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Boundary stabilization of elastodynamic systems.

Part I: Rellich-type relations for a problem in elasticity

involving singularities.

Brossard, R.∗, Lohéac, J.-P.†.

Abstract. For the Lamé’s system, mixed boundary conditions generate singularities in the solution,
mainly when the boundary of the domain is connected. We here prove Rellich relations involving these
singularities.
These relations are useful in the problem of boundary stabilization of the elastodynamic system when
using the multipliers method. This problem is studied in the second part [3].

Résumé. Pour le système de Lamé, des conditions au bord mixtes génèrent des singularités dans la
solution, en particulier lorsque la frontière du domaine est connexe. Nous prouvons ici des relations de
Rellich, en tenant compte de ces singularités.
Ces relations sont utiles pour obtenir la stabilisation frontière du système élastodynamique, en utilisant
la méthode des multiplicateurs. Ce problème est étudié dans la deuxième partie [3].

Introduction

In this work, we present a detailed proof of a result which has been announced in [2] and some extension
of this result.
Let Ω ⊂ R

n be a bounded connected open set such that its boundary satisfies

∂Ω = ∂ΩD ∪ ∂ΩN , with







∂ΩD ∩ ∂ΩN = ∅,
meas(∂ΩD) 6= 0,
meas(∂ΩN ) 6= 0.

(1)

We denote the boundary interface by Γ = ∂ΩD ∩ ∂ΩN .
At a given x ∈ ∂Ω, we can consider ν(x) the normal unit vector pointing outward of Ω. For a regular
vector field v, we define the strain tensor and the stress tensor by

ǫij(v) =
1

2
(∂ivj + ∂jvi) , σ(v) = 2µ ǫ(v) + λ div (v) In ,

where λ and µ are the Lamé’s coefficients and In is the identity matrix of R
n.

We introduce following Sobolev spaces: L
2(Ω) = (L2(Ω))n, H

s(Ω) = (Hs(Ω))n, for every s > 0, and
H

1
D(Ω) = {v ∈ H

1(Ω)/v = 0 , on ∂ΩD}.
We here consider the following mixed boundary problem:







−div (σ(u)) = f , in Ω ,
u = g , on ∂ΩD ,
σ(u)ν = h , on ∂ΩN ,

(2)
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2 Rellich type relations

where f ∈ L
2(Ω), g ∈ H

3/2(∂ΩD) and h ∈ H
1/2(∂ΩN ).

It is well-known that this problem admits a unique solution in H
1(Ω).

Furthermore, singularities are generated in the solution when the boundary interface Γ is non-empty.
These singularities are described in [4, 9, 6] in the bi-dimensional case. Similar situations appear in
Laplace problems and have been addressed by many authors (see for example [5, 1]).
We prove here integral relations for problem (2), of the type of those introduced in [11] by Rellich.
For a given point x0 in R

n, we denote by m the following function: m(x) = x − x0.
For two vector fields, v1 and v2, let us define

Θ(v1,v2) = 2(σ(v1)ν)·((m·∇)v2) − (m·ν) (σ(v1) :ǫ(v2)) . (3)

If the solution of problem (2) is regular enough (for example H
2, then by means of two successive Green’s

formulæ, we obtain the following Rellich relation

2

∫

Ω

div(σ(u))·((m·∇)u) dx = (n− 2)

∫

Ω

σ(u) :ǫ(u) dx +

∫

∂Ω

Θ(u,u) dγ .

The aim of this paper is to generalize such a relation. It is organized as follows.

• In Section 1, we study the n-dimensional case when the interface is empty. In this case, the above
Rellich relation holds (Theorem 1.1).

• In Section 2, we study the case of a bi-dimensional polygonal domain. Here, some additional terms
can appear in the Rellich relation (Theorem 2.1.

• In Section 3, we generalize the previous result in the case of a smooth bi-dimensional domain
(Theorem 3.1): in this case additional punctual terms appear.

• Finally, in Section 4, we study the case of a smooth n-dimensional domain. Here the additional
term is an integral term along the interface Γ (Theorem 4.1).

In three last sections, we need to analyze the local structure of the solution of mixed problem (2) in a
neighborhood of the interface Γ. This is done thanks to results of previous works by P. Grisvard [4, 5, 6]
and B. Mérouani [9].
We emphasize that these Rellich relations are useful for proving boundary stabilization results for the
elastodynamic system by using the multiplier method as well as in [5, 7, 1]. This work is developed in
the second part.

1 The case of a n-dimensional domain without interface

In this section, we assume (1) and that ∂ΩN and ∂ΩD are defined by means of above function m,

∂ΩN = {x ∈ ∂Ω /m(x)·ν(x) > 0} , ∂ΩD = {x ∈ ∂Ω /m(x)·ν(x) < 0} , (4)

so that we get (see Figure 1)

Γ = ∅ . (5)

We obtain the following Rellich-type relation.

Theorem 1.1 — Let Ω ⊂ R
n be a bounded connected open set, where n ≥ 2, such that its boundary is

of class C2 and satisfies (1) and (5). Let u ∈ H
1(Ω) be the solution of problem (2) with

f ∈ L
2(Ω) , g ∈ H

3/2(∂ΩD) , h ∈ H
1/2(∂ΩN ) .

Then Θ(u,u) (see (3)) belongs to L1(∂Ω) and

2

∫

Ω

div(σ(u))·((m·∇)u) dx = (n− 2)

∫

Ω

σ(u) :ǫ(u) dx +

∫

∂Ω

Θ(u,u) dγ.
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x0

∂ΩN

Ω

∂ΩD

Figure 1: an example of a domain Ω without interface.

Proof. Our proof is composed of two steps: first we prove a hidden regularity result, secondly we apply
Green’s formula.
• First step. Let us prove that u ∈ H

2(Ω).
• Interior regularity. For every open subset V such that V ⊂ Ω, multiplying by a cut-off function leads
us to the following problem

−div(σ̃(ũ)) = f , in R
n .

We know that for this problem, f ∈ L
2(Rn) implies: ũ ∈ H

2(Rn). Hence we get: u ∈ H
2(V).

• Boundary regularity. Let x be a point of ∂ΩD. We introduce a neighborhood V of x in R
n such that

V ∩ ∂Ω = V ∩ ∂ΩD. Multiplying by a cut-off function and changing the coordinates leads us to some
problem in the following form

{

−div(σ̃(ũ)) = f̄ , in R
n
+ ,

ũ = ḡ , on R
n−1 × {0} ,

where R
n
+ = {(x1, . . . , xn) ∈ R

n / xn > 0}, f̄ ∈ L
2(Rn

+) and ḡ ∈ H
3/2(Rn−1).

Using a trace result, we can build Ũ ∈ H
2(Rn

+) such that Ũ = ḡ, on R
n−1 × {0}.

We write f̃ = div(σ̃(Ũ)) − div(σ̃(ũ)). f̃ ∈ L
2(Rn

+) and U = ũ − Ũ satisfies
{

−div(σ̃(U)) = f̃ , in R
n
+ ,

U = 0 , on R
n−1 × {0} .

Using the differential quotients method, we prove that ũ ∈ H
2(Rn

+). Hence we get: u ∈ H
2(Ω ∩ V).

For a point x of ∂ΩN , a similar method leads to: u is H
2 in some neighborhood of x.

Finally, since Ω is compact, we can conclude that u belongs to H
2(Ω).

• Second step. Green’s formulæ.
We may now apply Green’s formula a first time,

2

∫

Ω

div(σ(u))·((m·∇)u) dx = 2

∫

∂Ω

(σ(u)ν)·((m·∇)u) dγ − 2

∫

Ω

σ(u) :∇((m·∇)u) dx

= 2

∫

∂Ω

(σ(u)ν)·((m·∇)u) dγ − 2

∫

Ω

σ(u) :ǫ(u) dx −
∫

Ω

∇(σ(u) :ǫ(u))·m dx ,

and a second time,

2

∫

Ω

div(σ(u))·((m·∇)u) dx = 2

∫

∂Ω

(σ(u)ν)·((m·∇)u) dγ − 2

∫

Ω

σ(u) :ǫ(u) dx

−
∫

∂Ω

(m·ν) (σ(u) :ǫ(u)) dγ + n

∫

Ω

σ(u) :ǫ(u) dx .

Hence, we get the required results. �
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2 The case of a bi-dimensional polygonal domain

We here study the case of a convex polygonal domain Ω ⊂ R
2. We assume that its boundary ∂Ω satisfies

(1) and furthermore, the interface Γ is composed of two points,

Γ = {s1, s2} , (6)

These points s1 and s2 will be considered as two vertices of ∂Ω, (see Figure 2).

ω2

x0

∂ΩN

ν2

τ 2

∂ΩD

s2

Ω

s1

ω1

Figure 2: a polygonal domain Ω with a non-empty interface Γ = {s1, s2}.

We assume moreover that there exists x0 ∈ R
2 such that

m·ν ≥ 0 , on ∂ΩN , and m·ν ≤ 0 , on ∂ΩD . (7)

Let us recall that changing boundary conditions generates singularities in the solution of our problem.
We will denote by c(s) the coefficient of the singularity associated to point s.
At each point si, we define ω(si) the angle of Ω. If ω(si) = π, we denote by τ (si) the unit tangent vector
to ∂Ω pointing toward ∂ΩD, (see Figure 2). Let us observe that condition (7) leads to

ω(si) = π =⇒ m(si)·ν(si) = 0 . (8)

Let us define

Υ = 8
(2µ+ λ)(3µ+ λ)

πµ

(

π2 + ln2

(

3µ+ λ

µ+ λ

))

.

We here obtain a Rellich-type relation in the following form:

Theorem 2.1 — Let Ω ⊂ R
2 be a bounded convex polygonal open set such that its boundary satisfies

(1), (6) and (8). Let u ∈ H
1(Ω) be the solution of problem (2) with

f ∈ L
2(Ω) , g ∈ H

3/2(∂ΩD) , h ∈ H
1/2(∂ΩN ) .

Then Θ(u,u) belongs to L1(∂Ω) and

2

∫

Ω

div(σ(u))·((m·∇)u) dx =

∫

∂Ω

Θ(u,u) dγ + Υ
∑

s∈{s1,s2}
ω(s)=π

c(s)2(m(s)·τ (s)) ,

where c(s) is the singularity coefficient of u at point s.
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We emphasize that in above Rellich relation, singular term c(s)2(m(s)·τ (s)) appears only if ω(s) = π.
In order to prove this Theorem, we use results of P. Grisvard and B. Merouani [4, 9, 6] and we proceed
as well as in [5].
Proof. As well as for Theorem 1.1, we can prove that for every open set V such that V ⊂ Ω, u ∈ H

2(V).
Similarly, for every x ∈ ∂Ω \ Γ such that x

¯
is not a vertex, there exists a neighborhood V of x such that

u ∈ H
2(V ∩ Ω).

For a vertex s̃ ∈ ∂Ω \ Γ, we use [4, 9, 6] to prove that there exists a neighborhood V of s̃ such that
u ∈ H

2(V ∩ Ω).
Now consider s ∈ Γ. Let γ0 and γ1 be the adjacent edges to s. Using a cut-off function, we can suppose that
u vanishes outside a disk D(s, δ). We can suppose that δ is small enough, so that D(s, δ)∩ ∂Ω ⊂ γ0 ∪ γ1.
We take some ε > 0 and define (see Figure 2)

Hε = {(r, θ) ∈ (ε,+∞) × (0, ω)} , Γ̃ε = {(ε, θ) / θ ∈ (0, ω)} ,

∂HDε = {(r, 0) / r > ε} , ∂HNε = {(r, ω) / r > ε} ,

so that ∂Hε = ∂HDε ∪ ∂HNε ∪ Γ̃ε.

ω
ε

O

Hε

Γ̃ε

∂HDε

∂HNε

Figure 3: an example of set Hε for ω < π.

Then u ∈ H
2(Hε) and Theorem 1.1 gives

2

∫

Hε

div(σ(u))·((m·∇)u) dx =

∫

∂Hε

Θ(u,u) dγ. (9)

Using Lebesgue’s Theorem, we easily get
∫

Hε

div(σ(u))·((m·∇)u) dx −−−→
ε→0

∫

H

div(σ(u))·((m·∇)u) dx .

We now consider the convergence of the right-hand side of (9). Projecting method and changing coordi-
nates leads us to consider the following problem







−div(σ(ũ)) = f̃ , in H ,
ũ = 0 , on ∂HD ,
σ(ũ)ν = bzero , on ∂HN ,

(10)

where H = {(r, θ) ∈ R
∗
+ × (0, ω)}, ∂HD = {(r, 0) / r > 0}, ∂HN = {(r, ω) / r > 0}, in polar coordinates,

and where f̃ ∈ L
2(H).

Hence, we can write u = U + ũ where U ∈ H
2(H). We use the structure of the solution of (10) given in

[4, 9, 6] and we now consider two cases.

2.1 First case: ω < π

Let us denote by ν the Poisson’s coefficient of the system, i.e. ν =
1

2

λ

λ+ µ
.

Following [4, 9, 6], we have to consider this equation in α,

sin2(αω) =
4(1 − ν)2 − α2 sin2 ω

3 − 4ν
. (11)
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Let (αi)i=1,...,K be the sequence of complex roots of (11) such that ℜα ∈ (0, 1]. From [4, 9, 6], we get

∃ũR ∈ H
2(H) / ∀i ∈ [1,K] , ∃(v1

i ,v
2
i ) ∈ (C∞([0, ω],C))2 : ũ = ũR +

K
∑

i=1

ℜ[rαi(v1
i (θ) + ln(r)v2

i (θ))].

Writing uR = U + ũR, we get

u = uR +

K
∑

i=1

ℜ[rαi(v1
i (θ) + ln(r)v2

i (θ))]. (12)

The main point of our proof lies in the following Lemma which will be proved at the end of this section.

Lemma 2.1 — ∀i ∈ [1,K], ℜαi >
1

2
.

Hence, for the Rellich-type relation, there is no corrective term. We then prove

∫

∂Hε

Θ(u,u) dγ −−−→
ε→0

∫

∂H

Θ(u,u) dγ . (13)

We know that u can be written in the form (12). Using this form, we expand the left-hand side in
(13) and we have to consider u1 and u2 two functions taken among the following ones: uR, ℜ[rαiv1

i (θ)],
ℜ[rαi ln(r)v2

i (θ)].
We have: ∃C > 0 : |Θ(u1,u2)| ≤ C|∇u1||∇u2| .
• First case: u1 = u2 = uR

In this case, we have: uR ∈ H
2(H) and we may use Lebesgue’s Theorem to get the result.

• Second case: u1 = uR and u2 = ℜ[rαiv1
i (θ)]

We have: ∃C > 0 : |∇u2| ≤ C rℜαi−1 .
Hence, ∃C > 0 : |Θ(u1,u2)| ≤ C |∇u1|rℜαi−1 .
Now, with lemma 2.1, ℜαi − 1 > −1/2. Then we may apply Lebesgue’s Theorem and get

∫

∂HDε

Θ(u1,u2) dγ −−−→
ε→0

∫

∂HD

Θ(u1,u2) dγ ,

∫

∂HNε

Θ(u1,u2) dγ −−−→
ε→0

∫

∂HN

Θ(u1,u2) dγ .

Moreover, there exists C > 0 such that

∣

∣

∣

∫

Γ̃ε

Θ(u1,u2) dγ
∣

∣

∣
= ε

∣

∣

∣

∫ ω

0

Θ(u1,u2) dθ
∣

∣

∣
≤ C εℜαi −−−→

ε→0
0 ,

since ℜαi > 1/2. Then (13) is satisfied.
Remark. We get a similar result with u2 = ℜ[rαi ln(r)v2

i (θ)]. We also get the same result when reversing
the roles of u1 and u2.
• Third case : u1 = ℜ[rαiv1

i (θ)] and u2 = ℜ[rαjv1
j (θ)]

We have: ∃C > 0 : |∇u1| ≤ C rℜαi−1 , |∇u2| ≤ C rℜαj−1 .
Then, ∃C > 0 : |Θ(u1,u2)| ≤ C rℜαi+ℜαj−2 .
Now, with Lemma 2.1, ℜαi + ℜαj − 2 > −1. Then applying Lebesgue’s Theorem, we get

∫

∂HDε

Θ(u1,u2) dγ −−−→
ε→0

∫

∂HD

Θ(u1,u2) dγ ,

∫

∂HNε

Θ(u1,u2) dγ −−−→
ε→0

∫

∂HN

Θ(u1,u2) dγ .

Moreover, there exists C > 0 such that

∣

∣

∣

∫

Γ̃ε

Θ(u1,u2) dγ
∣

∣

∣ = ε
∣

∣

∣

∫ ω

0

Θ(u1,u2) dθ
∣

∣

∣ ≤ C εℜαi+ℜαj−1 −−−→
ε→0

0 ,

since ℜαi + ℜαj − 1 > 0. Then (13) is satisfied.
Remark. We get a similar result with u1, u2 or both in the form ℜ[rαi ln(r)v2

i (θ)]. �
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Proof of Lemma 2.1

This Lemma has been proved in a different form especially in [13, 10].
Assume that a solution of (11) α = γ + iη is such that γ ∈ (0, 1/2).

We have: sin2(αω) =
1 − cos(2αω)

2
=

1

2
(1 − cos(2γω) cosh(2ηω) + i sin(2γω) sinh(2ηω)) .

Moreover,
4(1 − ν)2 − α2 sin2 ω

3 − 4ν
=

4(1 − ν)2 − (γ2 − η2 + 2iγη) sin2 ω

3 − 4ν
.

We then get







(3 − 4ν)(1 − cos(2γω) cosh(2ηω)) = 2(4(1 − ν)2 + (η2 − γ2) sin2 ω),

(3 − 4ν) sin(2γω) sinh(2ηω) = −4γη sin2 ω .
(14)

The first equation of (14) is even with respect to η, the second is odd. We conclude that, if α is a solution
of (11), then α also is.
We then assume in the following 0 < γ ≤ 1/2 and η ≥ 0. Let us rewrite the second equation of (14)

(3 − 4ν) sin(2γω) sinh(2ηω) + 4γη sin2 ω = 0 . (15)

Let us remind that 0 < ν < 1/2 and 0 < ω < π.
We then have in (15)







(3 − 4ν) sin(2γω) sinh(2ηω) ≥ 0 ,

γη sin2 ω ≥ 0 .

And






(3 − 4ν) sin(2γω) sinh(2ηω) = 0 ,

γη sin2 ω = 0 .

Hence η = 0, and the first equation of (14) gives

(3 − 4ν) cos(2γω) + 8(1 − ν)2 − (3 − 4ν) − 2γ2 sin2 ω = 0 .

Since 3 − 4ν > 0, for every γ ∈ (0, 1/2], we have

0 ≥ (3 − 4ν) cosω + 8(1 − ν)2 − (3 − 4ν) − 1

2
sin2 ω =

1

2
(cos2 ω + 2(3 − 4ν) cosω + 16ν2 − 24ν + 9

=
1

2
(cosω + (3 − 4ν))2 > 0 .

Which is impossible. �

2.2 Second case: ω = π

• Structure of the solution. Once again, we use [4, 9, 6].
In this case, equation (11) becomes

sin2(απ) =
4(1 − ν)2 − α2

3 − 4ν
. (16)

The roots of (16) such that ℜα ∈ (0, 1] are: α =
1

2
+ ik and α, with: k =

ln(3 − 4ν)

2π
.

Then the singular solution of (10) is: uS(r, θ) = ℜ (rαv(θ)).
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We need to know exactly uS . To this end, we introduce the following intermediate functions

a(θ) = ν0

[

sin
(

−3

2
θ
)

− sin
(1

2
θ
)

− 2k
(

cos
(

−3

2
θ
)

− cos
(1

2
θ
))]

exp(kθ) ,

b(θ) = ν0

[

cos
(

−3

2
θ
)

− cos
(1

2
θ
)

+ 2k
(

sin
(

−3

2
θ
)

− sin
(1

2
θ
))]

exp(kθ) ,

m(θ) = 4(ν0 + 2) sin
(1

2
θ
)

cosh(kθ) ,

n(θ) = 4(ν0 + 2) cos
(1

2
θ
)

sinh(kθ) ,

where ν0 =
λ+ µ

µ
.

We can write

uS(r, θ) =
√
r

[

cos(k ln(r))

(

a(θ) −m(θ)
b(θ) + n(θ)

)

+sin(k ln(r))

(

−b(θ) + n(θ)
a(θ) +m(θ)

)]

. (17)

Then we get: ∃!ũR ∈ H
2(H), ∃!cS ∈ R : ũ = ũR + cSuS ,

and then, if we write uR = U + ũR, we have

u = uR + cSuS . (18)

• End of the proof of Theorem 2.1 in the second case. As well as in paragraph 2.1, we use (18) and
expand Θ(u,u). Similarly, terms where uR appears vanish.
We now consider the remaining term, quadratic with respect to uS .
Since ω = π, we have (m·ν) = 0, on ∂H.
Hence, σ(uS)ν = 0, on ∂HN . Then Θ(uS ,uS) = 0, on ∂HN .
Moreover, uS = 0, on ∂HD. This implies that (m·∇)uS = (m·ν)(ν ·∇)uS .
Then Θ(uS ,uS) = (m·ν)(2(σ(uS)ν)·(ν ·∇)uS − σ(uS) :ǫ(uS)) = 0 on ∂HD.
It only remains to compute the integral on Γ̃ε.

For a given ε > 0, A technical computation gives:

∫

∂Γε

Θ(uS ,uS) dγ = Υm(0)·τ (0) +O(ε).

We then get: lim
ε→0

∫

Γ̃ε

Θ(u,u) dγ = |cS |2 lim
ε→0

∫

Γ̃ε

Θ(uS ,uS) dγ = Υ |cS |2 m(0)·τ (0).

This achieves the proof of Theorem 2.1. �

3 The case of a smooth bi-dimensional domain

We here study the case of a bounded connected domain Ω ⊂ R
2. We assume that its boundary ∂Ω is of

class C2 and satisfies (1) and (6) (In (6), s1 and s2 are two points of ∂Ω (see Figure 3).).
We assume moreover that there exists x0 ∈ R

2 such that (7) is satisfied. At each point si, we denote by
τ (si) the unit tangent vector to ∂Ω pointing toward ∂ΩD.
It can be observed that

m(s1)·ν(s1) = m(s2)·ν(s2) = 0. (19)

In this case, the Rellich-type relation can be written as follows:

Theorem 3.1 — Let Ω ⊂ R
2 be a bounded connected domain of class C2 which satisfies (1), (6) and

(19). Let u ∈ H
1(Ω) be the solution of problem (2) with

f ∈ L
2(Ω) , g ∈ H

3/2(∂ΩD) , h ∈ H
1/2(∂ΩN ) . (20)

Then Θ(u,u) belongs to L1(∂Ω) and

2

∫

Ω

div(σ(u))·((m·∇)u) dx =

∫

∂Ω

Θ(u,u) dγ + Υ
∑

s∈{s1,s2}

c(s)2(m(s)·τ (s)) ,

where c(s) is the singularity coefficient of u at s.

Once again, we need to know the structure of the studied functions.
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x0

∂ΩN

ν2

τ 2

s1

s2

∂ΩD

τ 1

ν1

Ω

Figure 4: a smooth bi-dimensional domain Ω with a non-empty interface.

3.1 The case of the semi-disk: structure of the solution

We first study the case Ω = D+(ρ), where ρ > 0 so that in polar coordinates, we may define D+(ρ) =
(0, ρ) × (0, π), ∂D+

N (ρ) = (0, ρ) × {π} and ∂D+
D(ρ) = (0, ρ) × {0} ∪ {ρ} × (0, π), (see Figure 3.1) and we

consider the problem






−div(σ(u)) = f , in D+(ρ) ,
u = 0 , on ∂D+

D(ρ) ,
σ(u)ν = 0 , on ∂D+

N (ρ) .
(21)

∂D+
N

(ρ)

D+(ρ)ρ

∂D+
D
(ρ)

Figure 5: the considered domain is a semi-disk.

We denote by ũS the function defined by (17) in the whole half-plane. Let ς be a cut-off function belonging
to C∞(R+, [0, 1]) such that supp(ς) ⊂ [0, ρ2] and ς ≡ 1 on [0, ρ1], with 0 < ρ1 < ρ2 < ρ. We can define

uS(r, θ) = ũS(r, θ)ς(r). (22)

Using results of paragraph 2.2, we get

Proposition 3.1 — Let u be the solution of problem (21) where f ∈ L
2(D+(ρ)). We have

∃!uR ∈ H
2(D+(ρ)), ∃!cS ∈ R : u = uR + cSuS ,

where uS is defined by (22).

This Proposition means that, if we define the operator Aρ by

D(Aρ) = {v ∈ H
1
D(D+(ρ)) /Aρv ∈ L

2(D+(ρ)) and σ(v)ν = 0 , on ∂D+
N (ρ)} and Aρv = −div(σ(v)) ,
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we get: D(Aρ) ⊂ H
2(D+(ρ)) ⊕ RuS .

We want now to characterize the singular coefficient cS according to f . To this end, we introduce the
following intermediate functions

ã(θ) = ν0

[

sin
(

−5

2
θ
)

− sin
(

−1

2
θ
)

+ 2k
(

cos
(

−5

2
θ
)

− cos
(

−1

2
θ
))]

exp(kθ) ,

b̃(θ) = ν0

[

cos
(

−5

2
θ
)

− cos
(

−1

2
θ
)

− 2k
(

sin
(

−5

2
θ
)

− sin
(

−1

2
θ
))]

exp(kθ) ,

m̃(θ) = 4(ν0 + 2) sin
(

−1

2
θ
)

cosh(kθ) ,

ñ(θ) = 4(ν0 + 2) cos
(

−1

2
θ
)

sinh(kθ) ,

where k and ν0 have been introduced in subsection 2.2.
We then define

Σ∗(r, θ) =
cos(k ln(r))√

r

(

ã(θ) + m̃(θ)

b̃(θ) − ñ(θ)

)

+
sin(k ln(r))√

r

(

−b̃(θ) − ñ(θ)
ã(θ) − m̃(θ)

)

.

In the distributions sense, Σ∗ is a L
2 solution of the following problem







−div(σ(u)) = 0 , in D+(ρ) ,
u = 0 , on (0, ρ) × {0} ,
σ(u)ν = 0 , on ∂D+

N (ρ) .

Let us now consider g(θ) = Σ∗(ρ, θ), for every θ ∈ (0, π). We have g ∈ C∞([0, π]). Let Ψ∗ ∈ H
1(D+(ρ))

be a weak solution of the following problem















−div(σ(u)) = 0 , in D+(ρ) ,
u = 0 , on (0, ρ) × {0} ,
u = g , on {ρ} × (0, π) ,
σ(u)ν = 0 , on ∂D+

N (ρ ).

We define S∗ = Σ∗ − Ψ∗. S∗ is then, in sense of distributions, a L
2 solution of the following problem







−div(σ(u)) = 0 , in D+(ρ) ,
u = 0 , on ∂D+

D(ρ) ,
σ(u)ν = 0 , on ∂D+

N (ρ) .

We get the following result

Proposition 3.2 — For f ∈ L
2(D+(ρ)), let u be the solution of problem (21) and let cS be the singular

coefficient of this solution. There exists κ ∈ R
∗, independent of f , such that

cS =
1

κ

∫

D+(ρ)

S∗ ·f dx .

Proof. Let (vn)n∈N ∈ H
1
D(D+(ρ))N be such that (vn) tends to S∗ in L

2(D+(ρ)).
For all n ∈ N, we have

∫

D+(ρ)

σ(uR) :ǫ(vn) dx + cS

∫

D+(ρ)

σ(uS) :ǫ(vn) dx =

∫

D+(ρ)

f ·vn dx .

Now, we have of course
∫

D+(ρ)

f ·vn dx −−−−→
n→∞

∫

D+(ρ)

f ·S∗ dx .
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Moreover,
∫

D+(ρ)

σ(uR) :ǫ(vn) dx = −
∫

D+(ρ)

div(σ(uR))·vn dx −−−−→
n→∞

−
∫

D+(ρ)

div(σ(uR))·S∗ dx = 0 ,

since uR = u − cSuS satisfies the homogeneous Neumann condition on ∂D+
N (ρ).

Then, there exists κ ∈ R such that
∫

D+(ρ)

σ(uS) :ǫ(vn) dx −−−−→
n→∞

κ .

We then get

κcS =

∫

D+(ρ)

S∗ ·f dx .

Now, κ is independent of f . Thus κ ∈ R
∗ and the Theorem is proved. �

We now want to get an estimate of the H
2-norm of the regular part according to f .

Proposition 3.3 — For f ∈ L
2(D+(ρ)), let u ∈ D(Aρ) be the solution of problem (21). Let us denote

its regular part by uR ∈ H
2(D+(ρ)).

There exists C > 0 independent of f such that

‖uR‖H2(D+(ρ)) ≤ C ‖f‖L2(D+(ρ)) .

Proof. We define L
2
R(D+(ρ)) = {f ∈ L

2(D+(ρ)) /u ∈ H
2(D+(ρ))}. Using Proposition 3.2, we may

observe that the map f 7→ cS is linear and continuous.
Let us denote by L

2
R(D+(ρ)) its kernel which is a closed linear space, and define

T : L
2
R(D+(ρ)) −→ D(Aρ) ∩ H

2(D+(ρ))
fR 7−→ uR .

T is continuous linear and one-to-one. Moreover, we have T−1(uR) = −div(σ(uR)), for every uR in
D(Aρ) ∩ H

2(D+(ρ)). We now apply the open-mapping Theorem,

∃C > 0 : ∀uR ∈ D(Aρ) ∩ H
2(D+(ρ)) , ‖div(σ(uR))‖L2

R(D+(ρ)) ≤ C ‖uR‖H1(D+(ρ)) . (23)

Consider now
T̃ : D(Aρ) ∩ H

2(D+(ρ)) −→ L
2
R(D+(ρ))

uR 7−→ −div(σ(uR)) .

T̃ is continuous, linear and one-to-one. Moreover, we can easily see that D(Aρ)∩H
2(D+(ρ)) is a Banach

space with the norm induced by H
2(D+(ρ)). Once again we apply the open-mapping Theorem,

∃C > 0 : ∀uR ∈ D(Aρ) ∩ H
2(D+(ρ)) , ‖uR‖H2(D+(ρ)) ≤ C ‖div(σ(uR))‖L2

R(D+(ρ)) . (24)

Let us consider f ∈ L
2(D+(ρ)) and u ∈ D(Aρ), the corresponding solution of (21). Let uR ∈ H

2(D+(ρ))
and cS ∈ R be such that u = uR + cSuS . Writing the variational formulation with v = uR, we get

∫

D+(ρ)

σ(uR) :ǫ(uR) dx + cS

∫

D+(ρ)

σ(uS) :ǫ(uR) dx =

∫

D+(ρ)

f ·uR dx .

Using Theorem 3.2, there exists some constant C > 0 independent of f such that |cS | ≤ C ‖f‖L2(D+(ρ)).
Then there exists C > 0 independent of f such that

∣

∣

∣
cS

∫

D+(ρ)

σ(uS) :ǫ(uR) dx
∣

∣

∣
≤ C ‖f‖L2(D+(ρ)) ‖uR‖H1(D+(ρ)) .

Moreover, we get easily the existence of c > 0 independent of f such that
∫

D+(ρ)

σ(uR) :ǫ(uR) dx ≥ c ‖uR‖2
H1(D+(ρ)) .
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At last, we have
∣

∣

∣

∫

D+(ρ)

f ·uR dx
∣

∣

∣
≤ ‖f‖L2(D+(ρ)) ‖uR‖H1(D+(ρ)) .

Then, there exists C > 0 independent of f such that

‖uR‖H1(D+(ρ)) ≤ C ‖f‖L2(D+(ρ)) . (25)

We deduce Proposition 3.3 from (23), (24) and (25). �

3.2 Structure of the solution in the general case

We now consider the case of a bounded connected domain Ω satisfying geometrical assumptions given in
the introduction of this paragraph. As well as in the case of the polygon, the solution of problem (2) will
be locally H

2 in the neighborhood of every point of Ω and of every point of the boundary, except the
points of Γ. We will then work at these points.

∂wN

∂wD

s

w

Figure 6: an example of domain induced by a neighborhood of s.

Let then s be one of the two points of the interface, and let W ⊂ R
2 be a neighborhood of s. We denote

(see Figure 3.2)

w = W ∩ Ω , ∂wN = W ∩ ∂ΩN , ∂wD = (W ∩ ∂ΩD) ∪ (∂w ∩ Ω) . (26)

Using a localization process leads us to consider the following problem






−div(σ(u)) = g , in w ,
u = 0 , on ∂wD ,
σ(u)ν = 0 , on ∂wN ,

(27)

where g ∈ L
2(w).

For this problem, we define the operator B by

D(B) = {v ∈ H
1
D(w) /Bv ∈ L

2(w) and σ(v)ν = 0 , on ∂wN} and Bv = −div(σ(v)) .

We assume that w is such that there exists a C2-diffeomorphism φ from w onto D+(ρ) for some ρ > 0,
such that

φ(s) = 0 , φ(∂wD) = ∂D+
D(ρ) , φ(∂wN ) = ∂D+

N (ρ) . (28)

Without any restriction, we suppose that s is located at origin and that x1-axis is tangent to w at this
point. Reducing w if necessary, there exists ψ ∈ C2(R,R) such that ∂Ω ∩W ⊂ {(x, ψ(x)) / x ∈ R}. Let
us consider the following function φ,

φ1(x1, x2) = x1 , φ2(x1, x2) = x2 − ψ(x1) .

Using these local coordinates, (27) can be written as follows






−div(σ̃(ũ)) = g̃ , in D+(ρ) ,
ũ = 0 , on ∂D+

D(ρ) ,
σ̃(ũ)ν = 0 , on ∂D+

N (ρ) ,
(29)
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where g̃ ∈ L
2(D+(ρ)) and where σ̃ = σ + β̃ with

β̃11(ũ) = −(2µ+ λ)ψ′(x1)∂2ũ1 ,

β̃12(ũ) = −µψ′(x1)∂2ũ2 ,

β̃21(ũ) = (2µ+ λ)ψ′(x1)
2∂2ũ1 − (2µ+ λ)ψ′(x1)∂1ũ1 − (µ+ λ)ψ′(x1)∂2ũ2 ,

β̃22(ũ) = µψ′(x1)
2∂2ũ2 − µψ′(x1)∂1ũ2 − (µ+ λ)ψ′(x1)∂2ũ1 .

(30)

As well as in [1], we consider problem (29) as a perturbation of problem (21) in order to get the following
regularity result. This result generalizes Proposition 3.1.

Proposition 3.4 — Let w be an open subset of R
2 defined in (26), there exist ρ > 0 and a C2-

diffeomorphism φ from w onto D+(ρ) such that (28) is satisfied and

D(B) ⊂ H
2(w) ⊕ R(uS ◦ φ) ,

where uS is given by (22).

Proof. We take ρ and φ as above.
Let Ãρ be the operator defined by

D(Ãρ) = {ṽ ∈ H
1
D(D+(ρ)) / Ãρṽ ∈ L

2(D+(ρ)) and σ̃(ṽ)ν = 0 , on ∂D+
N (ρ)} and Ãρṽ = −div(σ̃(ṽ)).

We need the following Lemma, which gives estimates of the perturbation.

Lemma 3.1 Let ρm be a fixed real positive number. For ρ ∈ (0, ρm) and v ∈ D(Aρ), β̃(v) belongs to
H1(D+(ρ))4 and there exists C > 0, independent of ρ, such that

∀v ∈ D(Aρ) , ‖β̃(v)‖H1(D+(ρ))4 ≤ C
√
ρ ‖v‖D(Aρ) .

This Lemma is proved at the end of this section. Let us now use it.
Consider a solution ũ of (29) belonging to D(Aρ). Using lemma 3.1, we get that β̃(ũ) belongs to
H1(D+(ρ))4. Using a classical trace result, we can build ũr ∈ H

2(D+(ρ)) such that

ũr = 0 on ∂D+
D(ρ) , σ(ũr)ν = −β̃(ũ) , on ∂D+

N (ρ)

and such that there exists C > 0, independent of ρ and ũ, so that

‖ũr‖H2(D+(ρ)) ≤ C ‖β̃(ũ)‖H1(D+(ρ))4 .

We can write problem (29) as follows,







−div(σ(ũ)) − div(β̃(ũ)) − div(σ(ũr)) = g̃ , in D+(ρ) ,
ũ = 0 , on ∂D+

D(ρ) ,
σ(ũ)ν = 0 , on ∂D+

N (ρ) .

We now define the operator Pρ by

Pρ : D(Aρ) −→ L
2(D+(ρ))

ṽ 7−→ −div(β̃(ṽ)) − div(σ(ṽr)) .

Using Lemma 3.1, we get that Pρ is continuous and that its norm is bounded by C
√
ρ, where C is

independent of ρ. Furthermore, Aρ is an isomorphism from D(Aρ) onto L
2(D+(ρ)). Hence, for ρ > 0

small enough, Ãρ = Aρ + Pρ is an isomorphism from D(Aρ) onto L
2(D+(ρ)).

Proposition 3.4 is then proved. �
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Proof of lemma 3.1

For ρ ∈ (0, ρm) and v ∈ D(Aρ), let us prove that β̃11(v) belongs to H1(D+(ρ)).
Since v ∈ D(Aρ), there exists cS ∈ R and vR ∈ H

2(D+(ρ)) such that v = vR + cSuS .
For i ∈ {1, 2}, we have

∂iβ̃11(v) = ∂iβ̃11(vR) + cS∂iβ̃11(uS) .

• The term depending on vR satisfies

∂iβ̃11(vR) = −(2µ+ λ)∂iψ
′(x1)∂2vR1 − (2µ+ λ)ψ′(x1)∂i2vR1 .

Since ψ′(0) = 0 and ρ ∈ (0, ρm), there exists M > 0 independent of ρ such that |ψ′(x1)| ≤ M ρ. Then
there exists C > 0 independent of ρ such that

‖(2µ+ λ)ψ′(x1)∂i2vR1‖L2 ≤ C ρ ‖vR‖H2 .

Thanks to Proposition 3.3, there exists C > 0 independent of ρ such that

‖(2µ+ λ)ψ′(x1)∂i2vR1‖L2 ≤ C ρ ‖v‖D(Aρ) .

On the other hand, since v and uS satisfy boundary conditions, vR satisfy them. Then ∂1vR satisfy a
Dirichlet condition on ∂D+

D(ρ). Thanks to Proposition 3.3, there exists C > 0 independent of ρ such that

‖∂1vR‖L2 ≤ C ρ ‖v‖D(Aρ) ,

since Poincaré’s constant is proportional to ρ. Moreover, σ12(vR) and σ22(vR) satisfy a Dirichlet condition
on ∂D+

N (ρ). Finally we get C > 0 independent of ρ such that

‖∂2vR‖L2 ≤ C ρ ‖v‖D(Aρ) ,

and there exists C > 0 independent of ρ such that

‖(2µ+ λ)∂iψ
′(x1)∂2vR1‖L2 ≤ C ρ ‖v‖D(Aρ) .

Hence we can write ‖∂iβ̃11(vR)‖L2 = O(ρ ‖v‖D(Aρ)).
• Let us now consider the remaining term depending on uS . Again, we have

∂iβ̃11(cSuS) = −(2µ+ λ)cS∂iψ
′(x1)∂2uS1 − (2µ+ λ)cSψ

′(x1)∂i2uS1 .

For this terms, we know uS explicitly. We then get C > 0 independent of ρ such that

‖(2µ+ λ)cS∂iψ
′(x1)∂2uS1‖L2 ≤ C

√
ρ |cS | ,

and there exists C > 0 independent of ρ such that

‖(2µ+ λ)cSψ
′(x1)∂i2uS1‖L2 ≤ C

√
ρ |cS | .

Now, using Proposition 3.2, we obtain C > 0 independent of ρ such that |cS | ≤ C ‖v‖D(Aρ).

And we can write ‖∂iβ̃11(cSuS)‖L2 = O(
√
ρ ‖v‖D(Aρ)).

Finally, we get: β̃11(v) belongs to H1(D+(ρ)), and there exists C > 0 independent of ρ such that

‖β̃11(v)‖H1(D+(ρ)) ≤ C
√
ρ ‖v‖D(Aρ) .

We proceed similarly for other coefficients β̃ij(v) and we obtain the required result. �
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3.3 Proof of the Rellich-type relation

We can now prove Theorem 3.1.
Let u ∈ H

1(Ω) be the solution of problem (2) with data satisfying (20).
Let us proceed as well as in the polygonal case. We first use trace Theorem and build ũ ∈ H

2(Ω) such
that ũ = u and σ(ũ)ν = σ(u)ν on ∂Ω.
Then U = ũ − u satisfies







−div(σ(U)) = F , in Ω ,
U = 0 , on ∂ΩD ,
σ(U)ν = 0 , on ∂ΩN ,

(31)

where F = div(σ(ũ)) − div(σ(u)) ∈ L
2(Ω).

We take ε > 0 small enough and we define

Ωε = Ω \
(

D(s1, ε) ∪D(s2, ε)
)

, Γ̃ε =
(

∂D(s1, ε) ∪ ∂D(s2, ε)
)

∩ Ω ,

∂ΩDε = ∂ΩDε \
(

D(s1, ε) ∪D(s2, ε)
)

, ∂ΩNε = ∂ΩNε \
(

D(s1, ε) ∪D(s2, ε)
)

,

so that we have ∂Ωε = ∂ΩDε ∪ ∂ΩNε ∪ Γ̃ε.
For s ∈ Γ, we apply Proposition 3.4 to U in D(s, ε) ∩ Ω. We obtain UR ∈ H

2(D(s, ε) ∩ Ω) and cS ∈ R

such that U = UR + cS(uS ◦ φ). Writing uR = UR + ũ, we get

u = uR + cS(uS ◦ φ) , in D(s, ε) ∩ Ω , with uR ∈ H
2
(

D(s, ε) ∩ Ω
)

.

Using this form, we expand Θ(u,u).
Terms containing uR are obviously integrable on ∂Ω ∩D(s, ε).
Let us consider terms depending only on uS .
Observe that on ∂Ω ∩D(s, ε), |(m·ν)| ≤ Cd(., s).
By a computation, we get that |(m·ν)σ(uS ◦ φ) :ǫ(uS ◦ φ)| is bounded on ∂Ω ∩D(s, ε).
Now, (σ(uS ◦ φ)ν)·((m·∇)uS ◦ φ) is of course integrable on ∂ΩN ∩D(s, ε), since it vanishes.
On ∂ΩD ∩D(s, ε), since uS ◦ φ = 0, we have (m·∇)uS ◦ φ = (m·ν)(ν ·∇)uS ◦ φ.
Hence, |(σ(uS ◦ φ)ν)·(m·∇)uS ◦ φ| is bounded on ∂ΩD ∩D(s, ε).
We then obtain that Θ(u,u) belongs to L

1(∂Ω ∩D(s, ε)). Hence, it belongs to L
1(∂Ω).

Now, since u ∈ H
2(Ωε), we apply twice Green’s formula and we obtain

∫

Ωε

div(σ(u))·((m·∇)u) dx =

∫

∂Ωε

Θ(u,u) dγ .

Using Lebesgue’s Theorem, we get
∫

Ωε

div(σ(u))·((m·∇)u) dx −−−→
ε→0

∫

Ω

div(σ(u))·((m·∇)u) dx ,

∫

∂Ωε\Γ̃ε

Θ(u,u) dγ −−−→
ε→0

∫

∂Ω

Θ(u,u) dγ .

For the remaining integral on Γ̃ε, we observe that
∣

∣J(φ) − I2
∣

∣ = O(ε). By a similar computation as at
the end of section 2, we get

∫

Γ̃ε

Θ(u,u) dγ −−−→
ε→0

Υ |cS |2 m(0)·τ (0) .

The Rellich-type relation is then proved. �

4 The case of a smooth n-dimensional domain

We here study the case of a bounded connected domain Ω ⊂ R
n. We assume that its boundary ∂Ω is of

class C2 and satisfies (1) . We assume furthermore that Γ is a (n − 2)-dimensional submanifold of class
C3 and there exists a neighborhood Ω′ of Γ such that ∂Ω ∩ Ω′ is a (n − 1)-submanifold of class C3, (see
Figure 4).
We assume moreover that there exists x0 ∈ R

n such that (7) is satisfied.
It can be observed that under these assumptions,

m·ν = 0 , on Γ . (32)
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ν

∂ΩD

∂ΩNΓ
τ

x0

Ω

Figure 7: a general smooth domain Ω with a non-empty interface.

At each point s of Γ, we consider Γ as a submanifold of ∂Ω of co-dimension 1 and we denote by τ (s) the
unit normal vector to Γ pointing outward of ∂ΩN .
In this case, the Rellich-type relation can be written as follows.

Theorem 4.1 — Let Ω ⊂ R
n be a bounded connected domain of class C2 which satisfies (1) and above

geometrical assumptions. We assume moreover that the boundary satisfies (32). Let u ∈ H
1(Ω) be the

solution of problem (2) with

f ∈ L
2(Ω) , g ∈ H

3/2(∂ΩD) , h ∈ H
1/2(∂ΩN ) . (33)

Then Θ(u,u) belongs to L
1(∂Ω) and there exists ζ ∈ L2(Γ), depending on local singularity coefficients of

u, such that

2

∫

Ω

div (σ(u))·(m·∇)u dx = (n− 2)

∫

Ω

σ(u) :ǫ(u) dx +

∫

∂Ω

Θ(u,u) dγ +

∫

Γ

|ζ|2 m·τ ds .

As above, we need to know the local structure u at each point of Γ.

4.1 The case of the semi-cylinder: structure of the solution

We here use notations of section 3.1. D+(ρ) is the semi-disk with radius ρ in dimension 2. For d = n− 2,
we here consider the case Ω = C+(ρ) where C+(ρ) = D+(ρ) × R

d (see Figure 4.1).

x1

x2

∂C+(ρ)D

∂C+(ρ)N

z

O
C+(ρ)

Figure 8: the considered domain is a semi-cylinder.

Coordinates of x ∈ C+(ρ) will be denoted by (x1, x2, z), where z = (z1, . . . , zd) ∈ R
d.

Let us define ∂C+
N (ρ) = ∂D+

N (ρ) × R
d and ∂C+

D(ρ) = ∂D+
D(ρ) × R

d.



Brossard, Lohéac 17

We consider the problem






−div(σ(u)) = f , in C+(ρ) ,
u = 0 , on ∂C+

D(ρ) ,
σ(u)ν = 0 , on ∂C+

N (ρ) .
(34)

Our aim is to generalize regularity results got in section 3.1.
Let ue

S ∈ (H1(D+(ρ)))2 be the singular solution defined by (22).
Let ul

S ∈ H1(D+(ρ)) be the Shamir function [12] defined in polar coordinates by

ul
S(r, θ) = ς(r)

√
r sin

(θ

2

)

,

where ς is a cut-off function belonging to C∞(R+, [0, 1]) such that supp(ς) ⊂ [0, ρ2] and ς ≡ 1 on [0, ρ1],
with 0 < ρ1 < ρ2 < ρ.
Observe that ul

S is the solution of some mixed boundary problem for Laplace equation in D+(ρ) (see for
instance [1]). It belongs to H1(D+(ρ)) \ H2(D+(ρ)). We define uS ∈ H

1(D+(ρ)) by

uS = t(ue
S , u

l
S , . . . , u

l
S) . (35)

The structure of the solution of (34) is given in the following Proposition.

Proposition 4.1 — Let u be the solution of problem (34). Then,

1. for every i in {1, . . . , d}, ∂u
∂zi

belongs to H
1(C+(ρ)),

2. there exists a unique element of L2(Rd,H2(D+(ρ)))×L
2(Rd), (uR, cS), such that u = uR +uS⊗cS,

where uS is defined by (35),

3. there exists C > 0, independent of ρ, such that

∥

∥

∥

∂u

∂zi

∥

∥

∥

H1(C+(ρ))
≤ C ‖f‖L2(C+(ρ)) , ∀i ∈ {1, . . . , d} ,

‖uR‖L2(Rd,H2(D+(ρ))) ≤ C ‖f‖L2(C+(ρ)) ,

‖cS‖L2(Rd) ≤ C ‖f‖L2(C+(ρ)) .

Proof. The first point of above Proposition and corresponding estimates can be easily obtained by using
differential quotients. Hence we only develop the proof of the second one.

Notation. In order to get a more readable proof, we will say that some non-negative real number
satisfies condition C(f) if there exists C > 0 independent of ρ such that this real number is bounded by
C ‖f‖L2(C+(ρ)).

Let us denote the solution of problem (34) by u = t(u1, . . . , un) and define

ue =

(

u1

u2

)

∈
(

H1(C+(ρ))
)2
.

Using ∆2 = ∂2
11 + ∂2

22, we rewrite (34) in the following form,

∀i ∈ {3, . . . , n} ,







−∆2ui = gi , in C+(ρ) ,
ui = 0 , on ∂C+

D(ρ) ,
∂2ui = hi , on ∂C+

N (ρ) .
(36)

With the first point, we get gi ∈ L2(C+(ρ)) and hi ∈ H1/2(C+(ρ)).
Moreover ‖gi‖L2(C+(ρ)) and ‖hi‖H1/2(C+(ρ)) satisfy the condition C(f).

Then, using [1], there exists (uRi, cSi) ∈ L2(Rd,H2(D+(ρ))) × L2(Rd) such that: ui = uRi + ul
S ⊗ cSi.

Furthermore, ‖uRi‖L2(Rd,H2(D+(ρ))) and ‖cSi‖L2(Rd) satisfy the condition C(f).
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It remains to obtain the result for ue. We denote by div2 the divergence operator in R
2. We also denote

by ǫ2(u
e) and σ2(u

e) the strain tensor and the stress tensor in dimension 2. Hence, ue satisfies






−div2(σ2(u
e)) = ge , in C+(ρ) ,

ue = 0 , on ∂C+
D(ρ) ,

σ2(u
e)ν = he , on ∂C+

N (ρ) ,
(37)

where ge ∈ (L2(C+(ρ)))2, he ∈ (H1/2(C+(ρ)))2.
Again, ‖ge‖(L2(C+(ρ)))2 and ‖he‖(H1/2(C+(ρ)))2 satisfy the condition C(f).

Using a trace result, we can build ũe ∈ (H2(C+(ρ)))2 such that ‖ũe‖(H2(C+(ρ)))2 satisfies the condition
C(f) and that Ue = ue − ũe satisfies an equation in the form (37) with he = 0.
In this equation, there are no derivative with respect to z. We then can work for a given z, and we get
that, for almost every z, Ue satisfies







−div2(σ2(U
e(., z))) = Ge(., z) , in D+(ρ) ,

Ue(., z) = 0 , on ∂D+
D(ρ) ,

σ2(U
e(., z))ν = 0 , on ∂C+

N (ρ) ,
(38)

where Ge(., z) ∈ (L2(D+(ρ)))2 and there exists C > 0 independent of ρ such that

‖Ge(., z)‖(L2(D+(ρ)))2 ≤ C ‖f(., z)‖(L2(D+(ρ)))2 .

With Propositions 3.1, 3.2 and 3.3 we can write ue(., z) = ue
R(., z) + ceS(z)ue

S where ue
R(., z) ∈

(H2(D+(ρ)))2. Furthermore, there exists C > 0 independent of ρ such that

‖ue
R(., z)‖(H2(D+(ρ)))2 ≤ C ‖f(., z)‖(L2(D+(ρ)))2 ,

and

ceS(z) =

∫

D+(ρ))

S∗(x)Ge(x, z) dx .

We easily get that ceS ∈ L2(Rd) and that ‖ceS‖L2(Rd) satisfies the condition C(f).

We also get that ue
R ∈ (L2(Rd,H2(D+(ρ))))2 and that ‖ue

R‖(L2(Rd,H2(D+(ρ))))2 satisfies the condition C(f).
We now write

uR = t(tue
R, uR3, . . . , uRn) , cS = t(ceS , c

e
S , cS3, . . . , cSn) .

and we obtain the required result. �

Remark. Proposition 4.1 may be expressed in other words.
For ρ > 0, let Bd(ρ) be the ball of R

d centered at the origin of radius ρ. We define

C̃+(ρ) = D+(ρ) ×Bd(ρ) , Γ̃(ρ) = {(0, 0)} ×Bd(ρ) ,

∂C̃+
N (ρ) = ∂D+

N (ρ) ×Bd(ρ) , ∂C̃+
D(ρ) = ∂C̃+(ρ) \ ∂C̃+

N (ρ) ,

(39)

and consider the following problem






−div(σ(u)) = f , in C̃+(ρ) ,

u = 0 , on ∂C̃+
D(ρ) ,

σ(u)ν = 0 , on ∂C̃+
N (ρ) .

(40)

Using a cut-off function, Proposition 4.1 allows us to prove that, if we define the operator Aρ by

D(Aρ) = {v ∈ H
1
D(C̃+(ρ)) /Aρv ∈ L

2(C̃+(ρ)) and σ(v)ν = 0 , on ∂C̃+
N (ρ)} , Aρv = −div(σ(v)) ,

we get: D(Aρ) ⊂ H
2(C̃+(ρ)) ⊕

(

uS ⊗ L
2(Bd(ρ))

)

.

We now can estimate of the H
2-norm of the regular part according to f .

Proposition 4.2 — For f ∈ L
2(C̃+(ρ)), let u ∈ D(Aρ) be the solution of problem (40). Its regular part,

uR ∈ H
2(C̃+(ρ)), satisfies: there exists C > 0 independent of f such that

‖uR‖H2(C̃+(ρ)) ≤ C ‖f‖
L2(C̃+(ρ)) .

Proof. We only follow the proof of Proposition 3.3. �
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4.2 Structure of the solution in the general case

We now consider the case of a bounded connected domain Ω satisfying geometrical assumptions given in
the introduction of this paragraph. As well as in the 2-dimensional case, the solution of problem (2) is
locally H

2 in the neighborhood of every point of Ω and of every point of ∂Ω \ Γ.

∂wD

∂wN

Figure 9: an example of domain induced by a neighborhood of a point of Γ.

For s ∈ Γ, let W ⊂ R
n be a neighborhood of s. We define (see Figure ??)

w = W ∩ Ω , γ = W ∩ Γ ,

∂wN = W ∩ ∂ΩN , ∂wD = (W ∩ ∂ΩD) ∪ (∂w ∩ Ω) ,
(41)

A localization process (see [1]) leads us to consider the following problem:







−div(σ(u)) = g , in w ,
u = 0 , on ∂wD ,
σ(u)ν = 0 , on ∂wN ,

(42)

where g ∈ L
2(w).

For this problem, we define the operator B by

D(B) = {v ∈ H
1
D(w) /Bv ∈ L

2(w) and σ(v)n
¯

= 0 , on ∂wN} , Bv = −div(σ(v)) .

We assume that w is such that for any ρ > 0, there exists a C2-diffeomorphism Φ from w onto C̃+(ρ)
which satisfies

Φ(s) = 0 , Φ(∂wD) = ∂C̃+
D(ρ) , Φ(∂wN ) = ∂C̃+

N (ρ) , Φ(γ) = Γ̃(ρ) . (43)

Modifying w if necessary, and for simplicity, we will consider a particular Φ. As well as in subsection 3.2,
without any restriction, we suppose that the considered point s of Γ is located at the origin, that ∂w is
tangent to x2-axis and γ to the subspace {x1 = x2 = 0} at this point.
Reducing w if necessary, there exists φ ∈ C2(Rn−1,R) and ψ ∈ C2(Rd,R) such that

∀x = (x1, x2, z) ∈ w , Φ(x) = (x1 −ψ(z), x2 − φ(x1, z), z) (44)

and

∇zφ(0,0) = ∇zψ(0) = 0 ,
∂φ

∂x1
(0,0) = 0 . (45)

Hence, the Jacobian matrix of Φ is given by:

DΦ =





1 0 −t∇zψ

− ∂φ

∂x1
1 −t∇zφ

0 0 Id



 .
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Especially, DΦ(0) = In.
Using these local coordinates, (42) can be written as follows







−div(σ̃(ũ)) = g̃ , in C̃+(ρ) ,

ũ = 0 , on ∂C̃+
D(ρ) ,

σ̃(ũ)ν = 0 , on ∂C̃+
N (ρ) ,

(46)

where g̃ ∈ L
2(C̃+(ρ)) and where

σ̃(ũ) = µ∇Φ(∇ũ∇Φ +t ∇Φt∇ũ) + λ(∇Φ :∇ũ)∇Φ . (47)

Once again, we write β̃(ũ) = σ̃(ũ) − σ(ũ) and we consider β̃(ũ) as a perturbation of problem (40) in
order to get the following regularity result.

Proposition 4.3 — Let w be an open subset of R
n defined in form (41). There exist ρ > 0 and a

C2-diffeomorphism Φ from w onto C̃+(ρ) such that (43) is satisfied and

D(B) ⊂ H
2(w) ⊕

((

uS ⊗ L
2(Bd(ρ))

)

◦ Φ
)

,

where uS is given by (35).

Proof. We take ρ and Φ as above.
Let Ãρ be the operator defined by

D(Ãρ) = {ṽ ∈ H
1
D(C+(ρ)) / Ãρṽ ∈ L

2(C+(ρ)) and σ̃(ṽ)ν = 0 , on ∂C+
N (ρ)} , Ãρṽ = −div(σ̃(ṽ)) .

The following Lemma allows us to estimate the perturbation β̃ = σ̃ − σ.

Lemma 4.1 — For ρ > 0 and v ∈ D(Aρ), β̃(v) belongs to H1(C̃+(ρ))n2

and there exists C > 0,
independent of ρ, such that

∀v ∈ D(Aρ) , ‖β̃(v)‖H1(C̃+(ρ))n2 ≤ C
√
ρ ‖v‖D(Aρ) .

Assuming that Lemma 4.1 holds, we follow the proof of Proposition 3.4. �

Proof of Lemma 4.1

Using (47), we can write, for (i, j) ∈ {1, . . . , n}2 and v ∈ D(Aρ), above functions β̃ij in the form:

β̃ij(v) =
n

∑

k,l=1

κij
kl ∂kvl ,

where ∀(i, j, k, l) ∈ {1, . . . , n}4, κij
kl ∈ C1(C̃+(ρ)) and κij

kl(0) = 0.
For v ∈ D(Aρ) and t ∈ {3, . . . , n}, we have

∂tβ̃ij(v) =

n
∑

k,l=1

∂tκ
ij
kl ∂kvl +

n
∑

k,l=1

κij
kl ∂ktvl .

On one hand, we use Proposition 4.1: there exists C > 0 independent of ρ such that

‖∂ktvl‖L2(C̃+(ρ)) ≤ C ‖v‖D(Aρ) .

Since κij
kl(0) = 0, there exists C > 0 independent of ρ such that

∥

∥

∥

n
∑

k,l=1

κij
kl ∂ktvl

∥

∥

∥

L2(C̃+(ρ))
≤ C ρ ‖v‖D(Aρ) .
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On the other hand, since v satisfies a Dirichlet condition on ∂C̃+
D(ρ), ∂kv satisfies also a Dirichlet condition

on a part of the boundary, for k ∈ {3, . . . , n}. Then, since the Poincaré’s constant is proportional to ρ,
there exists C > 0 independent of ρ such that

‖∂kv‖L2(C̃+(ρ)) ≤ C ρ ‖v‖D(Aρ) .

Moreover, since σ12(v) and σ22(v) satisfy a Dirichlet condition on ∂C̃+
N (ρ), we get that there exists C > 0

independent of ρ such that
‖∂2v‖L2(C̃+(ρ)) ≤ C ρ ‖v‖D(Aρ) .

We get then C > 0 independent of ρ such that

∥

∥

∥

n
∑

k,l=1

∂tκ
ij
kl ∂kvl

∥

∥

∥

L2(C̃+(ρ))
≤ C ρ ‖v‖D(Aρ) .

We then have got C > 0 independent of ρ such that

‖∂tβ̃ij(v)‖L2(C̃+(ρ)) ≤ C ρ ‖v‖D(Aρ) .

We now assume that t ∈ {1, 2}. Similarly, there exists C > 0 independent of ρ such that

∥

∥

∥
∂t

(

n
∑

k=3

n
∑

l=1

κij
kl ∂kvl

)∥

∥

∥

L2(C̃+(ρ))
≤ C ρ ‖v‖D(Aρ) .

Since v ∈ D(Aρ), there exists vR ∈ L2(Rd,H2(D+(ρ))) and cS ∈ L
2(Rd) such that v = vR + uS ⊗ cS .

Once again, as above, we get C > 0 independent of ρ such that

∥

∥

∥
∂t

(

2
∑

k=1

n
∑

l=1

κij
kl ∂kvRl

)∥

∥

∥

L2(C̃+(ρ))
≤ C ρ‖v‖D(Aρ) .

For the remaining term with uS , we have

∂t

(

2
∑

k=1

n
∑

l=1

κij
kl ∂k

(

vS ⊗ cS

)

l

)

=

2
∑

k=1

n
∑

l=1

∂tκ
ij
kl

(

∂kuS ⊗ cS

)

l
+

2
∑

k=1

n
∑

l=1

κij
kl

(

∂ktuS ⊗ cS

)

l
.

Observe that uS is explicitly known. A technical computation gives C > 0 independent of ρ such that

∥

∥

∥

2
∑

k=1

n
∑

l=1

∂tκ
ij
kl

(

∂kuS ⊗ cS

)

l

∥

∥

∥

L2(C̃+(ρ))
≤ C

√
ρ ‖cS‖L2

and
∥

∥

∥

2
∑

k=1

n
∑

l=1

κij
kl

(

∂ktuS ⊗ cS

)

l

∥

∥

∥

L2(C̃+(ρ))
≤ C

√
ρ ‖cS‖L2 .

Since there also exists C > 0 independent of ρ such that

‖cS‖L2 ≤ C ‖v‖D(Aρ) ,

we get C > 0 independent of ρ such that

∥

∥

∥∂t

(

2
∑

k=1

n
∑

l=1

κij
kl ∂k

(

vS ⊗ cS

)

l

)∥

∥

∥

L2
≤ C

√
ρ ‖v‖D(Aρ) .

Finally, for every (i, j) in {1, . . . , n}2, we get: β̃ij(v) ∈ H1(C̃+(ρ)), and there exists C > 0 independent
of ρ such that

‖β̃ij‖H1(C̃+(ρ)) ≤ C
√
ρ ‖bv‖D(Aρ) .

Lemma 4.1 is then proved. �
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4.3 Proof of the Rellich-type relation

We now can prove Theorem 4.1.
Let u ∈ H

1(Ω) be the solution of problem (2) satisfying conditions (33).
Using a trace result, we build ũ ∈ H

2(Ω) such that ũ = u and σ(ũ)ν = σ(u)ν on ∂Ω. Then U = u − ũ

satisfies






−div(σ(U)) = F , in Ω ,
U = 0 , on ∂ΩD ,
σ(U)ν = 0 , on ∂ΩN ,

(48)

where F = div(σ(ũ)) − div(σ(u)) ∈ L
2(Ω).

D(Γ, ε)

Γ

∂ΩNε

∂ΩDε

Figure 10: construction of Ωε.

Let ε > 0 be small enough and define (see Figure 4.3)

Ωε = Ω \D(Γ, ε) , Γ̃ε = ∂D(Γ, ε) ∩ Ω ,

∂ΩNε = ∂ΩN \D(Γ, ε) , ∂ΩDε = ∂ΩD \D(Γ, ε) ,

where D(Γ, ε) = {x ∈ R
n / d(x,Γ) ≤ ε}. We have ∂Ωε = ∂ΩDε ∪ ∂ΩNε ∪ Γ̃ε.

As well as for Theorem 3.1, Θ(u,u) belongs to L
1(∂Ω).

Observe that u ∈ H
2(Ωε). We apply twice Green’s formula and obtain

∫

Ωε

div(σ(u))·((m·∇)u) dx = (n− 2)

∫

Ωε

σ(u) :ǫ(u) dx +

∫

∂Ωε

Θ(u,u) dγ .

Using Lebesgue’s Theorem, we get

∫

Ωε

div(σ(u))·((m·∇)u) dx −−−→
ε→0

∫

Ω

div(σ(u))·((m·∇)u) dx ,

∫

Ωε

σ(u) :ǫ(u) dx −−−→
ε→0

∫

Ω

σ(u) :ǫ(u) dx ,

∫

∂ΩDε∪∂ΩNε

Θ(u,u) dγ −−−→
ε→0

∫

∂Ω

Θ(u,u) dγ .

It remains to study the convergence of the integral on Γ̃ε. We consider s ∈ Γ. After convenient rotation
and translation, we assume that this point s is the origin, and that τ (s) and ν(s) give the first and the
second axises of coordinates. We write Γ̃ε(s) = Γ̃ε ∩ (s, τ ,ν) where (s, τ ,ν) is the plane containing s

generated by τ and ν.
Applying Proposition 4.3 we get u = uR + (uS ◦ Φ) ⊗ cS(s) on some neighborhood w(s) of s. We have
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Φ(Γ̃ε) = {ε} × (0, π) in polar coordinates.
We obtain

∫

Γ̃ε(s)

Θ(u,u) dγ =

d
∑

i=1

|cSi(s)|2
∫ π

θ=0

µ
[

(ν ·∇ul
S)·(m·∇ul

S) − (m·ν)|∇ul
S |2

]

ε dθ

+|ceS(s)|2
∫ π

θ=0

Θ(ue
S ,u

e
S)ε dθ +O(ε) .

Using results of [5, 1], we get

∫ π

θ=0

[

(ν ·∇ul
S)·(m·∇ul

S) − (m·ν)|∇ul
S |2

]

ε dθ =
π

4
(m(s)·τ (s)) +O(ε) .

Moreover, we have obtained in section 3.3,

∫ π

θ=0

Θ(ue
S ,u

e
S)ε dθ = Υ(m(s)·τ (s)) +O(ε) .

Hence, we obtain

∫

Γ̃ε(s)

Θ(u,u) dγ =
[

Υ|ceS(s)|2 + µ
π

4

d
∑

i=1

|cSi(s)|2
]

m(s)·τ (s) +O(ε) .

We integrate the previous result on w(s)∩Γ. Since Γ is compact, we can introduce a finite covering of Γ
by {w(s)}s∈Γ and the associated cut-off functions which constitute a partition of the unity of Γ. We then
combine a finite number of equalities and we finally get the function ζ announced in Theorem 4.1.The
Rellich-type relation is obtained by passing to the limit when ε tends to 0. �
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[3] Brossard, R., Lohéac, J.-P., 2007, Boundary stabilization of elastodynamic systems. Part II:
The case of a linear feedback. preprint

[4] Grisvard, P., 1986, Boundary value problems in plan polygons. Instruction for use. E.D.F., Bulletin
de la Direction des Études et Recherche, série C, Mathématiques no 1, 21-59.
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