotic
algorithms and the conventional SSSCs. Although the principle of the
HME is well-known, let us briefly recalled it. At the transmitter part,
the plaintext mk is injected (or, as it is also usually said, embedded)

in a chaotic dynamics fθ after a pre-ciphering via a function νe. The
resulting cipher turns into a non autonomous system of the form:



















xk+1 = fθ(xk, uk)
yk = h′

θ
(xk)

uk = νe(xk,mk)
(2)

The main result stated in [7] is that the HME is equivalent
to a conventional self-synchronizing stream cipher under flatness
conditions. The notion of flatness will be recalled later on in
this paper. Nevertheless, the work was restricted to a structural
comparison without any quantitative consideration like, to mention a
few, the size of the memory, the size of the secret key, the dimension
of the system. Such quantities will be called hereafter the design
parameters.

The objective of the present paper is to refine the comparison by
investigating a fully-fledged hardware-oriented SSSC called Mosquito
[2]. Then is explained how such a connection enables to derive some
basic rules leading to relevant design parameters settings. Mosquito
is a very interesting SSSC scheme for comparative studies. Indeed, it
has been elected through the eSTREAM project1 which confers great
credibility on it and thereby can be considered as an algorithm of
reference. This paper is organized as follows. Section II sums up the
essential of Mosquito. Section III brings out the connection between
the design parameters of the Hybrid Message Embedding and those
of Mosquito with special emphasis on the link between the notion of
relative degree borrowed from the control theory and the concept of
pipelining often involved in conventional cryptography. An example
illustratingis then provided.

II. M

A. Maurer’s design principle

The conventional SSSC Mosquito highly relies on a former design
principle first suggested by Maurer [5]. This design is intended to
guarantee complex and so secure key stream generator function fK .
The basic idea consists in replacing standard feedback shift registers
by finite state automata. The encryption part of an SSSC is thereby
specified as follows:



















qk+1 = gK (qk, ck)
zk = hK (qk)
ck = zk ⊕mk

(3)

where ⊕ denotes the bitwise XOR operator and acts as the
encryption function e. qk is the internal state of the automaton. Then
a method which guarantees that the finite state automaton has a
finite input memory M is provided. If so, (3) can be rewritten into
the canonical form (1). Actually, Mosquito partially follows such a
principle with some additional refinements.

1Available online at http://www.ecrypt.eu.org/stream/
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Fig. 1. The arrangement of 128 memory cells [q( j)
k ]i and the hardware

architecture of Eq. (4).

B. State transition function of Mosquito

Similarly to the Maurer’s principle, the state transition function
gK of Mosquito gets the form of a finite state automaton with
internal state qk. The dimension of qk is M = 96. The static key
K consists of 96 bits [K]0 . . . [K]95. An important point is that the
components q( j)

k ( j = 1, . . . , 96) may involve more than one bit.
The so-called expansion obeys the following rule: no expansion for
j = 1, . . . , 88, expansion with 2 bits for j = 89, . . . , 92, with 4 bits
for j = 93, . . . , 94, with 8 bits for j = 95 and with 16 bits for j = 96.
As a result, the memory assigned to qk involves 128 bit cells. Let
[q( j)

k ]i denote the ith bit of q( j)
k . The recursion to which each bit cell

[q( j)
k ]i obeys reads:

[q( j)
k ]i = [q( j−1)

k−1 ]i ⊕ [K] j−1 ⊕ (([q(v)
k−1]i)([q

(w)
k−1]i + 1) + 1) (4)

where 0 ≤ v,w < j − 1, 1 ≤ j ≤ 96. The arrangement of the memory
as well as the combinatorial circuit associated to (4) are depicted on
Fig. 1. According to the pair (i, j) assigned to a bit cell [q( j)

k ]i, the
value of v and w may differ and obeys the rule of Table I.

When omitting the bit index i and taking into account that [q(0)
k−1]0 =

ck−1, (4) can be rewritten, for 1 ≤ j ≤ 96:

q( j)
k = q( j−1)

k−1 + EK (q( j−2)
k−1 , . . . , q

(1)
k−1, ck−1) (5)

with EK a non-linear function parameterized by K. Eq. (5) de-
scribes the state-transition function gK of a finite state automaton.
Besides, in order to guarantee that such automaton has a finite input
memory, the state transition function gK is chosen to be “triangular”
in the sense that the jth component of qk only depends on the previous
components l < j at time k − 1. “Triangularity” confers the property
that after a finite transient time of length M, qk does no longer depend
on the initial condition q0. Therefore, there exists a function lK such
that, for k ≥ M:

qk = lK(ck−M , . . . , ck−1) (6)

C. Output function of Mosquito

Unlike the Maurer’s principle, Mosquito pays a great attention
on the output function hK . Its design is carried out through the
concept of pipelining. A “pipeline” is somewhat similar to the round
transformation in a block cipher. It involves some functions assigned
to subsequent “stages”. However, unlike block ciphers, “pipeline”
functions are not necessarily permutations. Therefore, the dimension
of the pipeline input can be different from the dimension of the
pipeline output.

For Mosquito, the “pipeline” involves 9 stages. Every stage imple-
ments a function si (i = 0, . . . , 8) in a form of a combinatorial circuit.
Let us notice that none of the functions si depend explicitly on the
static key K. The result of the function si is stored in a variable a<i>

(a register in the hardware implementation). The function s0 of the
first stage merely initializes the variable a<0> as follows:

(a<0>)k+1 = qk

where (a<i>)k+1 denote the variable a<i> at time instant k + 1.
Consequently, the input of the pipeline corresponds to the 128 bits of
the internal state qk. The results of the functions si, for i = 1, . . . , 7
(not detailed here) are stored in the variables a<i> of dimension 53
for i = 1, . . . , 5, dimension 12 for i = 6 and dimension 3 for i = 7.
Finally, the last function s8 is a mere addition between a(0)

<7>, a(1)
<7> and

a(2)
<7>. As a consequence, the output function h for Mosquito results

from bs compositions and reads:

zk+bs = s8(s7(. . . (s0(qk))) = h(qk) (7)

bs is the cipher function delay due to the subsequent operations
in the “pipeline” and bs = 9.

Finally, the overall description of Mosquito reads:



















qk+1 = gK (qk, ck)
zk+bs = h(qk)
ck+bs = zk+bs ⊕mk

(8)

Besides, combining (6) and (7) yields

zk+bs = h(lK (ck−M , . . . , ck−1))
= f ′K (ck−M , . . . , ck−1)

(9)

As a result, Mosquito can be equivalently described in the canon-
ical form :

{

zk+bs = f ′K(ck−M , . . . , ck−1)
ck+bs = zk+bs ⊕mk = e(zk+bs ,mk)

(10)

with f ′K acting as the key stream generator function. The only, but
major, distinction between (8) and (3) or between (10) and (1), lies
in that the plaintext and the ciphertext are delayed by bs time-steps
because of the “pipelining” structure. On the other hand, the output
function can be thereby significantly complexified. Figure 2 depicts
the block diagram of Mosquito.

III. C 

A. The connection between the design parameters

We must first recall two important definitions.

Definition 1: The relative degree of a dynamical system with
respect to its input mk is the required number r of iterations of the
output yk so as yk+r depends on mk in an explicit way.
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In particular for (2), a relative degree r > 0 means that after
iterating r times the state vector xk, its output yk+r will read

yk+r = h′θ( f r
θ (xk, νe(xk,mk))) = Hθ(xk,mk) (11)

with f i
θ
(xk, uk) = xk when i = 0

= fθ( f i−1
θ

(xk, uk), uk+i−1) ∀i ≥ 1.

and where mk appears explicitly into the expression (11).

Definition 2: ([3]) A dynamical system is said to be flat if there
exists a set of independent variables referred to as flat outputs,
such that all system variables can be expressed as a function of the
flat output and a finite number of its backward and/or forward iterates.

In particular for (2), under flatness condition, there exists a function
Fθ such that its state vector xk can be rewritten as:

xk = Fθ(yk−K(r), . . . , yk−K ′(r)) (12)

where K(r) and K ′(r) are Z-valued integers which may depend
on the relative degree r of the system.

Finally, if the Hybrid Message-Embedded cryptosystem (2) is flat
and has a relative degree r > 0, it can be described into the form:

{

xk = Fθ(yk−K(r), . . . , yk−K ′(r))
yk+r = Hθ(xk,mk)

(13)

Identifying (13) with (10) leads to the following proposition:

Proposition 1: If the Hybrid Message Embedded scheme (2) is flat
and has a relative degree r > 0, it is equivalent to a pipelined SSSC
with the correspondence

• Secret key θ ≡ K
• Key stream generator function Fθ ≡ f ′K
• Encryption function Hθ ≡ e
• Running key x ≡ z
• Ciphertext y ≡ c
• Number of past ciphertexts |K ′(r) −K(r) + 1| ≡ M
• Cipher function delay r ≡ bs

where ≡ stands for “plays the role of”. A central and interesting
conclusion is that a flat dynamical system with relative degree r > 0
acts as pipelined encryption scheme but the pipeline is actually
virtual. Let us notice that most often, |K ′(r) − K(r) + 1| = n no
matter r is.

Besides, it is worth comparing the memory sizes which are
respectively involved in Mosquito and in the HME. For Mosquito,
128 bit cells are needed to store qk and 53 · 5 + 12 + 3 + 1 = 281
bits cells are needed to store the variables a<i> of the nine stages of
the pipeline. As a result, it can be claimed that Mosquito requires
Md = 128 + 281 = 409 bit cells for the dynamical variables. As for
the static key K, Md = 96 bit cells are required. For the HME, the
following proposition holds.

Proposition 2: Assuming that the components of xk are m bits
words and that dim(xk) = n, the memory size for the dynamical
variables fulfills

M′d = n ·m bits (14)

Assuming that the components θ(i) of the static key parameter vector
θ are encoded with nm bits and that dim(θ) = nθ, the memory size
for the static key fulfills

M′s = nθ · nm bits (15)

It is worth stressing that for the HME, the memory requirement
for the dynamical variables is independent of r since the pipeline is
“virtual”. Actually, the memory size is only related to xk.

B. Simulation Example

We choose a basic example in order to clearly illustrate, first, the
two major notion of flatness and relative degree for the HME and
secondly, the correspondences between the HME and the standard
SSSC Mosquito design parameters. To this end, we resort to a
dynamical system with low dimension and with basic nonlinearities,
namely congruential operations and dimension n = 3



















xk+1 = Axk + Buk

yk = Cxk + Duk

uk = νe(xk,mk)
(16)

The operations are performed modulo 256. The entries of the
matrices A, B, C and D are integers encoded with nm = 8 bits and
so range between 0 and 255. The supposed secret static key is the
vector θ = [38 7 4] which actually corresponds to the first column
of A written in a companion form and nθ = 3. The components of
xk are also 8-bit words ranging between 0 and 255, that is m = 8.
Numerically, the matrices read

A =





















38 1 0
7 0 1
4 0 0





















, B =





















1
0
0





















,

C =
[

1 0 0
]

, D = 0.

The function νe is chosen to be a bitwise XOR between the compo-
nents of xk denoted x(i)

k and the plaintext mk:

uk = x(1)
k ⊕ x(2)

k ⊕ x(3)
k ⊕mk.

x(i)
k and mk are meant here to be the corresponding 8-bit

representation.

Let us first focus on the relative degree. It is recalled (from [4] for
instance) that, for linear systems written in a state space form, the



relative degree is 0 if D , 0 or corresponds to the smallest integer r
such that CAr−1B is different from 0 if D = 0. The same definition
still holds for linear congruential systems. Here, since D = 0 and
CB = 1, the relative degree of the system is r = 1. The relative
degree r of the system being 1, we must compute yk+1.

yk+1 = CAxk +CBνe(xk,mk)
= 38x(1)

k + x(2)
k + x(1)

k ⊕ x(2)
k ⊕ x(3)

k ⊕mk
(17)

We now focus on flatness. After some rather basic manipulations,
xk can be expressed into the form (12) with Fθ obeying























x(1)
k = yk

x(2)
k = 7yk−1 + 4yk−2

x(3)
k = 4yk−1

(18)

Equation (18) clearly corroborates that the system is flat. Besides, it
provides the actual values K ′(1) = 0, K(1) = 2.

We are now in position of stating that the system (16) is equivalent
to an SSSC with key stream generator Fθ corresponding to Eq. (18),
encryption function Hθ corresponding to Eq. (17), running key x,
ciphertext y, secret static key θ = [38 7 4], number of past ciphertexts
|K ′(1) − K(1) + 1| = 3, cipher function delay r = 1. (16) operates
as it would get a pipeline with one stage but the pipeline is actually
virtual.

The original image to be encrypted is the well-known Lena picture.
Figure 3 depicts respectively the results of the encrypted and the
decrypted image through the HME cryptosystem while Figure 4
depicts respectively the results of the encrypted and the decrypted
image through Mosquito.

Fig. 3. Left: the encrypted image by the Hybrid Message Embedding.
Right: the decrypted image by the Hybrid Message Embedding.

At first glance, both algorithms perform in a similar way. However,
we should not content with this mere investigation which cannot
really reveal some underlying weakness. Actually, the security of a
chaotic cryptosystem lies both on a relevant setting of the design
parameters and on a suitable choice of the state transition and output
functions. Based on the previous results, we show throughout this
illustrative example how the first requirement can be fulfilled for
the HME. Indeed, the memory size of Mosquito is Md = 409 for
the dynamical variables, Ms = 96 for the static key and the cipher
function delay (related to the size of the pipeline) is bs = 9. Those
parameters can be viewed as some reference values. For the HME
considered in this example, the memory size for dynamical variables
is M′d = n ·m = 3 · 8 = 24 while the memory size for the static key is
M′s = nθ · nm = 3 · 8 = 24 bit cells. When comparing with Mosquito,
by virtue of Proposition 1 and 2, it can be stressed that the design
parameters of the HME (16) are not actually appropriate. But even
more is true, Proposition 1 and 2 provide a guidance for a relevant
setting even though we must have in mind that the choice of the
chaotic map will also deserve attention. If we give importance to the
size of the dynamical memory, it is reasonable to set M′d = Md = 409

and M′s = Ms = 96. Thus, according to (14) and (15), the dimension
n of the HME should verify n = Md/m ≈ 51, the number of key
parameters should be nθ = Ms/nm = 12. If we give also importance
to the number of past ciphertexts M, since |K ′(r)−K(r)+ 1| = n, as
long as M′d = Md = 409 and M′s = Ms = 96, we should set n = 96
and so m = M′d/n ≈ 4. Finally, if we give importance to the pipeline
size, the relative degree should be r = bs = 9. Strict equalities may
certainly be relaxed but the values should lie on close ranges.

Fig. 4. Left: the encrypted image by Mosquito. Right: the decrypted image
by the Mosquito.

IV. C

In this paper, an in-depth comparison between a fully-fledged self-
synchronous stream cipher called Mosquito and one of the most
promising chaotic cryptosystem, namely hybrid message-embedding,
has been carried out. The work enables to highlight the correspon-
dence between the design parameters involved in the two respective
schemes as the dimension of the system, the size of the secret key,
of the running key, of the pipeline as well as the required memory.
We expect that such parallelism, considering that Mosquito is an
algorithm of reference, may provide some relevant information for
setting the design parameters of HME chaotic cryptosystems in a way
which makes really sense in practice and that should render them
competitive. Henceforth we can expect that HME ciphers may be
able to provide the same performances in terms of security or speed
as any conventional self-synchronizing stream ciphers. As a matter of
fact, not only those performances rest on the design parameters but
also on a suitable choice of the chaotic functions. The present paper
enables to guarantee the first requirement, the second one deserves
obviously further investigation and should constitute a challenging
task.
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