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We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz-Sobolev space.

Introduction and preliminary results

This paper is motivated by phenomena which are described by nonhomogeneous Neumann problems of the type

    
-div(a(x, |∇u(x)|)∇u(x)) + a(x, |u(x)|)u(x) = λ g(x, u(x)), for x ∈ Ω ∂u ∂ν (x) = 0, for x ∈ ∂Ω ,

where Ω is a bounded domain in R N (N ≥ 3) with smooth boundary ∂Ω and ν is the outward unit normal to ∂Ω. In [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF] there are also involved the functions a(x, t), g(x, t) : Ω × R → R which will be specified later and the constant λ > 0.

In the particular case when in [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF] we have a(x, t) = t p(x)-2 , with p(x) a continuous function on Ω, we deal with problems involving variable growth conditions. The study of such problems has been stimulated by recent advances in elasticity (see [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF][START_REF] Zhikov | Meyer-type estimates for solving the nonlinear Stokes system[END_REF]), fluid dynamics (see [START_REF] Ružička | Electrorheological Fluids Modeling and Mathematical Theory[END_REF][START_REF] Rajagopal | Mathematical modelling of electrorheological fluids[END_REF][START_REF] Diening | Theorical and numerical results for electrorheological fluids[END_REF][START_REF] Halsey | Electrorheological fluids[END_REF]), calculus of variations and differential equations with p(x)-growth conditions (see [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF][START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with pq growth conditions[END_REF][START_REF] Mihȃilescu | Nonhomogeneous boundary value problems in anisotropic Sobolev spaces[END_REF][START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF][START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF][START_REF] Mihȃilescu | Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting[END_REF][START_REF] Mihȃilescu | Continuous spectrum for a class of nonhomogeneous differential operators[END_REF][START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF][START_REF] Zhikov | Meyer-type estimates for solving the nonlinear Stokes system[END_REF]).

Another recent application which uses operators as those described above can be found in the framework of image processing. In that context we refer to the study of Chen, Levine and Rao [START_REF] Chen | Variable exponent, linear growth functionals in image processing[END_REF]. In [START_REF] Chen | Variable exponent, linear growth functionals in image processing[END_REF] the authors study a functional with variable exponent, 1 < p(x) < 2, which provides a model for image restoration. The diffusion resulting from the proposed model is a combination of Gaussian smoothing and regularization based on Total Variation. More exactly, the following adaptive model was proposed min I=u+v, u∈BV∩L 2 (Ω) Ω ϕ(x, ∇u) dx

+ λ • u 2 L 2 (Ω) , (2) 
where Ω ⊂ R 2 is an open domain,

ϕ(x, r) =      1 p(x) |r| p(x) , for |r| ≤ β |r| -β•p(x)-β p(x) p(x)
, for |r| > β ,

where β > 0 is fixed and 1 < α ≤ p(x) ≤ 2. The function p(x) involved here depends on the location x in the model. For instance it can be used

p(x) = 1 + 1 1 + k|∇G σ * I| 2 ,
where G σ (x) = 1 σ exp(-|x| 2 /(4σ 2 )) is the Gaussian filter and k > 0 and σ > 0 are fixed parameters (according to the notation in [START_REF] Chen | Variable exponent, linear growth functionals in image processing[END_REF]). For problem (2) Chen, Levine and Rao establish the existence and uniqueness of the solution and the long-time behavior of the associated flow of the proposed model. The effectiveness of the model in image restoration is illustrated by some experimental results included in the paper.

We point out that the model proposed by Chen, Levine and Rao in problem ( 2) is linked with the energy which can be associated with problem (1) by taking ϕ(x, ∇u) = a(x, |∇u|)∇u. Furthermore, the operators which will be involved in problem [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF] can be more general than those presented in the above quoted model. That fact is due to the replacement of |t| p(x)-2 t by more general functions ϕ(x, t) = a(x, |t|)t. Such functions will demand some new setting spaces for the associated energy, the generalized Orlicz-Sobolev spaces L Φ (Ω), where Φ(x, t) = t 0 ϕ(x, s) ds. Such spaces originated with Nakano [START_REF] Nakano | Modulared Semi-ordered Linear Spaces[END_REF] and were developed by Musielak and Orlicz [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF][START_REF] Musielak | On modular spaces[END_REF] 

(f ∈ L Φ (Ω) if and only if Φ(x, |f (x)|) dx < ∞).
Many properties of Sobolev spaces have been extended to Orlicz-Sobolev spaces, mainly by Dankert [START_REF] Dankert | Sobolev Embedding Theorems in Orlicz Spaces[END_REF], Donaldson and Trudinger [START_REF] Donaldson | Orlicz-Sobolev spaces and imbedding theorems[END_REF], and O'Neill [START_REF] O'neill | Fractional integration in Orlicz spaces[END_REF] (see also Adams [2] for an excellent account of those works). Orlicz-Sobolev spaces have been used in the last decades to model various phenomena. Chen, Levine and Rao [START_REF] Chen | Variable exponent, linear growth functionals in image processing[END_REF] proposed a framework for image restoration based on a variable exponent Laplacian. A second application which uses variable exponent type Laplace operators is modelling electrorheological fluids [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF][START_REF] Ružička | Electrorheological Fluids Modeling and Mathematical Theory[END_REF]. According to Diening [START_REF] Diening | Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[END_REF], we are strongly convinced that these more general spaces will become increasingly important in modelling modern materials.

In this paper we assume that the function a(x, t)

: Ω×R → R in (1) is such that ϕ(x, t) : Ω×R → R, ϕ(x, t) =      a(x, |t|)t, for t = 0 0, for t = 0 ,
and satisfies (ϕ) for all x ∈ Ω, ϕ(x, •) : R → R is an odd, increasing homeomorphism from R onto R;

and Φ(x, t) : Ω × R → R, Φ(x, t) = t 0 ϕ(x, s) ds, ∀ x ∈ Ω, t ≥ 0 ,
belongs to class Φ (see [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF], p. 33), i.e. Φ satisfies the following conditions (Φ 1 ) for all x ∈ Ω, Φ(x, •) : [0, ∞) → R is a nondecreasing continuous function, with Φ(x, 0) = 0 and Φ(x, t) > 0 whenever t > 0; lim t→∞ Φ(x, t) = ∞;

(Φ 2 ) for every t ≥ 0, Φ(•, t) : Ω → R is a measurable function.
Remark 1. Since ϕ(x, •) satisfies condition (ϕ) we deduce that Φ(x, •) is convex and increasing from R + to R + . For the function Φ introduced above we define the generalized Orlicz class,

K Φ (Ω) = {u : Ω → R, measurable; Ω Φ(x, |u(x)|) dx < ∞}
and the generalized Orlicz space,

L Φ (Ω) = {u : Ω → R, measurable; lim λ→0 + Ω Φ(x, λ|u(x)|) dx = 0} .
The space L Φ (Ω) is a Banach space endowed with the Luxemburg norm

|u| Φ = inf µ > 0; Ω Φ x, |u(x)| µ dx ≤ 1
or the equivalent norm (the Orlicz norm)

|u| (Φ) = sup Ω uv dx ; v ∈ L Φ (Ω), Ω Φ(x, |v(x)|) dx ≤ 1 ,
where Φ denotes the conjugate Young function of Φ, that is,

Φ(x, t) = sup s>0 {ts -Φ(x, s); s ∈ R}, ∀ x ∈ Ω, t ≥ 0 .
Furthermore, for Φ and Φ conjugate Young functions, the Hölder type inequality holds true

Ω uv dx ≤ C • |u| Φ • |v| Φ , ∀ u ∈ L Φ (Ω), v ∈ L Φ (Ω) , (3) 
where C is a positive constant (see [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF], Theorem 13.13).

In this paper we assume that there exist two positive constants ϕ 0 and ϕ 0 such that

1 < ϕ 0 ≤ tϕ(x, t) Φ(x, t) ≤ ϕ 0 < ∞, ∀ x ∈ Ω, t ≥ 0 . (4) 
The above relation implies that Φ satisfies the ∆ 2 -condition (see Proposition 3), i.e.

Φ(x, 2t) ≤ K • Φ(x, t), ∀ x ∈ Ω, t ≥ 0 , (5) 
where K is a positive constant. Relation [START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF] and Theorem 8.13 in [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] imply that L Φ (Ω) = K Φ (Ω). Furthermore, we assume that Φ satisfies the following condition

for each x ∈ Ω, the function [0, ∞) ∋ t → Φ(x, √ t) is convex . (6) 
Relation [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] assures that L Φ (Ω) is an uniformly convex space and thus, a reflexive space (see Proposition 2).

On the other hand, we point out that assuming that Φ and Ψ belong to class Φ and

Ψ(x, t) ≤ K 1 • Φ(x, K 2 • t) + h(x), ∀ x ∈ Ω, t ≥ 0 , (7) 
where h ∈ L 1 (Ω), h(x) ≥ 0 a.e. x ∈ Ω and K 1 , K 2 are positive constants, then by Theorem 8.5 in [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] we have that there exists the continuous embedding L Φ (Ω) ⊂ L Ψ (Ω). An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular of the L Φ (Ω) space, which is the mapping ρ

Φ : L Φ (Ω) → R defined by ρ Φ (u) = Ω Φ(x, |u(x)|) dx. If (u n ), u ∈ L Φ (Ω) then the following relations hold true |u| Φ > 1 ⇒ |u| ϕ 0 Φ ≤ ρ Φ (u) ≤ |u| ϕ 0 Φ , (8) 
|u| Φ < 1 ⇒ |u| ϕ 0 Φ ≤ ρ Φ (u) ≤ |u| ϕ 0 Φ , (9) 
|u n -u| Φ → 0 ⇔ ρ Φ (u n -u) → 0 , (10) 
|u n | Φ → ∞ ⇔ ρ Φ (u n ) → ∞ . (11) 
Next, we define the generalized Orlicz-Sobolev space

W 1,Φ (Ω) = u ∈ L Φ (Ω); ∂u ∂x i ∈ L Φ (Ω), i = 1, ..., N .
On W 1,Φ (Ω) we define the equivalent norms

u 1,Φ = | |∇u| | Φ + |u| Φ u 2,Φ = max{| |∇u| | Φ , |u| Φ } u = inf µ > 0; Ω Φ x, |u(x)| µ + Φ x, |∇u(x)| µ dx ≤ 1 ,
(see Proposition 4). The generalized Orlicz-Sobolev space W 1,Φ (Ω) endowed with one of the above norms is a reflexive Banach space.

Finally, we point out that assuming that Φ and Ψ belong to class Φ, satisfying relation [START_REF] Dankert | Sobolev Embedding Theorems in Orlicz Spaces[END_REF] and inf x∈Ω Φ(x, 1) > 0, inf x∈Ω Ψ(x, 1) > 0 then there exists the continuous embedding W 1,Φ (Ω) ⊂ W 1,Ψ (Ω).

We refer to Orlicz [START_REF] Orlicz | Über konjugierte Exponentenfolgen[END_REF], Nakano [START_REF] Nakano | Modulared Semi-ordered Linear Spaces[END_REF], Musielak [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF], Musielak and Orlicz [START_REF] Musielak | On modular spaces[END_REF], Diening [START_REF] Diening | Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[END_REF] for further properties of generalized Lebesgue-Sobolev spaces.

Remark 2. a) Assuming Φ(x, t) = Φ(t), i.e. Φ is independent of variable x, we say that L Φ and W 1,Φ are Orlicz spaces, respectively Orlicz-Sobolev spaces (see [START_REF] Adams | Sobolev Spaces[END_REF][START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF][START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF][START_REF] Orlicz | Über konjugierte Exponentenfolgen[END_REF]). b) Assuming Φ(x, t) = |t| p(x) with p(x) ∈ C(Ω), p(x) > 1 for all x ∈ Ω we denote L Φ by L p(x) and W 1,Φ by W 1,p(x) and we refer to them as variable exponents Lebesgue spaces, respectively variable exponents Sobolev spaces (see [START_REF] Edmunds | On L p(x) norms[END_REF][START_REF] Edmunds | Density of smooth functions in W k,p(x) (Ω)[END_REF][START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF][START_REF] Fan | Sobolev embedding theorems for spaces W k,p(x) (Ω)[END_REF][START_REF] Fan | On the Spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF][START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF][START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF][START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF][START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF][START_REF] Musielak | On modular spaces[END_REF][START_REF] Nakano | Modulared Semi-ordered Linear Spaces[END_REF]) c) Our framework enables us to work with spaces which are more general than those described in a) and b) (see the examples at the end of this paper).

Auxiliary results regarding generalized Orlicz-Sobolev spaces

In this section we point out certain useful results regarding the generalized Orlicz-Sobolev spaces.

Proposition 1. Assume condition (4) is satisfied. Then the following relations hold true

|u| ϕ 0 Φ ≤ ρ Φ (u) ≤ |u| ϕ 0 Φ , ∀ u ∈ L Φ (Ω) with |u| Φ > 1 , (12) 
|u| ϕ 0 Φ ≤ ρ Φ (u) ≤ |u| ϕ 0 Φ , ∀ u ∈ L Φ (Ω) with |u| Φ < 1 . (13) 
Proof. First, we show that ρ Φ (u) ≤ |u| ϕ 0 Φ for all u ∈ L Φ (Ω) with |u| Φ > 1. Indeed, since ϕ 0 ≥ (tϕ(x, t))/Φ(x, t) for all x ∈ Ω and all t ≥ 0 it follows that letting σ > 1 we have

log(Φ(x, σ • t)) -log(Φ(x, t)) = σ•t t ϕ(x, s) Φ(x, s) ds ≤ σ•t t ϕ 0 s ds = log(σ ϕ 0 ) . Thus, we deduce Φ(x, σ • t) ≤ σ ϕ 0 • Φ(x, t), ∀ x ∈ Ω, t > 0, σ > 1 . ( 14 
) Let now u ∈ L Φ (Ω) with |u| Φ > 1.
Using the definition of the Luxemburg norm and relation [START_REF] Ekeland | On the variational principle[END_REF] we deduce

Ω Φ(x, |u(x)|) dx = Ω Φ x, |u| Φ • |u(x)| |u| Φ dx ≤ |u| ϕ 0 Φ • Ω Φ x, |u(x)| |u| Φ dx ≤ |u| ϕ 0 Φ . Now, we show that ρ Φ (u) ≥ |u| ϕ 0 Φ for all u ∈ L Φ (Ω) with |u| Φ > 1.
Since ϕ 0 ≤ (tϕ(x, t))/Φ(x, t) for all x ∈ Ω and all t ≥ 0, similar techniques as those used in the proof of relation [START_REF] Ekeland | On the variational principle[END_REF] imply

Φ(x, σ • t) ≥ σ ϕ 0 • Φ(x, t), ∀ x ∈ Ω, t > 0, σ > 1 . ( 15 
) Let u ∈ L Φ (Ω) with |u| Φ > 1. We consider β ∈ (1, |u| Φ ). Since β < |u| Φ it follows that Ω Φ x, |u(x)| β
dx > 1 otherwise we will obtain a contradiction with the definition of the Luxemburg norm. The above considerations implies

Ω Φ(x, |u(x)|) dx = Ω Φ x, β • |u(x)| β dx ≥ β ϕ 0 • Ω Φ x, |u(x)| β dx ≥ β ϕ 0 .
Letting β ր |u| Φ we deduce that relation [START_REF] Edmunds | Density of smooth functions in W k,p(x) (Ω)[END_REF] holds true.

Next, we show that ρ Φ (u)

≤ |u| ϕ 0 Φ for all u ∈ L Φ (Ω) with |u| Φ < 1.
It is easy to show (see the proof of relations ( 14) and ( 15)) that

Φ(x, t) ≤ τ ϕ 0 • Φ(x, t/τ ), ∀ x ∈ Ω, t > 0, τ ∈ (0, 1) . ( 16 
) Let u ∈ L Φ (Ω) with |u| Φ < 1.
The definition of the Luxemburg norm and relation [START_REF] Fan | On the Spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF] imply

Ω Φ(x, |u(x)|) dx = Ω Φ x, |u| Φ • |u(x)| |u| Φ dx ≤ |u| ϕ 0 Φ • Ω Φ x, |u(x)| |u| Φ dx ≤ |u| ϕ 0 Φ .
Finally, we show that ρ Φ (u) ≥ |u| ϕ 0 Φ for all u ∈ L Φ (Ω) with |u| Φ < 1. As in the proof of ( 14) we deduce

Φ(x, t) ≥ τ ϕ 0 • Φ(x, t/τ ), ∀ x ∈ Ω, t > 0, τ ∈ (0, 1) . ( 17 
)
Let u ∈ L Φ (Ω) with |u| Φ < 1 and ξ ∈ (0, |u| Φ ). By [START_REF] Halsey | Electrorheological fluids[END_REF] we find

Ω Φ(x, |u(x)|) dx ≥ ξ ϕ 0 • Ω Φ x, |u(x)| ξ dx . ( 18 
) Define v(x) = u(x)/ξ, for all x ∈ Ω. We have |v| Φ = |u| Φ /ξ > 1.
Using relation ( 12) we find

Ω Φ(x, |v(x)|) dx ≥ |v| ϕ 0 Φ > 1 . (19) 
By ( 18) and ( 19) we obtain

Ω Φ(x, |u(x)|) dx ≥ ξ ϕ 0 , ∀ ξ ∈ (0, |u| Φ ) .
Letting ξ ր |u| Φ we deduce that relation [START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF] holds true. The proof of Proposition 1 is complete.

Proposition 2. Assume Φ satisfies conditions ( 5) and [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF]. Then the space L Φ (Ω) is uniformly convex.

Proof. From the above hypotheses we deduce that we can apply Lemma 2.1 in [START_REF] Lamperti | On the isometries of certain function-spaces[END_REF] in order to deduce

1 2 [Φ(x, |t|) + Φ(x, |s|)] ≥ Φ x, |t + s| 2 + Φ x, |t -s| 2 , %; ∀ x ∈ Ω, t, s ∈ R .
The above inequality yields

1 2 [ρ Φ (u) + ρ Φ (v)] ≥ ρ Φ u + v 2 + ρ Φ u -v 2 , %; ∀ u, v ∈ L Φ (Ω) . (20) 
Assume that |u| Φ < 1 and |v| Φ < 1 and |u -v| Φ > ǫ (with ǫ ∈ (0, 1/K)). Then we have

ρ Φ (u -v) ≥ |u -v| ϕ 0 Φ if |u -v| Φ > 1 ρ Φ (u -v) ≥ |u -v| ϕ 0 Φ if |u -v| Φ < 1 ,
and ρ Φ (u) < 1, ρ Φ (v) < 1 .
The above information and relation (4) yield

ρ Φ u -v 2 ≥ 1 K • ρ Φ (u -v) ≥      1 K • ǫ ϕ 0 , if |u -v| Φ > 1 1 K • ǫ ϕ 0 , if |u -v| Φ < 1 .
By [START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with pq growth conditions[END_REF] and the above inequality we have

ρ Φ u + v 2 <      1 - 1 K • ǫ ϕ 0 , if |u -v| Φ > 1 1 - 1 K • ǫ ϕ 0 , if |u -v| Φ < 1 . (21) 
On the other hand, we have

ρ Φ u + v 2 ≥        u + v 2 ϕ 0 Φ , if u + v 2 Φ > 1 u + v 2 ϕ 0 Φ , if u + v 2 Φ < 1 . (22) 
Relations ( 21) and [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF] show that there exists δ > 0 such that

u + v 2 Φ < 1 -δ .
Thus, we proved that L Φ (Ω) is an uniformly convex space. The proof of Proposition 2 is complete.

Remark 3. Condition (6) (via relation [START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with pq growth conditions[END_REF]) also implies the fact that for every x ∈ Ω fixed, the function Φ(x, •) is convex from R + to R + . Proposition 3. Condition (4) implies condition (5).

Proof. Since relation (4) holds true by Proposition 1 it follows that condition [START_REF] Ekeland | On the variational principle[END_REF] works. We deduce that Φ(x, 2

• t) ≤ 2 ϕ 0 • Φ(x, t), ∀ x ∈ Ω, t > 0 .
Thus, relation (5) holds true with K = 2 ϕ 0 . The proof of Proposition 3 is complete.

Proposition 4. On W 1,Φ (Ω) the following norms

u 1,Φ = | |∇u| | Φ + |u| Φ , u 2,Φ = max{| |∇u| | Φ , |u| Φ } , u = inf µ > 0; Ω Φ x, |u(x)| µ + Φ x, |∇u(x)| µ dx ≤ 1 , are equivalent.
Proof. First, we point out that 1,Φ and 2,Φ are equivalent, since

2 • u 2,Φ ≥ u 1,Φ ≥ u 2,Φ , ∀ u ∈ W 1,Φ (Ω) . (23) 
Next, we remark that

Ω Φ x, |u(x)| |u| Φ dx ≤ 1 and Ω Φ x, |∇u(x)| | |∇u| | Φ dx ≤ 1 ,
and

Ω Φ x, |u(x)| u + Φ x, |∇u(x)| u dx ≤ 1 .
Using the above relations we obtain

Ω Φ x, |u(x)| u dx ≤ 1 and Ω Φ x, |∇u(x)| u dx ≤ 1.
Taking into account the way in which | | Φ is defined we find

2 u ≥ (|u| Φ + | |∇u| | Φ ) = u 1,Φ , ∀ u ∈ W 1,Φ (Ω) . (24) 
On the other hand, by relation [START_REF] Fan | Sobolev embedding theorems for spaces W k,p(x) (Ω)[END_REF] we deduce that

Φ(x, 2 • t) ≥ 2 • Φ(x, t), ∀ x ∈ Ω, t > 0 .
Thus, we deduce that

2 • Φ x, |u(x)| 2 • u 2,Φ ≤ Φ x, |u(x)| u 2,Φ , ∀ u ∈ W 1,Φ (Ω), x ∈ Ω and 2 • Φ x, |∇u(x)| 2 • u 2,Φ ≤ Φ x, |∇u(x)| u 2,Φ , ∀ u ∈ W 1,Φ (Ω), x ∈ Ω . It follows that Ω Φ x, |u(x)| 2 u 2,Φ + Φ x, |∇u(x)| 2 u 2,Φ dx ≤ 1 2 Ω Φ x, |u(x)| u 2,Φ + Φ x, |∇u(x)| u 2,Φ dx . (25) But, since u 2,Φ ≥ |u| Φ and u 2,Φ ≥ | |∇u| | Φ , ∀ u ∈ W 1,Φ (Ω) , we obtain |u(x)| |u| Φ ≥ |u(x)| u 2,Φ and |∇u(x)| | |∇u| | Φ ≥ |∇u(x)| u 2,Φ , ∀ u ∈ W 1,Φ (Ω), x ∈ Ω . ( 26 
)
Taking into account that Φ is increasing by ( 25) and ( 26) we deduce that

Ω Φ x, |u(x)| 2 u 2,Φ + Φ x, |∇u(x)| 2 u 2,Φ dx ≤ 1 2 Ω Φ x, |u(x)| |u| Φ + Φ x, |∇u(x)| | |∇u | Φ dx ≤ 1 , for all u ∈ W 1,Φ (Ω). We conclude that 2 • u 1,Φ ≥ 2 • u 2,Φ ≥ u , ∀ u ∈ W 1,Φ (Ω) . (27) 
By relations ( 23), ( 24) and ( 27) we deduce that Proposition 4 holds true.

Proposition 5. The following relations hold true

Ω [Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx ≥ u ϕ 0 , ∀ u ∈ W 1,Φ (Ω) with u > 1 ; (28) 
Ω [Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx ≥ u ϕ 0 , ∀ u ∈ W 1,Φ (Ω) with u < 1 . (29) 
Proof. First, assume that u > 1. Let β ∈ (1, u ). By relation [START_REF] Fan | Sobolev embedding theorems for spaces W k,p(x) (Ω)[END_REF] we have

Ω [Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx ≥ β ϕ 0 • Ω Φ x, |u(x)| β + Φ x, |∇u(x)| β .
Since β < u we find

Ω Φ x, |u(x)| β + Φ x, |∇u(x)| β > 1 .
Thus, we find

Ω [Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx ≥ β ϕ 0 .
Letting β ր u we deduce that (28) holds true. Next, assume u < 1. Let ξ ∈ (0, u ). By relation [START_REF] Halsey | Electrorheological fluids[END_REF] we obtain

Ω [Φ(x, |u(x)|) + Φ(x, |∇u(x)|)] dx ≥ ξ ϕ 0 • Ω Φ x, |u(x)| ξ + Φ x, |∇u(x)| ξ dx. ( 30 
)
Defining v(x) = u(x)/ξ, for all x ∈ Ω, we have v = u /ξ > 1. Using relation [START_REF] Nakano | Modulared Semi-ordered Linear Spaces[END_REF] we find

Ω [Φ(x, |v(x)|) + Φ(x, |∇v(x)|)] dx ≥ v ϕ 0 > 1. (31) 
Relations [START_REF] Orlicz | Über konjugierte Exponentenfolgen[END_REF] and [START_REF] Rajagopal | Mathematical modelling of electrorheological fluids[END_REF] show that

Ω [Φ(|u(x)|) + Φ(|∇u(x)|)] dx ≥ ξ p 0 .
Letting ξ ր u in the above inequality we obtain that relation [START_REF] O'neill | Fractional integration in Orlicz spaces[END_REF] holds true. The proof of Proposition 5 is complete.

Main results

In this paper we study problem (1) in the particular case when Φ satisfies

M • |t| p(x) ≤ Φ(x, t), ∀ x ∈ Ω, t ≥ 0 , (32) 
where p(x) ∈ C(Ω) with p(x) > 1 for all x ∈ Ω and M > 0 is a constant.

Remark 4. By relation [START_REF] Ružička | Electrorheological Fluids Modeling and Mathematical Theory[END_REF] we deduce that W 1,Φ (Ω) is continuously embedded in W 1,p(x) (Ω) (see relation [START_REF] Dankert | Sobolev Embedding Theorems in Orlicz Spaces[END_REF] with Ψ(x, t) = |t| p(x) ). On the other hand, it is known (see [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF][START_REF] Fan | Sobolev embedding theorems for spaces W k,p(x) (Ω)[END_REF][START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF]) that W 1,p(x) (Ω) is compactly embedded in L r(x) (Ω) for any r(x) ∈ C(Ω) with 1 < r -≤ r + < N p - N -p -. Thus, we deduce that W 1,Φ (Ω) is compactly embedded in L r(x) (Ω) for any r(x) ∈ C(Ω) with 1 < r(x) < N p - N -p -for all x ∈ Ω.

On the other hand, we assume that the function g from problem (1) satisfies the hypotheses

|g(x, t)| ≤ C 0 • |t| q(x)-1 , ∀ x ∈ Ω, t ∈ R (33) 
and

C 1 • |t| q(x) ≤ G(x, t) := t 0 g(x, s) ds ≤ C 2 • |t| q(x) , ∀ x ∈ Ω, t ∈ R , (34) 
where C 0 , C 1 and C 2 are positive constants and q(x) ∈ C(Ω) satisfies 1 < q(x) < N p - N -p -for all x ∈ Ω. Examples. We point out certain examples of functions g and G which satisfy hypotheses [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF].

1) g(x, t) = q(x) • |t| q(x)-2 t and G(x, t) = |t| q(x) , where q(x) ∈ C(Ω) satisfies 2 ≤ q(x) < N p - N -p -for all x ∈ Ω;

2) g(x, t) = q(x) • |t| q(x)-2 t + (q(x) -2)

• [log(1 + t 2 )] • |t| q(x)-4 t + t 1+t 2 |t| q(x)-2 and G(x, t) = |t| q(x) + log(1 + t 2 ) • |t| q(x)-2 , where q(x) ∈ C(Ω) satisfies 4 ≤ q(x) < N p - N -p -for all x ∈ Ω; 3) g(x, t) = q(x) • |t| q(x)-2 t + (q(x) -1) • sin(sin(t)) • |t| q(x)-3 t + cos(sin(t)) • cos(t) • |t| q(x)-1 and G(x, t) = |t| q(x) + sin(sin(t)) • |t| q(x)-1 , where q(x) ∈ C(Ω) satisfies 3 ≤ q(x) < N p - N -p -for all x ∈ Ω. We say that u ∈ W 1,Φ (Ω) is a weak solution of problem (1) if Ω a(x, |∇u|)∇u∇v dx + Ω a(x, |u|)uv dx -λ Ω g(x, u)v dx = 0, for all v ∈ W 1,Φ (Ω).
The main results of this paper are given by the following theorems.

Theorem 1. Assume ϕ and Φ verify conditions (ϕ), (Φ 1 ), (Φ 2 ), ( 4), ( 6) and ( 32) and the functions g and G satisfy conditions [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF]. Furthermore, we assume that q -< ϕ 0 . Then there exists λ ⋆ > 0 such that for any λ ∈ (0, λ ⋆ ) problem (1) has a nontrivial weak solution.

Theorem 2. Assume ϕ and Φ verify conditions (ϕ), (Φ 1 ), (Φ 2 ), ( 4), ( 6) and ( 32) and the functions g and G satisfy conditions [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF]. Furthermore, we assume that q + < ϕ 0 . Then there exists λ ⋆ > 0 and λ ⋆ > 0 such that for any λ ∈ (0, λ ⋆ ) ∪ (λ ⋆ , ∞) problem (1) has a nontrivial weak solution.

Proof of the main results

Let E denote the generalized Orlicz-Sobolev space W 1,Φ (Ω).

For each λ > 0 we define the energy functional J λ : E → R by

J λ (u) = Ω [Φ(x, |∇u|) + Φ(x, |u|)] dx -λ Ω G(x, u) dx, ∀ u ∈ E .
We first establish some basic properties of J λ .

Proposition 6. For each λ > 0 the functional J λ is well-defined on E and J λ ∈ C 1 (E, R) with the derivative given by

J ′ λ (u), v = Ω a(x, |∇u|)∇u • ∇v dx + Ω a(x, |u|)uv dx -λ Ω g(x, u)v dx ,
for all u, v ∈ E.

To prove Proposition 6 we define the functional Λ :

E → R by Λ(u) = Ω [Φ(x, |∇u|) + Φ(x, |u|)] dx, ∀ u ∈ E .
Lemma 1. The functional Λ is well defined on E and Λ ∈ C 1 (E, R) with

Λ ′ (u), v = Ω a(x, |∇u|)∇u • ∇v dx + Ω a(x, |u|)uv dx , for all u, v ∈ E.
Proof. Clearly, Λ is well defined on E.

Existence of the Gâteaux derivative. Let u, v ∈ E. Fix x ∈ Ω and 0 < |r| < 1. Then, by the mean value theorem, there exists ν, θ ∈ [0, 1] such that

|Φ(x, |∇u(x) + r∇v(x)|) -Φ(x, |∇u(x)|)|/|r| = |ϕ(x, |(1 -ν)|∇u(x) + r∇v(x)| + ν|∇u(x)|)|• ||∇u(x) + r∇v(x)| -|∇u(x)|| (35) 
and

|Φ(x, |u(x) + rv(x)|) -Φ(x, |u(x)|)|/|r| = |ϕ(x, |(1 -θ)|u(x) + rv(x)| + θ|u(x)|)|• ||u(x) + rv(x)| -|u(x)|| . (36) 
Next, we claim that ϕ(x, |u(x)|) ∈ L Φ (Ω) provided that u ∈ L Φ (Ω), where Φ is the conjugate Young function of Φ. Indeed, we know that

Φ(x, t) = sup s>0 {ts -Φ(x, s); s ∈ R}, ∀ x ∈ Ω, t ≥ 0 or Φ(x, t) = t 0 ϕ(x, s) ds, ∀ x ∈ Ω, t ≥ 0 ,
where ϕ(x, t) = sup ϕ(x,s)≤t s, for all x ∈ Ω and t ≥ 0.

On the other hand, by relation (ϕ) we know that for all x ∈ Ω, ϕ(x, •) : R → R is an odd, increasing homeomorphism from R onto R and thus, an increasing homeomorphism from R + onto R + . It follows that for each x ∈ Ω we can denote by ϕ -1 (x, t) the inverse function of ϕ(x, t) relative to variable t. Thus, we deduce that ϕ(x, s) ≤ t if and only if s ≤ ϕ -1 (x, t). Taking into account the above pieces of information we deduce that ϕ(x, t) = ϕ -1 (x, t). Consequently we find

Φ(x, t) = t 0 ϕ -1 (x, s) ds, ∀ x ∈ Ω, t ≥ 0 . Next, since Φ(x, ϕ -1 (x, s)) = ϕ -1 (x,s) 0 ϕ(x, θ) dθ, ∀ x ∈ Ω, s ≥ 0 , taking ϕ(x, θ) = r we find Φ(x, ϕ -1 (x, s)) = s 0 r • (ϕ -1 (x, r)) ′ r dr = s • ϕ -1 (x, s) -Φ(x, s), ∀ x ∈ Ω, s ≥ 0 . The above relation implies Φ(x, s) ≤ s • ϕ -1 (x, s), ∀ x ∈ Ω, s ≥ 0 .
Taking into the above inequality s = ϕ(x, t) we find

Φ(x, ϕ(x, t)) ≤ t • ϕ(x, t), ∀ x ∈ Ω, t ≥ 0 .
The last inequality and relation (4) yield

Φ(x, ϕ(x, t)) ≤ ϕ 0 • Φ(x, t), ∀ x ∈ Ω, t ≥ 0 .
Thus, we deduce that for any u ∈ L Φ (Ω) we have ϕ(x, |u(x)|) ∈ L Φ (Ω) and the claim is verified. By applying relations [START_REF] Zhikov | Meyer-type estimates for solving the nonlinear Stokes system[END_REF], (36), the above claim and (3) we infer that

|Φ(x, |∇u(x) + r∇v(x)|) + Φ(x, |u(x) + rv(x)|) -Φ(x, |∇u(x)|) -Φ(x, |u(x)|)||/|r| ≤ |ϕ(x, |(1 -ν)|∇u(x) + r∇v(x)| + ν|∇u(x)|)| • ||∇u(x) + r∇v(x)| -|∇u(x)|| + |ϕ(x, |(1 -θ)|u(x) + rv(x)| + θ|∇u(x)|)| • ||u(x) + rv(x)| -|u(x)|| ∈ L 1 (Ω) ,
for all u, v ∈ E, x ∈ Ω and |r| ∈ (0, 1). It follows from the Lebesgue theorem that

Λ ′ (u), v = Ω a(x, |∇u|)∇u • ∇v dx + Ω a(x, |u|)uv dx .
Continuity of the Gâteaux derivative. Assume u n → u in E. The above claim and the Lebesgue theorem imply a(x,

|∇u n |)∇u n → a(x, |∇u|)∇u, in (L Φ (Ω)) N and a(x, |u n |)u n → a(x, |u|)u, in L Φ (Ω) .
Those facts and (3) imply

| Λ ′ (u n ) -Λ ′ (u), v | ≤ |a(x, |∇u n |)∇u n -a(x, |∇u|)∇u| Φ • | |∇v| | Φ + |a(x, |u n |)u n -a(x, |u|)u| Φ • |v| Φ ,
for all v ∈ E, and so

Λ ′ (u n ) -Λ ′ (u) ≤ |a(x, |∇u n |)∇u n -a(x, |∇u|)∇u| Φ + |a(x, |u n |)u n -a(x, |u|)u| Φ → 0, as n → ∞ .
The proof of Lemma 1 is complete.

Combining Lemma 1 and Remark 4 we infer that Proposition 6 holds true.

Lemma 2. The functional Λ is weakly lower semi-continuous.

Proof. By Corollary III.8 in [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF], it is enough to show that Λ is lower semi-continuous. For this purpose, we fix u ∈ E and ǫ > 0. Since Λ is convex (because Φ is convex) we deduce that for any v ∈ E the following inequality holds true

Λ(v) ≥ Λ(u) + Λ ′ (u), v -u , or Λ(v) ≥ Λ(u) - Ω [a(x, |∇u|)|∇u| • |∇v -∇u| + a(x, |u|)|u| • |v -u|] dx = Λ(u) - Ω [ϕ(x, |∇u|)|∇v -∇u| + ϕ(x, |u|)|v -u|] dx .
But, by the claim proved in Proposition 6 we know that for any u ∈ L Φ (Ω) we have ϕ(x, |u|), ϕ(x, |∇u|) ∈ L Φ (Ω). Thus, by relation (3) we find

Λ(v) ≥ Λ(u) -C • [|ϕ(x, |∇u|)| Φ • | |∇v -∇u| | Φ + |ϕ(x, |u|)| Φ • |v -u| Φ ] ≥ Λ(u) -C ′ • u -v ≥ Λ(u) -ǫ , for all v ∈ E with v -u < δ = ǫ/C
′ , where C and C ′ are positive constants. The proof of Lemma 2 is complete.

Proposition 7. The functional J λ is weakly lower semi-continuous.

Proof. Using Lemma 2 we have that Λ is weakly lower semi-continuous. We show that J λ is weakly lower semi-continuous. Let {u n } ⊂ E be a sequence which converges weakly to u in E. By Lemma 2 we deduce

Λ(u) ≤ lim inf n→∞ Λ(u n ) .
On the other hand, Remark 4 and conditions ( 33) and ( 34) imply

lim n→∞ Ω G(x, u n ) dx = Ω G(x, u) dx .
Thus, we find

J λ (u) ≤ lim inf n→∞ J λ (u n ) .
Therefore, J λ is weakly lower semi-continuous and Proposition 7 is verified.

Proposition 8. Assume that the sequence {u n } converges weakly to u in E and

lim sup n→∞ Λ ′ (u n ), u n -u ≤ 0.
Then {u n } converges strongly to u in E.

Proof. Since {u n } converges weakly to u in E it follows that { u n } is a bounded sequence of real numbers. That fact and Proposition 4 imply that {|u n | Φ } and {| |∇u n | | Φ } are bounded sequences of real numbers. That information and relations (8) and ( 9) yield that the sequence {Λ(u n )} is bounded. Then, up to a subsequence, we deduce that Λ(u n ) → c.

By Lemma 2 we obtain

Λ(u) ≤ lim inf n→∞ Λ(u n ) = c .
On the other hand, since Λ is convex, we have

Λ(u) ≥ Λ(u n ) + Λ ′ (u n ), u -u n .
Using the above hypothesis we conclude that Λ(u) = c. Taking into account that {(u n +u)/2} converges weakly to u in E and using Lemma 2 we find

c = Λ(u) ≤ Λ u n + u 2 . ( 37 
)
By the above inequality we remark that if we define

λ ⋆ = ρ ϕ 0 -q - 2 • C 2 • c q - 1 , (43) 
then for any λ ∈ (0, λ ⋆ ) and any u ∈ E with u = ρ there exists α = ρ ϕ 0 2 > 0 such that

J λ (u) ≥ α > 0 .
The proof of Lemma 3 is complete.

Lemma 4. Assume the hypotheses of Theorem 1 are fulfilled. Then there exists θ ∈ E such that θ ≥ 0, θ = 0 and J λ (tθ) < 0, for t > 0 small enough.

Proof. By the hypotheses of Theorem 1 we have q -< ϕ 0 . Let ǫ 0 > 0 be such that q -+ ǫ 0 < ϕ 0 . On the other hand, since q ∈ C(Ω) it follows that there exists an open set Ω 0 ⊂⊂ Ω such that |q(x)-q -| < ǫ 0 for all x ∈ Ω 0 . Thus, we conclude that q(x) ≤ q -+ ǫ 0 < ϕ 0 for all x ∈ Ω 0 .

Let θ ∈ C ∞ 0 (Ω) ⊂ E be such that supp(θ) ⊃ Ω 0 , θ(x) = 1 for all x ∈ Ω 0 and 0 ≤ θ ≤ 1 in Ω. Taking into account all the above pieces of information and relations ( 16) and ( 34) we have

J λ (t • θ) = Ω [Φ(x, t|∇θ(x)|) + Φ(x, t|θ(x)|)] dx -λ Ω G(x, t • θ(x)) dx ≤ t ϕ 0 • Ω [Φ(x, |∇θ(x)|) + Φ(x, |θ(x)|)] dx -λ • C 1 • Ω t q(x) |θ| q(x) dx ≤ t ϕ 0 • Λ(θ) -λ • C 1 • Ω 0 t q(x) |θ| q(x) dx ≤ t ϕ 0 • Λ(θ) -λ • C 1 • t q -+ǫ 0 • Ω 0 |θ| q(x) dx ,
for any t ∈ (0, 1), where by |Ω 0 | we denoted the Lebesgue measure of Ω 0 . Therefore

J λ (t • θ) < 0 for t < δ 1/(ϕ 0 -q --ǫ 0 ) with 0 < δ < min 1, λ • C 1 • Ω 0 |θ| q(x) dx Λ(θ) .
Finally, we point out that Λ(θ) > 0. Indeed, it is clear that 0 <

Ω 0 |θ| q(x) dx ≤ Ω |θ| q(x) dx Ω |θ| q -dx ≤ c q - 1 u q -.
Thus, we infer that θ > 0. That fact and relations ( 28) and ( 29) imply that Λ(θ) > 0. The proof of Lemma 4 is complete.

Proof of Theorem 1. Let λ ⋆ > 0 be defined as in (43) and λ ∈ (0, λ ⋆ ). By Lemma 3 it follows that on the boundary of the ball centered in the origin and of radius ρ in E, denoted by B ρ (0), we have inf ∂Bρ(0) J λ > 0.

On the other hand, by Lemma 4, there exists θ ∈ E such that J λ (t • θ) < 0 for all t > 0 small enough. Moreover, relations [START_REF] O'neill | Fractional integration in Orlicz spaces[END_REF], ( 42) and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF] imply that for any u ∈ B ρ (0) we have

J λ (u) ≥ u ϕ 0 -λ • C 2 • c q - 1 u q -. It follows that -∞ < c := inf Bρ(0)
J λ < 0 .

We let now 0 < ǫ < inf ∂Bρ(0) J λ -inf Bρ(0) J λ . Applying Ekeland's variational principle [START_REF] Ekeland | On the variational principle[END_REF] to the functional J λ : B ρ (0) → R, we find u ǫ ∈ B ρ (0) such that

J λ (u ǫ ) < inf Bρ(0) J λ + ǫ J λ (u ǫ ) < J λ (u) + ǫ • u -u ǫ , u = u ǫ . Since J λ (u ǫ ) ≤ inf Bρ(0) J λ + ǫ ≤ inf Bρ(0) J λ + ǫ < inf ∂Bρ(0) J λ ,
we deduce that u ǫ ∈ B ρ (0). Now, we define

I λ : B ρ (0) → R by I λ (u) = J λ (u) + ǫ • u -u ǫ .
It is clear that u ǫ is a minimum point of I λ and thus

I λ (u ǫ + t • v) -I λ (u ǫ ) t ≥ 0 
for small t > 0 and any v ∈ B 1 (0). The above relation yields

J λ (u ǫ + t • v) -J λ (u ǫ ) t + ǫ • v ≥ 0.
Letting t → 0 it follows that J ′ λ (u ǫ ), v + ǫ • v > 0 and we infer that J ′ λ (u ǫ ) ≤ ǫ. We deduce that there exists a sequence {w n } ⊂ B ρ (0) such that

J λ (w n ) → c and J ′ λ (w n ) → 0. ( 44 
)
It is clear that {w n } is bounded in E. Thus, there exists w ∈ E such that, up to a subsequence, {w n } converges weakly to w in E. Since, by Remark 4, E is compactly embedded in L q(x) (Ω) it follows that {w n } converges strongly to w in L q(x) (Ω). The above information combined with relation (33) and Hölder's inequality implies

Ω g(x, w n ) • (w n -w) dx ≤ C 0 • Ω |w n | q(x)-1 |w n -w| dx ≤ C 0 • | |w n | q(x)-1 | q(x) q(x)-1 • |w n -w| q(x) → 0, as n → ∞ . (45) 
On the other hand, by (44) we have

lim n→∞ J ′ λ (w n ), w n -w = 0 . (46) 
Relations ( 45) and (46) imply

lim n→∞ Λ ′ (w n ), w n -w = 0 .
Thus, by Proposition 8 we find that {w n } converges strongly to w in E. So, by (44),

J λ (w) = c < 0 and J ′ λ (w) = 0 .
We conclude that w is a nontrivial weak solution for problem (1) for any λ ∈ (0, λ ⋆ ). The proof of Theorem 1 is complete.

Lemma 5. Assume the hypotheses of Theorem 2 are fulfilled. Then for any λ > 0 the functional J λ is coercive.

Proof. For each u ∈ E with u > 1 and λ > 0 relations ( 28), [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] and Remark 4 imply

J λ (u) ≥ u ϕ 0 -λ • C 2 • Ω |u| q(x) dx ≥ u ϕ 0 -λ • C 2 • Ω |u| q -dx + Ω |u| q + dx ≥ u ϕ 0 -λ • C 3 • [ u q -+ u q + ] ,
where C 3 is a positive constant. Since q + < ϕ 0 the above inequality implies that J λ (u) → ∞ as u → ∞, that is, J λ is coercive. The proof of Lemma 5 is complete.

Proof of Theorem 2. Since q + < ϕ 0 it follows that q -< ϕ 0 and thus, by Theorem 1 there exists λ ⋆ > 0 such that for any λ ∈ (0, λ ⋆ ) problem (1) has a nontrivial weak solution.

Next, by Lemma 5 and Proposition 7 we infer that J λ is coercive and weakly lower semi-continuous in E, for all λ > 0. Then Theorem 1.2 in [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] implies that there exists u λ ∈ E a global minimizer of I λ and thus a weak solution of problem [START_REF] Acerbi | Regularity results for a class of functionals with nonstandard growth[END_REF].

We show that u λ is not trivial for λ large enough. Indeed, letting t 0 > 1 be a fixed real and u 0 (x) = t 0 , for all x ∈ Ω we have u 0 ∈ E and

J λ (u 0 ) = Λ(u 0 ) -λ Ω G(x, u 0 ) dx ≤ Ω Φ(x, t 0 ) dx -λ • C 1 • Ω |t 0 | q(x) dx ≤ L -λ • C 1 • t q + 0 • |Ω 1 | ,
where L is a positive constant. Thus, there exists λ ⋆ > 0 such that J λ (u 0 ) < 0 for any λ ∈ [λ ⋆ , ∞). It follows that J λ (u λ ) < 0 for any λ ≥ λ ⋆ and thus u λ is a nontrivial weak solution of problem (1) for λ large enough. The proof of Theorem 2 is complete.

Examples

In this section we point out certain examples of functions ϕ(x, t) and Φ(x, t) for which the results of this paper can be applied. I) We can take ϕ(x, t) = p(x)|t| p(x)-2 t and Φ(x, t) = |t| p(x) , with p(x) ∈ C(Ω) satisfying 2 ≤ p(x) < N , for all x ∈ Ω. It is easy to verify that ϕ and Φ satisfy conditions (ϕ), (Φ 1 ), (Φ 2 ), ( 4), ( 6) and [START_REF] Ružička | Electrorheological Fluids Modeling and Mathematical Theory[END_REF] since in this case we can take ϕ 0 = p -and ϕ 0 = p + . It is easy to see that relations (ϕ), (Φ 1 ) and (Φ 2 ) are verified.

For each x ∈ Ω fixed by Example 3 on p. 243 in [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] we have p(x) -1 ≤ t • ϕ(x, t) Φ(x, t) ≤ p(x), ∀ t ≥ 0 .

Thus, relation (4) holds true with ϕ 0 = p --1 and ϕ 0 = p + . Next, Φ satisfies condition (32) since Φ(x, t) ≥ t p(x)-1 , ∀ x ∈ Ω, t ≥ 0 .

Finally, we point out that trivial computations imply that d 2 (Φ(x, √ t)) dt 2 ≥ 0 for all x ∈ Ω and t ≥ 0. Thus, relation [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] where α > 0 is a constant and p(x) ∈ C(Ω) satisfying 2 ≤ p(x) < N , for all x ∈ Ω. It is easy to see that relations (ϕ), (Φ 1 ) and (Φ 2 ) are verified. Next, it is easy to remark that for each x ∈ Ω fixed we have p(x) ≤ t • ϕ(x, t) Φ(x, t) , ∀ t ≥ 0 .

The above information shows that taking ϕ 0 = p -we have ≥ 0 for all x ∈ Ω and t ≥ 0 and thus, relation ( 6) is satisfied.

II)

  We can takeϕ(x, t) = p(x) |t| p(x)-2 t log(1 + |t|) and Φ(x, t) = |t| p(x) log(1 + |t|) + |t| 0 s p(x) (1 + s)(log(1 + s)) 2 ds ,with p(x) ∈ C(Ω) satisfying 3 ≤ p(x) < N , for all x ∈ Ω.

  is satisfied.III) We can take ϕ(x, t) = p(x) • log(1 + α + |t|) • |t| p(x)-1 t ,andΦ(x, t) = log(1 + α + |t|) • |t| p(x) -|t| 0 s p(x) 1 + α + s dx ,

  Thus, defining H(x, t) = t•ϕ(x,t) Φ(x,t) we remark that H(x, t) is continuous on Ω × [0, ∞) and 1 < p -≤ lim t→0 H(x, t) ≤ p + < ∞ and 1 < p -≤ lim t→∞ H(x, t) ≤ p + < ∞. It follows that We conclude that relation (4) is satisfied.On the other hand, sinceϕ(x, t) ≥ p -• log(1 + α) • t p(x)-1 , ∀ x ∈ Ω, t ≥ 0 ,The above relation assures that relation[START_REF] Ružička | Electrorheological Fluids Modeling and Mathematical Theory[END_REF] is verified. Finally, we point out that trivial computations imply that d 2 (Φ(x,

	On the other hand, some simple computations imply
		lim t→∞	t • ϕ(x, t) Φ(x, t)	= p(x), ∀ x ∈ Ω
	and	lim t→0	t • ϕ(x, t) Φ(x, t)	= p(x), ∀ x ∈ Ω .
		ϕ 0 = sup t>0, x∈Ω	t • ϕ(x, t) Φ(x, t)	< ∞ .
	it follows that	Φ(x, t) ≥	p -p √	t))
					dt 2
		1 < p -≤	t • ϕ(x, t) Φ(x, t)	, ∀ x ∈ Ω, t ≥ 0 .

+ • (1 + α) • t p(x) , ∀ x ∈ Ω, t ≥ 0 .
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We assume by contradiction that {u n } does not converge to u in E or {(u n -u)/2} does not converge to 0 in E. It follows that there exist ǫ > 0 and a subsequence {u nm } of {u n } such that

Furthermore, relations ( 28), ( 29) and (38) imply that there exists

On the other hand, relations [START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with pq growth conditions[END_REF] and (39) yield

Letting m → ∞ in the above inequality we obtain

and that is a contradiction with (37). We conclude that {u n } converges strongly to u in E and Proposition 8 is proved.

Lemma 3. Assume the hypotheses of Theorem 1 are fulfilled. Then there exists λ ⋆ > 0 such that for any λ ∈ (0, λ ⋆ ) there exist ρ, α > 0 such that J λ (u) ≥ α > 0 for any u ∈ E with u = ρ.

Proof. By Remark 4 and conditions [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF] it follows that E is continuously embedded in L q(x) (Ω). So, there exists a positive constant c 1 such that

where by | • | q(x) we denoted the norm on L q(x) (Ω). We fix ρ ∈ (0, 1) such that ρ < 1/c 1 . Then relation (40) implies

Furthermore, relation [START_REF] Diening | Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[END_REF] applied to Φ(x, t) = |t| q(x) yields

Relations ( 40) and (41) imply

Taking into account relations (29), ( 42) and [START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF] we deduce that for any u ∈ E with u = ρ the following inequalities hold true

) .