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Summary. Without pretending to be exhaustive, the aim of this chapter is to give
an overview on the use of the state predictor in the context of time-delay systems,
and more particularly for the stabilisation of networked control systems. We show
that the stabilisation of a system through a deterministic network can be consid-
ered as the stabilisation of a time-delayed system with a delay of known dynamics.
The predictor approach is proposed, along with some historical background on its
application to time-delayed systems, to solve this problem. Some simulation results
are also presented.
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1.1 Introduction

The networked control systems (NCS) constitute a particular class of control
problems, where the communication channel influence is crucial in the stabil-
isation of the remote system and cannot be neglected. The control setup is
shown in Figure (1.1), where the system considered can be open-loop unstable.
The sensor, actuator and system are remotely commissioned by a controller
that interchange measurements and control signals through a communication
network. This network is used by multiple systems and a packet management
law (router, switch, priority level . . .) is introduced to distribute the infor-
mation. A Transfer Protocol (TP) is implemented to allow users to send and
receive data over the network. The impact of such network is to introduce
a time-varying delay in the data transmission between the system and the
controller, due to the multiple users interaction.

The time-varying delay makes the problem more difficult since the time-
translation is not reversible and the results established in the frequency do-
main cannot be used (like the Smith predictor [1]). Most of the existing control
methods (like the Lyapunov-Krasovskii approaches) result in a LMI formula-
tion based on a constant time-delay, or a known upper bound on it (see for
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Fig. 1.1. Closed-loop network controlled system.

example [2] or [3]). The case of time-varying or state-dependent delays can
be treated along with the solutions presented in [4], and [5] as long as the
system is open-loop stable. These solutions do not allow for a direct use of
the time-delay dynamics in the design of the control law and naturally yield
to conservative results.

The state predictor approach is particularly efficient to stabilize a delayed
(possibly open-loop unstable) system since it results in the pole placement
(finite spectrum assignment) of the closed-loop system. It can be applied to
the case of time-varying delays by considering a predictor with a time-varying
horizon, thus explicitly including the dynamics of a deterministic network in
the control synthesis.

This chapter is organized as follows. The first part details the specifici-
ties introduced by the use of a deterministic network in the communication
channel, along with the characteristics of the induced time delay and a de-
scription of the controlled system. The second section presents some historical
key points on the use of the state predictors to assign a finite spectrum to
time-delayed systems. In the third section, the state predictor is combined
with some other control and analysis tools in order to design a robust con-
trol scheme, possibly with an explicit use of the network dynamics or based
on a state observer. Some issues on the related numerical problems are also
considered and an application example is finally proposed.

1.2 Problem statement: control through TP networks

The networked controlled systems are characterized by some specific trans-
mission protocol dynamics that can be explicitly used in the design of the
control feedback. This dynamics induces a time-varing delay which depends
on the interaction of multiple users on the network.
A transfer protocol is set between the emitters and the network to manage
the exchange of packets (emission and reception). The TP determines the
emitter’s window size and manage the reception of packets. Considering the
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class of secure networks we can guarantee that there is no loss of information
in the communication process (all the lost packets are re-emitted), which re-
sults in a bounded transmission delay. Examples of such protocols (a detailed
description can be found in [6]) are the Transfer Control Protocol (TCP) and
Sequenced Packet Exchange (SPX) schemes. An other example is a dedicated
network used to control a supply chain or an embedded system; in that case,
the TP can be freely designed to ensure the desired properties.
The delay induced by the network is then the delay experienced by the con-
trol and measurement signals. Therefore, the lossless property of the network
ensures that the delays are bounded and cannot increase as fast as the time
(since it is the delay measured from the system or the control law sites). This
motivates the following property.

H1) The time-delay τ(t) induced by the communication network satisfies, for
all t ≥ 0,

0 ≤ τ(t) ≤ τmax and τ̇(t) < 1,

where τmax ≥ 0 is an upper bound on the delay.

Note that this hypothesis is generally used to ensure the stability or the con-
trollability of time-delay systems.
The time-delay dynamics induced by a TP network can be described in a
continuous, discrete or hybrid framework. For analysis purposes, we chose the
continuous formulation but the proposed results can easily be extended to the
other kinds of models. The induced delay is then described by the general
class of systems that write as

ż(t) = f(z(t), ud(t)), z(0) = z0, (1.1)

τ(t) = h(z(t), ud(t)), (1.2)

where

• z(t) is the internal state of the network (with initial state z0) , that de-
scribes the time evolution of the emitters window sizeWi(t) (for i = 1 . . . N
sources connected to the network) and the router’s queue length q(t), for
example. In that case, the state writes as z(t) = [W1(t) . . . WN (t) q(t)]T ,

• ud(t) is the exogenous input to the system, which is the number of users
N(t) and the link capacity C(t), if both are time-varying. We then have
ud(t) = {N(t), C(t)},

• f(z(t), ud(t)) describes the internal dynamics of the network, set by the
TP on the window sizes and by the queue management scheme on the
queue length, if a buffer is used to manage the packets,

• h(z(t), ud(t)) gives the resulting delay τ(t) from the whole model.

Note that (1.1)-(1.2) describes an autonomous system with an exogenous input
ud(t). This input is assumed to be known over a certain range of time ahead
of the present time (equal to the maximum delay expected τmax) in order to
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use the predictive approach. This would be the case for periodic systems or if
the transfer protocol is set to declare to the network that its source will emit
and wait during τmax before starting the emission. An appropriate robustness
analysis focused on the predictor sensitivity with respect to the time-delay
model can be used to remove this hypothesis.

The remotely controlled system writes as:

ẋ(t) = Ax(t) +Bu(t− τ(t)), x(0) = x0, (1.3)

y(t) = Cx(t), (1.4)

where x ∈ Rn is the internal state, u ∈ Rl is the control input, y ∈ Rm is the
system output, and A, B, C are matrices of appropriate dimensions. The pairs
(A,B) and (A,C) are assumed to be controllable and observable, respectively,
but no assumption is made on the stability of A.

1.3 Historical Background

After a short recall on the concept of commandability in the case of the
systems with a delayed input, we present in this section the main results
obtained in the years 1970-1980 concerning the state predictor. More precisely,
the concepts of finite spectrum assignment, system reduction and the use of
the predictor to stabilize systems with a delayed input if this delay is time-
varying are detailed. The state is supposed to be completely known to establish
the control law.

1.3.1 Controllability

The controllability of linear systems with time delays in control is not trivial
and was specifically studied in [7]. We consider the general class of systems
described on [t0, t1] by

ẋ(t) = A(t)x(t) +

k
∑

i=0

Bi(t)u(t− τi), (1.5)

where A(t), Bi(t) are bounded measurable matrices of size n × n and n × l,
respectively, and 0 = τ0 < τ1 < . . . < τk are real numbers. The controllability
of the complete state is usually defined as follows

Definition 1. The complete state of the process (1.5) at time t is the set
xc(t) = {x(t), v(t, s)}, where v(t, s) = u(s), s ∈ [t− τk, t).

Definition 2. The complete state xc(t0) is said to be controllable on [t0, t1]
if there exists a control u such that x(t1) = 0.
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Definition 3. The complete state xc(t0) is said to be absolutely controllable
on [t0, t1] if there exists a control u such that xc(t1) = 0 (both x(t1) = 0 and
v(t1, s) = 0).

Definition 4. The system (1.5) is said to be (absolutely) controllable on
[t0, t1] if and only if every complete state is (absolutely) controllable on this
interval.

These definitions show the influence of the delay on the concept of state
and commandability. Indeed, we do not consider an instantaneous state but
an evolution on a time-dependent horizon: the control law u(·) must be known
on the horizon [t− maxk τk, t] to compute the value of ẋ(t). This comes from
the fact that, if two control laws have the same value at a given instant t but
a different history then the system trajectories will be different.
This principle is equivalent to the one used in the definition of the dynamics
of a time-delay system writing as

ẋ(t) = An x(t) +Ad x(t− τ),

where a proper initial condition is expressed in [2] as

x(t0 + θ) = φ(θ), θ ∈ [−τ, 0], (t0, φ) ∈ R
+ × Cνn, τ

with Cνn, τ = {φ ∈ Cn, τ : ||φ||c < ν}, where ν is a positive real number, ||φ||C =
sup−τ≤t≤0 ||φ||, || · || refers to the euclidian norm and Cn,τ = C([−τ, 0],Rn)
indicates the Banach space of the continuous vector functions projecting the
interval [−τ, 0] in R

n with a uniformly convergent topology.
The concept of complete state of the first definition is thus introduced to take
into account the history of the control law. The previous definitions are an
application of the concept of commandability, in the traditional sense, to the
class of systems considered. We take into account the fact that the control law
history has to be known before the system initialization (at time t0) and then
kept in memory on the time interval [t−maxk τk, t] to ensure the uniqueness
of the trajectory described by (1.5).

Remark 1. For simplicity sake, we will consider that the values of the con-
trol law preceding the system initialization are null and that their history is
preserved on the necessary horizon. The initial conditions of the system are
thus reduced to x(t0) and the traditional concepts of commandability can be
applied directly.
The use of the the state predictor allows, because of the infinite dimension of
the resulting control law, to obtain a closed-loop system of finite dimension.
This transformation of a system described by a functional differential equa-
tion into a system described by an ordinary differential equation is limited by
the computation precision of the integral term. Indeed, the resulting system
can be non-robust with respect to arbitrarily small uncertainties at this level.
A more complete discussion on this subject is available in [8] and the resulting
performance limitation of is close to the one induced by an error in the delay
estimation, which is studied in [9].
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The solution of the differential equation (1.5), along with the previous def-
initions, is used to establish the following theorem on absolute controllability.

Theorem 1. If the matrices A(t), Bi(t) are analytic on [t0, t1], [t0, t1 + τk],
respectively, then the process (1.5) is controllable absolutely on [t0, t1] if and
only if rank [D(t), LD(t), . . . , Ln−1D(t)] = n for all but isolated points of
[t0, t1 − τk]. The function D(s) and the operator L are defined as

D(s)
.
=

k
∑

i=0

Φ(s, s+ τi)Bi(s+ τi) and LD(t)
.
= (d/ds)D(s)|s=t −A(t)D(t),

where Φ(t, t0) is the transition matrix of A(t).

Remark 2. For the specific case where the process is described by (1.3) with
a constant delay, D(s) = e−AτB and the absolute stability of this system is
ensured if and only if rank [e−AτB,Ae−AτB, . . . , An−1e−AτB] = n.

1.3.2 Finite spectrum assignment

It is well known that the use of a linear feedback on a dynamic system with
delayed control generally yields a closed-loop system described by a retarded
functional differential equation with an infinite spectrum. Assigning a finite
spectrum to such system is not practically feasible with a state feedback con-
trol law. The aim of this section is to present the results derived in [10], where
it is shown that the state predictor can be used to obtain a finite closed-loop
spectrum for the class of systems considered in this paper.
Consider the system with a time delayed input and a non-delayed one

ẋ(t) = Ax(t) +B0u(t) +B1u(t− τ), (1.6)

where A, B0 and B1 are some matrices of appropriate dimensions. The feed-
back is given by

u(t) = Kx(t) +K

∫ 0

−τ

e−(τ+θ)AB1u(t+ θ)dθ, (1.7)

where K is a l × n matrix that specifies the location of the closed-loop spec-
trum. The finite spectrum of the closed-loop system is then ensured by the
following theorem.

Theorem 2. The spectrum of the closed-loop system (1.6), (1.7) coincides
with the spectrum of the matrix

A+ [B0 + e−AτB1]K.

Moreover, assuming controllability (respectively stabilizability) of the pair
(A,B0 + e−AτB1) the spectrum of the system (1.6), (1.7) can be placed at
any preassigned self-conjugate set of n points in the complex plane (respec-
tively the unstable eigenvalues of A can be arbitrarily shifted) by a suitable
choice of the matrix K.



1 On the Use of State Predictors in Networked Control Systems 7

Proof (Outline). Assuming that the solutions of (1.6) can be expressed as
x(t) = eAtκ(t), where κ(t) is a continuously differentiable function, we have
that

x(t+ τ) = eAτ
[

x(t) +

∫ 0

−τ

e−(τ+θ)A[B0u(t+ θ + τ) +B1u(t+ θ)]dθ

]

.

Substituting (1.7) in the previous equation, solving for u(t) and looking for
the delayed input, we obtain

u(t− τ) = K

[

e−Aτx(t) −

∫ 0

−τ

e−(τ+θ)A[B0u(t+ θ)dθ

]

. (1.8)

The expression for u(t) from (1.7) and the one for u(t− τ) from (1.8) can now
be substituted in (1.6). Note that the integral terms cancel each other and we
have the closed-loop result

ẋ(t) = (A+B0K +B1Ke
−Aτ )x(t).

This completes the proof. ut

The original result in [10] was given for the more general class of systems
governed by

ẋ(t) = Ax(t) +

∫ 0

−τ

dβ(θ)u(t+ θ), (1.9)

where β(.) is an n×l matrix function of bounded variation which is a sum of an
absolutely continuous function and a finite number of jump discontinuities. We
restricted the class of processes considered to (1.6) for sake of simplicity and
to remain in the scope of this chapter. The original use of Lebesgue-Stieltjes
integration in [10] includes some measurement considerations, allowing for
some non-uniformly distributed measurements.

Remark 3. The sensitivity of the design to the plant and control parameter
variations is also considered in [10]. It is shown that, even if the desired finite
spectrum is not preserved, the closed-loop system remains stable for arbitrar-
ily small perturbations.
For the specific case where the process is described by (1.3) with a constant
delay (B0 = 0), the controllability condition of the previous theorem is equiv-
alent to the condition expressed in Remark 2.

A similar stability result was also established in [11], where the receding hori-
zon regulator is used to solve the fixed terminal energy problem.

1.3.3 Reduction of systems

The previous works are generalized in [12], where an absolute continuity con-
dition for the reduction of systems with delayed controls is proposed. This
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allows for the transformation of a linear system with delayed control into an
ordinary measure-differential control system (system reduction). This trans-
formation is performed as follows.

Theorem 3. Consider the class of systems described by (1.6) and define

p(t)
.
= x(t) +

∫ t

t−τ

e(t−θ−τ)AB1u(θ)dθ.

Then {x(t), u(t)} is admissible for (1.6) if and only if {p(t), u(t)} is admissible
for

ṗ(t) = Ap(t) + B̂(t)u, (1.10)

with B̂(t)
.
= B0 + e−AτB1.

For the case of systems with a time-varying delay in the input

ẋ(t) = Ax(t) +Bu(t− τ(t)),

with η(t)
.
= t− τ(t) absolutely continuous and τ̇(t) 6= 1 for almost every t, the

equivalent system is obtained, for almost every t, using

B̂(t) =
∑

s∈η−1(t)

eA(t−s)B|1 − τ̇(s)|−1.

where η−1(t)
.
= {s|η(s) = t}.

The classical techniques of stabilization, optimization and controllability can
be directly applied to the reduced system using the following result.

Theorem 4. Let u(t) = K(t)p(t) be a feedback stabilisation scheme for (1.10)
and suppose that K(t) is bounded. Then the system (1.6) is stabilized by the
feedback scheme

u(t) = K(t)

[

x(t) +

∫ t

t−τ

e(t−θ−τ)AB1u(θ)dθ

]

.

Remark 4. The original theorems in [12] are derived for the more general class
of systems governed by (1.9) (the particular case (1.6) is introduced as an
illustrative exemple).

1.3.4 Horizon computation for the time-varying delay case

The finite spectrum assignment control scheme is applied more specifically to
systems with time-varying delayed control in [13], where it is used to design an
adaptive algorithm which ensures the output convergence and global stability.
The specificities induced by this delay and the design of the time-varying
predictor horizon are described in this section.

The first-order system considered in [13] writes as
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ẋ(t) = ax(t) + u(t− τ(t)), (1.11)

with a an unknown positive constant and τ(t) satisfying the conditions stated
in section 1.2 (τ(t) bounded and τ̇ < 1).
The goal is to express (1.11) in the form

dx

dζ(t)
(ζ(t)) = ax(ζ(t)) + u(t),

where ζ(t)
.
= t + δ(t) is the predicted time. This is achieved if δ(t) satisfies

δ(t)−τ(t+δ(t)) = 0. The desired pole placement on the closed-loop system is
obtained using the non-causal control law (since we need to predict the state
evolution)

u(t) = κx(ζ(t)) + ū(t),

where ū(t) is a bounded reference input, κ is a negative constant such that
a+ κ < 0, and x(ζ(t)) is obtained from the lemma:

Lemma 1. The prediction x(t+ δ(t)) is given by the equation

x(t+ δ) = F (ζ(t), t)

[

x(t) +

∫ t

t−τ(t)

F (t, ζ(s))ζ̇(s)u(s)ds

]

,

where F is the state transition function of the system (1.11), i.e. F (t, σ) =
ea(t−σ).

The previous lemma shows that we are able to set the proposed control law,
since the predicted state x(t + δ) is computed from x(t) and u(s) with s ∈
[t− τ, t]. Expressing (1.11) in the time-shifted coordinates, we have that

dx

dζ(t)
(ζ(t)) = ax(ζ(t)) + u(t+ δ − τ(t+ δ)) = ax(ζ(t)) + u(t)

from the definition of δ(t). Introducing the proposed control law, we are able
to set the pole of the closed-loop time-shifted system since it writes as

dx

dζ(t)
(ζ(t)) = (a+ κ)x(ζ(t)) + ū(t),

where κ is the control gain.
This method is extended to the stabilization of n-dimensional SISO sys-

tems [14] and a control scheme with a state estimator is proposed. It is also
applied to non-minimum phase systems, in the case of constant delays, in [15].

1.4 Other approaches

The state predictor can be combined or studied with other approaches in order
to determine the robustness and performance of the closed-loop system. First,
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the problem of robustness with respect to the knowledge of the delay can be
tackled by the frequency approach, in the case of a constant delay. Then, the
H∞ synthesis is used to reject a disturbance on the state, by partially taking
into account the time variation of the delay. A control scheme using explicitely
the network dynamics and an observer-based control law are presented in the
third subsection. To finish, we consider some elements of numerical analysis
to compensate for the instabilities induced by the computation of the integral
term in the state predictor.

1.4.1 Robustness with respect to the delay estimation: a frequency

approach

A robustness criterium is proposed in [16], where the robustness of the state
predictor with respect to delay uncertainties is investigated. The system con-
sidered is a dynamic system with a delayed input such as the one described by
(1.3), with a constant delay. The problem robustness is formulated by intro-
ducing the maximum deviation of the delay ∆

.
= τ − τ̂ , where τ is the delay

induced by the network and τ̂ is the delay used for the prediction (measured,
observed or estimated). The goal is then to find the maximum value ∆ of
∆ which ensures the stability of the closed-loop system for |∆| ∈ [0,∆). The
consideration of a constant delay makes it possible to solve this problem using
a frequency approach, detailed below.
The estimated delay is used to establish the control law

u(t) = −KeAτ̂
[

x(t) + eAt
∫ t

t−τ̂

e−AθBu(θ)dθ

]

(1.12)

which writes, in the frequency domain, as

(Il +K(sIn −A)−1[In − e−τ̂(sIn−A)]B)u(s) = −Keτ̂Ax(s),

where In is the identity matrix of size n × n and s is the Laplace operator.
The system (1.3) is described by

(sIn −A)x(s) = Be−τsu(s)

and the characteristic matrix of the closed-loop system is

det

(

sIn −A Be−τs

−Keτ̂A Il +K(sIn −A)−1[In − e−τ̂(sIn−A)]B

)

= det
(

sIn −A+ [In − eτ̂A(e−τ̂s − e−τs)]BK
)

.

Remark 5. When the delay is perfectly known, ∆ = 0 and the closed-loop
spectrum is identical to that of the non-delayed equivalent systems described
previously.

The previous discussion makes it possible to establish the following proposi-
tion.



1 On the Use of State Predictors in Networked Control Systems 11

Proposition 1. Consider the system described by (1.3) with a constant delay
τ , controlled by (1.12). If the estimated delay τ̂ is different from the one
experienced by the control input and ∆ describes the deviation of this delay,
then the characteristic-equation of the closed-loop system is

det
(

sIn −A+BK − eτ̂Ae−τ̂s(1 − e−∆s)BK
)

.

Remark 6. This result shows the correlation between the choice of the con-
troller gain K, the estimated delay and the maximum acceptable deviation
of this delay. This illustrates the necessary compromise between a high gain
control scheme (broad bandwidth) and the robustness with respect to the
uncertainties on the delay (sensitivity of the closed-loop system).

The maximum value of the acceptable deviation on the delay can then be
computed, in an analytical way for the monovariable case (analysis based
on continuity arguments) or in a numerical way for the multivariable case
(frequency sweeping). The major disadvantage of this method in the context
of stabilisation through networks is that it cannot be applied to the case
of variable time-delays, which is of major importance in the communication
networks since the delays experience strong variations according to the load.

1.4.2 H
∞ control with a time-varying delay

The receding horizon predictor is included in a H∞ control scheme for a
system with a time-varying delay in the control in [17]. The plant and the
sensor channel are described, respectively, by

ẋ(t) = Ax(t) +Bu(t− τ(t)) +Dv(t), (1.13)

y(t) = x(t− ψ(t)), (1.14)

where v(t) is the disturbance vector, y(t) is the measured output, and both
delays τ(t) and ψ(t) are some positive continuous functions with their time-
derivative less than one. This means that the full state, delayed by ψ(t), is
available to establish the control law. The predictive state formulation p(t) =
x(t+ δ(t)) is similar to the one proposed in [18] and writes as

ṗ(t) = Ã(δ̇(t))p(t) + B̃(δ̇(t))u(t) + D̃(ψ(t), ψ̇(t), δ(t))v(t− ψ(t)), p(0) = 0

with

Ã(θ)
.
= (1 + θ)A, B̃(θ)

.
= (1 + θ)B and D̃(ψ, θ, δ)

.
= (1 − θ)eA(ψ+δ)D,

where θ denotes the variable of the function considered. Let z(t) be the con-
trolled output defined by z(t)

.
= Fp(t), where the constant matrix F is used

to estimate the effect of disturbances. The effect of the disturbance v(t) is
compensated if the following criterion is verified
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∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

vT (t)v(t)dt,

for any disturbance v(t) in L2[0,∞), the space of square integrable functions
on [0,∞). From this formulation, the solution of the H∞ control problem is
established in the form of LMIs (linear matric inequalities) for two different
cases:

• the delay is supposed to be known at any time (i.e. it can be predicted)
and the solution is expressed in the form of time-varying LMIs,

• only past and present informations are available; the solution is then es-
tablished using the upper bounds on the delays and their derivatives.

The case of output feedback is also considered, as well as the case when some
sensor noises are present in the output y(t).

The fact that this solution requires to solve LMI at every time to explicitly
use the value of the delay reduces considerably the field of application of this
method. Indeed, the NECS problems as considered here relate to systems with
fast dynamics, where the network has a dominating influence. The synthesis
of a controller implying the resolution of LMI in real time is thus not conceiv-
able in this case. Nevertheless, this H∞ solution is well suited for perturbed
dynamical systems when the induced time-delay exhibits slow variations.

1.4.3 Explicit use of the network dynamics and observer-based

control

The relationship between the predictor’s horizon δ(t) and the delay τ(t) is
studied more closely in [19], where a dynamic explicit solution is proposed
to compute δ(t). This solution directly involves the delay dynamics defined
in (1.1)-(1.2) for τ(t), which can be obtained from a network model, and
is included explicitly in the control’s formulation. This is expressed in the
following theorem, established for the non-delayed state feedback problem.

Theorem 5. Consider the system described by (1.3) and assume that the de-
lay dynamics (1.1)-(1.2) is such that H1) holds. Then the state feedback control
law

u(t) = −KeAδ(t)

[

x(t) + eAt
t+δ(t)
∫

t

e−AθBu(θ − τ(θ))dθ

]

,

δ̇(t) = −
λ

1 − dτ(ζ)/dζ
δ(t) +

dτ(ζ)/dζ + λτ(ζ)

1 − dτ(ζ)/dζ
,

dτ

dζ
(ζ) =

dh

dζ
(z(ζ), ud(ζ)),

dz

dζ
(ζ) = f(z(ζ), ud(ζ)), z(0) = z0,
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with ζ(t) = 1 + δ(t), λ is a positive constant and δ(0) = δ0, ensures that the
system trajectories converge exponentially to zero.

The stability of the resulting time-shifted closed-loop system

dx

dζ
(ζ) = (A−BK)x(ζ) (1.15)

is studied in details in [20] and a direct relationship is established between
the system’s stability and the delays properties. More precisely, the stability
analysis resulted in some precise bounds on the allowable variations of δ(t). It
is also shown that the exponential convergence of (1.3) can be deduced from
the one of (1.15) if H1 holds and with bounded initial conditions.

The problem of remote output stabilization via two channels with time-
varying delays is investigated in [20], considering the class of linear systems
that write as (1.3)-(1.4). A dynamic model for both delays, satisfying the
boundness conditions on the delays and their derivatives is supposed to be
given from (1.1)-(1.2). The following result is obtained for the case of observer-
based control when a time-varying delay is experienced on both communi-
cation channels (ψ(t) on the sensor measurements and τ(t) on the control
signals) and only the system output is available to establish the control law.

Theorem 6. Consider the system described by (1.3)-(1.4). Assume that the
delay dynamics (1.1)-(1.2) is such that H1 holds for both delays, and that

H2) 1 > ψ̇(t) > −1, ∀t ≥ 01

Then, the observer-based feedback control law

u(t) = −KeA(δ(t)+ψ(t)) ˆ̄x(t) −KeA(t+δ(t))

∫ t+δ(t)

t−ψ(t)

e−AθBu(θ − τ(θ))dθ,

˙̄̂x(t) = Aˆ̄x(t) +Bu(t− ψ − τ(t− ψ)) +H{y(t) − C ˆ̄x(t)},

with ˆ̄x(t)=̇x̂(t − ψ(t)) ensures that the system trajectories converge exponen-
tially to zero.

1.4.4 Numerical problems induced by the computation of the

integral term

The computation of the predictive control law is typically carried out thanks
to a finite approximation of the integral part. This leads to a discrete version
which can induce some numerical instabilities. Three studies, carried out for
the case of the constant delays, are quickly described here:

1 this hypothesis is satisfied if the data packets used to establish the control law
are first organized in the proper order and is often used in teleoperation (see [21]
for example).
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• The implementation by numerical quadrature methods is studied in [22],
where it appears that the most precise methods give the worst results (they
induce more oscillations). Compared to the other traditional approaches,
the backward rectangular method gives the most satisfactory result (nei-
ther oscillations nor overshoot).

• An approximation of the control law with distributed delays by one with
only specific delays using a set of block-pulse functions is proposed in [23].
The advantage of this method is that the nature of the closed-loop system
remains unchanged, but its robustness is not studied.

• A last approximation method is proposed in [8], which also uses a finite
number of specific delays. A low-pass filter introduced in the control loop
(in an implicit way) induces a closed-loop quasi-polynomial of delayed type
instead of the original neutral type (source of instabilities), which prevents
the numerical instability.

When the delay is time-varying, the problem is more complex since in this
case the discretization leads to a discrete controller with variable dimension.
The resulting closed-loop system has a variable number of poles and zeros,
which makes it difficult to study the correlation between numerical instabilities
and the sampling period or the discretization method. This problem would
clearly require a more thorough study but we will be satisfied here to use
the method of the backward rectangular rule to approximate the integral.
This choice is motivated by the simplicity of this approach and its relative
robustness in the case of constant time-delays.
The integration step is chosen to be fixed and equal to the sampling period Ts.
The number of steps nk = n(tk) necessary to estimate the integral at a given

instant t = tk then depends on δ̂k = δ̂(tk) and is defined by nk
.
= δ̂k/Ts. This

leads to the following approximation of the integral term, for k = 1, 2, 3, . . .

Ik = I(tk)
.
= eAtk

tk+δ̂(tk)
∫

tk

e−AθBu(θ − τ(θ))dθ,

≈ Ts

nk−1
∑

i=0

e−iATsBu(k + i−
τ(k + i)

Ts
),

where the delay is supposed to be a multiple of the sampling period. This
assumption is not too restrictive if the sampling period is sufficiently small

compared to the delay, so that the fractional part
τ(k + i)

Ts
can be neglected

in the approximation of the integral.
The predictive part of the control law proposed in Theorem 5 can then be
expressed in a discrete way

uk = −KeAδk(xk + Ik).
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The matrix exponent term can be computed in an approximate way by using
the method of Krylov [24] or in an exact way by the method of the components
of matrices [25].

1.5 Application example: control of an inverted

pendulum through a TCP network

The application example presented in this section is the system proposed in
[26], where an “T-shape” inverted pendulum is controlled through a simulated
TCP network. This pendulum dynamics is 4th order, nonminimum phase,
open loop unstable and with coupled nonlinearities. Its linearized model writes
as

ẋ(t) =









0 1 0 0
−21.54 0 14.96 0

0 0 0 1
65.28 0 −15.59 0









x(t) +









0
8.10
0

−10.31









u(t− τ(t)),

y(t) = x(t).

The behavior of the network considered is set by the average deterministic
model established in [27], where a TCP model with a proportional Active
Queue Management (AQM) policy (set on the router’s site) is proposed. The
AQM is introduced with a packet discard function p(x) and acts as a feedback
from the router on the emitter’s window size; the proportional scheme is shown
to be stable in [28]. The network equations then write as

dWi(t)

dt
=

1

Ri(t)
−
Wi(t)

2

Wi(t−Ri(t))

Ri(t−Ri(t))
pi(t), (1.16)

dq(t)

dt
= −Cr +

N
∑

i=1

Wi(t)

Ri(t)
, q(t0) = q0, (1.17)

where Ri(t)
.
=
q(t)

Cr
+ Tpi is the round trip time, pi(t) = Kpq(t − Ri(t)) and

Tpi is the constant propagation delay. The induced time-delay is τi = 1
2Ri(t)

and the router output link capacity are supposed to be constant.

Example 1. The network consists of one router and two TCP flows (the one
used by the system and the controller, and a disturbing one, acting between
t = 10s and t = 25s). Its parameters are such that the time-delay is obtained
from the following dynamics

dW1(t)

dt
=

1

R1(t)
−
W1(t)

2

W1(t−R1(t))

R1(t−R1(t))
p1(t),
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Fig. 1.2. Behavior of the network internal states.

dW2(t)

dt
=

1

R2(t)
−
W2(t)

2

W2(t−R2(t))

R2(t−R2(t))
p2(t),

dq(t)

dt
= −300 +

2
∑

i=1

Wi(t)

Ri(t)
, q(0) = 5,

τ(t) = R1(t)/2,

with R1(t)
.
=
q(t)

300
+0.001, R2(t)

.
=
q(t)

300
+0.0015, pi(t) = 0.005× q(t−Ri(t)),

i = 1, 2, and W1(0) = W2(0.25) = 10 packets. The behavior of the network
internal states q(t), W1(t) and W2(t) is presented on figure 1.2.

We now detail how the TCP model is used in the computation of the
predictor horizon δ(t) to set the control law established in Theorem 5. From
the definition of the Ri(t), we have that

τ(ζ) =
1

2

[

q(ζ)

Cr
+ Tpcs

]

. (1.18)

Deriving the previous equation along with (1.17), it follows that

dτ

dζ
(ζ) =

1

2Cr





N(ζ)
∑

i=1

Wi(ζ)

Ri(ζ)
− Cr



 , (1.19)

where Ri(ζ) is obtained from q(ζ), N(ζ) is assumed to be known. Both Wi(ζ)
and q(ζ) are obtained from the dynamics (1.16)-(1.17): this is done by con-
tinuously computing the solutions of (1.16)-(1.17) up to the time t + τmax.
(1.18)-(1.19) can now be substituted in (1.15) to obtain the dynamics δ̇(t).

Example 2. Considering the delay induced by the network corresponding to
the previous example, the predictor’s horizon is computed for two different
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Fig. 1.3. Computation of the predictor’s horizon.

values of λ and compared with the exact value (computed using dichotomy)
in figure 1.3.

This simulation shows the effectiveness of the proposed estimation to com-
pute the time-varying horizon. The estimated horizon quickly converges to-
ward its exact value (depending on the choice of λ).

Finally, the resulting system response is studied for four different control
laws:

• state feedback,
• state predictor with a variable horizon,
• state predictor with a fixed horizon equal to the maximum delay,
• a buffer strategy, where a buffer is added at the system’s input in order

to make the delay constant (equal to its maximum value τmax), combined
with the previous predictor.

In order to compare these methods, the system response to a non-zero initial
condition and with measurement noises (white vibration of power 0.01 and
core [23341]) are illustrated by the figure 1.4. The temporal evolution of the
pendulum angle shows that, compared to the use of a predictor with a variable
horizon:

• the simple state feedback induces an overshoot and light oscillations when
the initial condition is non-zero, and significant oscillations when a mea-
surement noise is added,

• the state predictor with a fixed horizon, although more suitable than the
previous strategy, induces some oscillations and a longer settling time. It
is also more sensitive to measurement noises,

• the buffer strategy exhibits a quickly compensated initial divergence (due
to the increased delay) and has similar performances as the predictor with
a variable horizon (peak slightly weaker). This strategy has the advantage
of being simpler from the control point of view but introduces an additional
complexity on the system site.
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Note that the previous effects are amplified for delays of more significant
amplitude and/or variation. Some experimental results [9] have shown that the
state feedback can’t stabilize the system in the real case and a bad transient
response, due to some high frequency noise in the control signal, is obtained
if the fixed horizon predictor or the buffer strategy is used.

1.6 Conclusion

In this chapter, the problem of stabilisation through networks has been for-
mulated as the problem of stabilizing a system with a time-varying delay in
the input. The commandability and finite spectrum assignement issues were
presented, along with an overview on the use of state predictors in various
control scheme. The explicit use of the network dynamics in the design of
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the control law was emphasized and illustrated by some simulation examples,
where three predictor-based control laws are compared.
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