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Representation theorems for backward
doubly stochastic differential equations

Auguste Aman *
UFR de Mathématiques et Informatique,
22 BP 582 Abidjan 22, Cote d’Ivoire

Abstract

In this paper we study the class of backward doubly stochastic differential equations
(BDSDES, for short) whose terminal value depends on the history of forward diffusion.
We first establish a probabilistic representation for the spatial gradient of the stochastic
viscosity solution to a quasilinear parabolic SPDE in the spirit of the Feynman-Kac for-
mula, without using the derivatives of the coefficients of the corresponding BDSDE. Then
such a representation leads to a closed-form representation of the martingale integrand of
BDSDE, under only standard Lipschitz condition on the coefficients.

Key Words: Adapted solution, anticipating stochastic calculus, backward doubly SDEs,
stochastic partial differential equation, stochastic viscosity solutions.

MSC: 60H15; 60H20

1 Introduction

Backward stochastic differential equations (BSDEs, for short) were firstly been considered in
it linear form by Bismut [[[], B] in the context of optimal stochastic control. However, nonlinear
BSDEs and their theory have been introduced by Pardoux and Peng [[J]. It has been enjoying
a great interest in the last ten year because of its connection with applied fields. We can cite
stochastic control and stochastic games (see [§]) and mathematical finance (see [fi]). BSDEs
also provide a probabilistic interpretation for solutions to elliptic or parabolic nonlinear partial
differential equations generalizing the classical Feynman-Kac formula [[3, [4]. A new class
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of BSDEs, called backward doubly stochastic differential equations (BDSDEs, in short), was
considered by Pardoux and Peng [[J]. This new kind of BSDEs present two stochastic integrals
driven by two independent Brownian motions B and W and is of the form

T T
Y, = ¢+ [ f0nviz) dr+/ o(r, Y., Z,) | dB,
T

—/ Z.dW,. s e [T, (1.1)

s

where £ is a square integrable variable. Let us remark that in the sens of Pardoux Peng, the
integral driven by {B,},>o is a backward It6 integral and the other one driven by {W,},>o
is the standard forward Ito integral. Further, backward doubly SDEs seem to be suitable
giving a probabilistic representation for a system of parabolic stochastic partial differential
equations (SPDEs, in short). We refer to Pardoux and Peng [[] for the link between SPDEs
and BDSDEs in the particular case where solutions of SPDEs are regular. The general situation
is much delicate to treat because of difficulties of extending the notion of viscosity solutions to
SPDEs. The stochastic viscosity solution for semi-linear SPDEs was introduced for the first
time in Lions and Souganidis [[L0]. They used the so-called "stochastic characteristic" to remove
the stochastic integrals from an SPDE. Another way of defining a stochastic viscosity solution
of SPDE is via an appeal to the Doss-Sussman transformation. Buckdahn and Ma [{, ] were
the first to use this approach in order to connect the stochastic viscosity solutions of SPDEs
with BDSDEs.

In this paper we consider the approach of defining stochastic viscosity solution of SPDEs
given by Buckdahn and Ma [B, f]] which, in our mind is natural and coincide (if g = 0) with
the well-know viscosity solution of PDEs introduced by Crandall et al [{]. In this fact, we will
work in the sequel of this paper with the version of backward doubly SDEs introduced in [B, f],
which is in fact a time reversal of that considered by Pardoux and Peng [[J]. Indeed, for I, f
be Lipschitz continuous functions in their spatial variables and g € C"**(]0, T] x R? x R; R%),
they consider a class of backward doubly SDEs is of this following form:

Vi = )+ [ XY 2 e [ gl xe v b,
0 0
_/ 2 | W, s € [0.4]. (12)
0

The diffusion process X** is the unique solution of the forward SDE
t t
X =g +/ b(r, XH*) dr +/ o(r, XH) | dW, s € [0,1], (1.3)

where b and o are some measurable functions. Here the superscript (¢, z) indicates the depen-
dence of the solution on the initial date (¢,z), and it will be omitted when the context is clear.



Buckdahn and Ma proved in their two works [f, f[], among other things, that u(t, z) = Y;*" is
a stochastic viscosity solution of nonlinear parabolic SPDE:

du(t,x) = [Lu(t,x) + f(t,x,u(t,x), (Vuo)(t,x))] dt
+g(t,z,u(t,x)) dBy, (t,z) € (0,T) x R?, (1.4)

u(0,x) = I(x), r € RY,
where £ defined by

n k
L= % Z Z 0101, (I)aixj + Z bj(x)0s,,

i,j=1 I=1 J=1

is the infinitesimal operator generated by the diffusion process X**. More precisely, they show
thank to the Blumenthal 0-1 law that

t
u(t,az) = IE{[(X&I)_’_/ f(T,Xﬁ’x,Y;t’z,Zf,’x) ds
0
t
+/ g('f’, X;Eyﬂ?’y'rt,x) dBr ‘ ftB} ) (15)
0

It is well know that u is a FZ-measurable field. However, to the best of our knowledge, to date
there has been no discussion in the literature concerning the path regularity of the process 7
when f and [ are only Lipschitz continuous, even in the special cases where the coefficients are
enough regular.

Our goal in this paper is twofold. First we show that if the coefficients [ and f are con-
tinuously differentiable, then the viscosity solution u of the SPDE ([[Z4) will have a continuous
spatial gradient 0,u and, more important, the following probabilistic representation holds:

daatta) = B N+ [0 v 2N
0
t

v [ atrxt v as, | 7P (16
0

where N¥ is some process defined on [0, s], depending only on the solutions of the forward SDE
([:3) and its variational equation respectively. This representation can be thought of as a new
type of nonlinear Feynman-Kac formula for the derivative of u, which does not seem to exist in
the literature. The main significance of the formula, however, lies in that it does not depend on
the derivatives of the coefficients of the backward doubly BSDE ([.2). Because of this special
feature, we can then derive a representation

75 = O,u(t, X!7)o (1, X17), s € [0,1], (1.7)
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under only a Lipschitz condition on [ and f. This latter representation then enables us to prove
the path regularity of the process Z, the second goal of this paper, even in the case where
the terminal value of Y% is of the form I(X,,, ..., X;,), where 7 : 0 =ty < .. < t, =t is any
partition of [0,¢], a result that does not seem to be amendable by any existing method.

Let us recall that this two representations have already be given by Ma and Zhang [T in
the case of a probabilistic representation for solutions of PDEs via BSDEs. Consequently our
approach is be inspired by their works. However, there are particularities: first, the derivative
notion is take in the flow sense (independent of wy) because u, the stochastic viscosity solution
of the SPDE ([[.4), is a random field. Secondly, the proof to the continuity of the representation
of the process Z need, since F, = (FZ @ F)Y)o<s< is not a filtration, G% = (FF @ ) )o<s<t
which is a filtration.

The rest of this paper is organized as follows. In section 2 we give all the necessary pre-
liminaries. In section 3 we establish the new Feynman-Kac formula between coupled forward
backward doubly SDE ([L1))-(L.3) and the SPDE ([[.4), under the C'-assumption of the coef-
ficients. The section 4 is devoted to give the main representation theorem assuming only the
Lipschitz condition of the coefficients [ and f. In section 5 we study the path regularity of the
process Z.

2 Preliminaries

Let T > 0 a fixed time horizon. Throughout this paper {W;,0 < ¢t < T} and {B;,0 <
t < T} will denote two independent d-dimensional Brownian motions defined on the complete
probability spaces (€21, F1,IP1) and (€, F2, IP3) respectively. For any process {Us, 0 < s < T}
defined on (Q;, 7, IP;) (i = 1,2), we write FU, = o(U, — U, s <r < t) and F = F{,. Unless
otherwise specified we consider

Q:Q1XQQ, F:F1®f2 andIP:IP1®IP2.
In addition, we put for each t € [0, T],
F={F,=FP@F VN, 0<s<T}

where N is the collection of IP-null sets. In other words, the collection F is IP-complete but
is neither increasing nor decreasing so that, it is not a filtration. Let us tell also that random
variables &(w), wy €  and ((ws), we € 2 are considered as random variables on € via the
following identification:

{(wr,wa) = &(w1);  C(wi,wa) = ((wa).

Let E denote a generic Euclidean space; and regardless of its dimension we denote (;) to be
the inner product and |.| the norm in E. if an other Euclidean spaces are needed, we shall label
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them as Ey; Fs, ., ., etc. Furthermore, we use the notation 0, = 2, 0, = (-2, -2 9) and

at’ dzx1’ Oz2’ ") dxg

0 = Ope = (87,,,)¢ 21, for (t,2) € [0,T] x R?. Note that if ¢ = (¢, .., ¢%) : R? — RY, then

O

1,7=1>

£ (Oxj0")?._, is a matrix. The meaning of 9, 0y, etc. should be clear from the context.

Ty Y'Yy
The following spaces will be used frequently in the sequel (let X denote a generic Banach
space):
1. For t € [0,T], L°([0,]; X) is the space of all measurable functions ¢ : [0,¢] — X.

2.

For 0 <t < T,C([0,t]; X) is the space of all continuous functions ¢ : [0, t] — X; further,
for any p > 0 we denote |p|g} = sup [¢(s)]|% when the context is clear.
0<s<t

. Forany k, n > 0, C*"([0, T| x E; E) is the space of all Ej-valued functions ¢(t,¢), (t,e) €

[0,T] x E, such that they are k-times continuously differentiable in ¢ and n-times contin-
uously differentiable in e.

. CH[0,T] x E; Ey) is the space of those ¢ € C'([0,T] x E; E;) such that all the partial

derivatives are uniformly bounded.

Whe(E, E) is the space of all measurable functions ¢ : E — FEj, such that for some
constant K > 0 it holds that | (z) — ¥ (y)|g, < K|z — y|g,Va,y € E.

For any sub-o-field G C FZ and 0 < p < oo, LP(G; E) denote all E-valued G-measurable
random variable ¢ such that IE|{]? < oco. Moreover, £ € L*(G;E) means it is G-
measurable and bounded.

For 0 < p < oo, LP(F,[0,T]; X) is the space of all X-valued, F-adapted processes &
T
satisfying IE (/ H&Hggdt) < o0; and also, £ € L=(F, [0, T]; IR?) means that the process
0
¢ is uniformly essentially bounded in (¢, w).

C(F,[0,T] x E; Ey) is the space of Fi-valued, continuous random field ¢ : Q x [0,T] X E,
such that for fixed e € E, ¢(.,.,e) is an F-adapted process.

To simplify notation we often write C'([0,T] x E; E;) = C%°([0, T] x E; E}); and if By = IR, then
we often suppress F for simplicity (e.g., C*"([0,T] x E;R) = C*"([0,T]|x E), C*"(F, [0,T] x
E;R) = C*(F, [0,T] x E), ..., etc.). Finally, unless otherwise specified (such as process Z
mentioned in Section 1), all vectors in the paper will be regarded as column vectors.

(A

Throughout this paper we shall make use of the following standing assumptions:

1) The functions o € C"'([0, 7] x R% IR™?), b € C' ([0, T] x IR%; IRY); and all the partial
derivatives of b and o (with respect to z) are uniformly bounded by a common constant
K > 0. Further, there exists constant ¢ > 0, such that

lo(t,x)o(t,x)T¢ > ¢, Vo, & € Rt € [0, T]. (2.1)



(A2) The function f € C(FB,[0,T] x R? x R x R") n W5*([0,T] x R? x R x IR?) and
I € WH°(IR%). Furthermore, we denote the Lipschitz constants of f and I by a common
one K >0 as in (Al); and we assume that

sup {|b(£,0)[ + [o(£,0)[ +[f(£,0,0,0)| + [g(0)[} < K. (2.2)

0<t<T
(A3) The function g € C"**([0,T] x IR? x IR; IR%)

The following results are either standard or slight variations of the well-know results in
SDE and backward doubly SDE literature; we give only the statement for ready reference.

Lemma 2.1 Suppose that b € C(F,[0,T] x IR*; IR) N LO(F, [0, T]; W">=(R?; IR")),

o € C(F,[0,T] x IR*; IR™™ N LO(F, [0, T]; W (R%; IR™®)), with a common Lipschitz constant
K > 0. Suppose also that b(t,0) € L*(F,[0,T]; IRY) and o(t,0) € L*(F, [0, T]; IR™?). Let X be
the unique solution of the following forward SDE

t t
X,=ux +/ b(r, X,) dr +/ o(r, X,) dW,. (2.3)

Then for any p > 2, there exists a constant C' > 0 depending only on p,T and K, such that

E(X|5) < C {mp 18 [ [0 + a5, 0)F ds} (2.0

Lemma 2.2 Assume f € C(F,[0,T] x IR x IR*)N LO(F, [0, T]; W"“(IR x R%)), with a uniform
Lipschitz constant K > 0, such that f(s,0,0) € L*(F,[0,T]) and g € C(F,[0,T] x IR x
IRY IRY) N L°(F, [0, T]; Wh*(IR x R% IR")) with a common uniform Lipschitz constant K > 0
with respect the first variable and the Lipschitz constant 0 < « < 1 which respect the second
variable and such that g(s,0,0) € L*(F,[0,T]). For any & € L*(Fo; IR), let (Y, Z) be the adapted
solution to the BDSDE:

Y,=¢ +/ f(r,Y,, Z.) dr +/ g(r,Y,, Z,) dB, — / Zy | dW,. (2.5)
0 0 0

Then there exists a constant C' > 0 depending only on T and on the Lipschitz constants K and
«, such that

B[ ztas < om{ig+ [16.0.00 +los.0.00 s . (2.6

Moreover, for all p > 2, there exists a constant C, > 0, such that

B(Y);?) < csz{|5|p + [ 17000 +lgts 0.0 ds} (2.7)



We now review some basic facts of the anticipating stochastic calculus, especially those related
to the backward doubly SDEs (see Pardoux-Peng [17]). For any random variables & of the form

T T T T
é: F (/ gOlth, ..,/ QOndWs,/ wlst, ,/ wdeS)
0 0 0 0

with F' € C2(R™P), oy, ..., 00 € L2([0,T],RY), 41, ..., ¢, € L*([0,T],IR?), we let

" OF
B

T T T T
Dtg = Z . (/ SpldVVta "a/ QpndWsa/ ,lvz)ldBSa 7/ ¢de5) sz(t)
i i 0 0 0 0

For such a &, we define its 1, 2-norm as:

T
lelts = 6+ [ 1Digiar].
0
S denoting the set of random variable of the above form, we define the Sobolev space
DL2 2 §|l-||1,2

The "derivation operator" D extends as an operator from ID*? into L?(Q, L*([0, 7], R%)).

We shall apply the previous anticipative calculus to the coupled forward backward doubly
SDEs ([.3)-(L:2). In this fact, let us consider the following variational equation that will play
a important role in this paper: for i =1, ..,d,

t d t
VX = et / .b(r, X)X dr + Y / D,0? (1, X14)V,XL* | W,
S ]71 S

VYT = 0.(X5")ViXy"
+ / (00 (r, 2 () VX" 4+ 0y f(r, BV () ViV, 4 (0. f (r, 2 (r), ViZp) Jdr
0

+ / [0,9(r, O%%(r))V: X5 + 8,g(r, 05 (r))V,Y,2*|dB, — / Y, 20 | dW,, (2.8)
0 0

where ¢; = (0,...,1,...,0)" € RY =% = (4%, Zt+), @5 = (X* V) and ¢9(.) is the j-th
column of the matrix o(.). We recall again that the superscription “* indicates the dependence
of the solution on the initial date (¢, x), and will be omitted when the context is clear. We also
remark that under the above assumptions,

(VX8 VY™ VZh) e L(F; C([0, T]; R™) x C([0, T]; IRY) x L*([0, T); R™?)).

Further the d x d-matrix-valued process VX% satisfies a linear SDE and VXf’”C = I, so that
(VX521 exists for s € [0,¢],P-a.s. and we have the following:
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Lemma 2.3 Assume that (A1) holds; and suppose that f € C"'([0,T] x IR**™) and
g € CP¥*([0,T] x R™; RY). Then (X,Y,Z) € L*([0,T]; ID"*(IR**™")), and there exists a
version of (DsX,, DsY,, DsZ,) that satisfies
DX, = VXT(VXS)fla(S,XS)l{SST},
DY, = VY, (VX,)o(s, Xs)ls<rp, 0<s,r <t (2.9)
DSZT = VZT(VXS)_lU(S,XS)l{SST},

Lemma 2.4 Suppose that F € ID"*. Then

(1) (Integration by parts formula): for any w € Dom(8) such that Fu € L*([0,T] x €; IR?), one
has Fu € Dom(0), and it holds that

T T T
/ (Fug, dWy) = §(Fu) = F/ (ug, dWry) —/ D, Fuydt;
0 0 0
(17) (Clark-Hausman-Ocone formula):

T
F = IE(F) + / IE{D,F | F,}dW,.
0

3 Relations to stochastic PDE revisited

In this section we prove the relation ([[.4) between the forward backward doubly SDE ([L.2)-([L.3)
and the quasi-linear SPDE ([[.4)), under the condition that the coefficients are only continuously
differentiable. Indeed, since Buckdahn and Ma [B, {] provide that, if f and [ are only Lipschitz
continuous, the quantity u(t,z) = th is a stochastic viscosity solution of the quasi-linear
SPDE (L.4), relation in ([.7) becomes questionable. Our objective is to fill this gap in the
literature and to extend the results of Ma and Zhang [[[T] given in the case of the probabilistic
interpretation of PDEs via the BSDEs.

Theorem 3.1 Assume (A1) and (A3) and suppose that f € C'([0,T] x IR* x IR x IR?) and
1 € CHIRY). Let (X Y 7Z5%) be the adapted solution to the FBDSDE ([2)-(3), and set
u(t,z) = Y;"" the stochastic viscosity of SPDE (T4). Then,

(1) Oyu(t,x) exists for all (t,z) € [0,T] x IR®; and for each (t,x) and i=1,...,d, the following
representation holds:

Opu(t,z) = IE{9,U(X5")ViXy"
t
+ / [0, f (r, B4 (r) )V X5 4 0, f (r, 242 (1)) VY5 + 0, f(r, B4 (r) )V, 25 drr
0
t
! / [02g(r, 0" (1) ViX}" + Dyg(r, % (r)) VY, |d B, | ff} (3.1)
0

8



where @4 = (Xtr Yh*) Zte = (@4 Z4%), and (VX5 VY"* VZ4*) the unique solution of
equation (B.9);

(i) Opu(t,x) is continuous on [0,T] x IR%;

(i) Zb" = Opu(s, X2")o (s, X1"),V s € [0, ], IP-a.s.

Proof. For the simple presentation we take d = 1. The higher dimensional case can be treated

in the same way without substantial difficulty. We use the simpler notations I, (fz, fy, f2), (92, 9y 92)
respectively for the partial derivatives of [, f and g.

The proof is inspired by the approach of Ma and Zhang [[1]] (see Theorem 3.1). Nevertheless,
there exists slight difference due in the fact that the solution of SPDE’s is a random field; more
precisely will show that it is a conditional expectation with respect the filtration (F?)o<i<r.

We first prove (i). Let (t,x) € [0,T] x IR be fixed. For h # 0, we define:

Xt,a:—i—h o Xt,x Yt,x-l—h o Yt,a: Zt,x-‘,—h o Zt,at
VX!=" VY= vz = T 50,1,
S h ? S h ? S h S [ 7 ]
It follows analogously of the proof of Theorem 2.1 in [[[J]) that
E{AY"[5} = E{|VY" — VY™ |7} — 0as h — 0. (3.2)

We know also that processes Y5*, Yt#+th TY" and AY" are all adapted to the o-algebra
F' = (Fl)ocs<t» where Fl = FP @ FI%. In particular, since W is a Brownian motion on

(Q, F»,TPy), applying the Blumenthal 0-1 law (see, e.g, [[]), Y,/"" = u(t,z), ;""" = u(t,z +
h), VY = +[u(t,z 4+ h) — u(t,z)] and AY;" are all independent of (or a constant with respect
to) wy € Qy. Therefore we conclude from the above that J,u exist, as the random field and
Opu(t,z) = VY ", for all (t,z). Finally, taking the conditional expectation on the both sides

of (B-§) at s = ¢, the representation (B-]]) hold and finish the prove of (7).

We now prove (ii). Let (¢;,x;) € [0,T] x R, i = 1,2. Knowing that ¢; and ¢, played inverse
roles one another, we assume without losing a generality that t; < ¢5. Since J,u is a conditional
expectation with respect the filtration (F2)o<,<;, we have

Oty 21) — Opu(ts, m2)| < IE{A(t,21) — A(ts, 22) | FP}
+[E{A(ts, 2) | Fi)} = B{A(t2,22) | FJ} (3.3)

where
Alta) = L(XE")VXL
t
i / [fa(r, EX(r))VXDT + fy (r, EX () VY + for, 24 (r)) V2, "] dr
0

t
+/ (g (r, O (1)) VX1* + gy (r, O (r)) VY *|dB,. (3.4)
0

9



Thanks to the quasi-left-continuity of (F?)o<,<¢, we see that
lim |E(A(ts, z2) | FP) — E(A(ts, 22) | FE)| =0, (3.5)

t1lt2
independently of x5. In virtue of (B.3) and (B.H)), to prove (i) it remain to show that
lim  E{A(t,z1) — A2, z2) | FP} = 0. (3.6)

t1|tox1—a2

To this end, since A(t, x) is a stochastic process and in virtue of Kolmogorov-Centsov Theorem
(see [PA), it suffices to show that

IE (JA(ty, 21) — A(ta, 22)[*) < C(Jty — to]® + |21 — 25?),
what we do now. Recalling the definition of A(¢;,x;), ¢ = 1,2 and denoting
G (r) = fo(r, EM () VX" + fy(r, 29 (r)) VY + fo(r, B (r)V 2"

and
H"(r) = go(r, 0% (r))VX® 4 g, (r, 0% (1)) VY7,

we get
|A(tr, 21) — Altg, 72)] < (X" ) VX = L(Xg") VX"
t1 t1
+/ |Gt1’zl(r) - GtQ’xQ(r)|dr + / (Htl’”“(r) — Ht2e2 (r))dB,
0 0

to
/ H"™%(r)dB,

t1

to
+/ |G™%2 () |dr +

t1

Taking the expectation, it follows by Holder’s and Burkolder-Gundy Davis inequalities that
E (|A(t, 21) = Atz 22)[?) < CEA{JL(X") VX" — L(Xe7™) VX ")

t1
/ (Htl’xl(’l“) _ Htg,xg(r))dBr
0
to 2
/ H™"(r)dB,
t1
< O |l (X" VX" — 1 (X ™) VX 2

t1 t1
+ / |G (1) — G2 (T)|2d’l° + / | H™ " (1) — HtQ’”(r)|2dT
0 0

to to
+(t2—t1)/ |Gt2’x2(r)|2dr+(t2—t1)/ |Ht2’“('r)\2dr}.

t1 t1

2

t1
+ / |G (1) — G2 (7‘)|2dr +
0

t2
+/ |Gt2’x2(r)|2d7“+

t1

By similar standard computations in Ma and Zhang [[L]] (see proof of Theorem 3.1), we obtain
IE (‘A(tl, 1’1) — A(tQ, 1’2)‘2) S C(|t2 - t1|2 + |.T2 - $1‘2)
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that provide the proof of (7).

It remains to prove (i4i). For a continuous function ¢, let us consider {¢}.. a family of C'%>
functions that converges to ¢ uniformly. Since b, o, [, f are all uniformly Lipschitz continuous,
we may assume that the first order partial derivatives of b°, ¢, [¢, f¢ are all uniformly bounded,
by the corresponding Lipschitz constants of b, o, [, f uniformly in € > 0. Now we consider the
family of FBDSDEs parameterized by € > 0:

Xb® =g + f; b (r, X2 )dr + f: oc(r, Xt*) | dW,;
(3.7)
VIS EOX) 4 [ T XY 2 [ o X YE)AB, — [ 70 L,

and denote it solution by (X**(¢), Y4%(¢), Z5%(¢)). We define u®(t, z) = Y;""(¢). Theorem 3.2
of [[[3] provide that u° is the classical solution of stochastic PDE

dus(t,x) = [Lou(t,x) + fo(t, z,u*(t, z), (Vuso®)(t, x))] dt
+g(t,z,uf(t,z)) dBy, (t,z) € (0,T) x RY, (3.8)
u(0,z) = I°(x), z € RY.
For any {z°} C IR" such that * — z as ¢ — 0, define

(X=,Y%,Z5) = (X5 (g), Y1 (g), Z%%" (¢)). Then it is well know according the work of Pardoux
and Peng [[J] that

Y =w'(s, X5); Z:=0u (s, X )o(s,X5), Vsel0,t], P—a.s. (3.9)

S

Now by Lemma 2.1 and Lemma 2.2, for all p > 2 it hold that
t
IE{|X€_X|;;§+|Y6_Y|33§’+/ |Z§—ZS|2ds} 0 (3.10)
0

as ¢ — 0. Moreover let us recall (VX¢ VY¢ VZ¢) the unique solution of the variational
equation of (B.7]). Using again Lemma 2.1 and Lemma 2.2 we get

t
E {|VX5 - VX|gf +|VY*® = VY57 +/ \VZ: — VZ8|2ds} — 0, (3.11)
0
as € — 0. Thus it is readily seen that
E{I; (X5)VXG| A} — Bl (Xo) VX 7}
IP-a.s., as ¢ — 0. Furthermore, by the analogue step used in [[[I], one can show that

E { [U0VX+ 09+ 092+ [ v+ gy<r>vmd3r|ff}
0 0
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converge to
t t
F { / (VX + £, (VY + £(r)V Z]dr + / 0 (1) VX, + gy<r>vn]dgr\53}
0 0
[P-a.s., as € — 0. Therefore, we get
Opu(t, 2°) — Opu(t,x), as ¢ -0 P —a.s.,
for each fixed (¢, ) € [0,T] x IR. Consequently, possibly along a subsequence, we obtain

Z: = lim 0u®(s, X:)o®(s, X°) = Ou(s, X5)o(s, Xs), dsxdP —a.e.

S
e—0

Since for IP —a.e. w, Jd,u(.,.) and X are both continuous, the above equalities actually holds
for all s € [0,¢], IP-a.s., proving (¢i¢) and end the proof. m

The following corollary is the direct consequence of the Theorem B.]. The convention on
the generic constant C' > 0 still true.

Corollary 3.2 Assume that the same conditions as in Theorem B hold, and let (X", Y* Z%*)
be the solution of FBDSDE (L.3)-(L.3). Then, there exists a constant C' > 0 depending only on
K, T, and for any p > 1, a positive LP(S), (F!)o<s<i, IP)-process T'%*, such that

|0,u(t,z)| < CTP*, ¥ (t,z) €[0,T] x R, IP— a.s. (3.12)
Consequently, one has
|Zb% < OTY (14 | XE*)), Vs e [0,t], IP—a.s. (3.13)
Furthermore, ¥V p > 1, there exists a constant C, > 0, depending on K, T, and p such that
E{ XG0+ Yo +1207150 < Co(1+ |a). (3.14)

Proof. We assume first that p > 2. The case 1 < p < 2 then follows easily from Hoélder
inequality. By Lemma 2.1 and Lemma 2.2, we can find constant C' > 0 such that

T p/2
I {|VXt’x\Szi’+ VYHlor + (/ IVZ?IFdr) } sC
0

Then, from the identity (B-]), we deduce immediately that |0,u(t,z)| < CTV*, for all (¢,z) €
[0,7] x IR, where
7).

" =1 <|VX5””| +/ ([VXE?] + VY| + |V ZE |dr +
0

/ VX + VY|dB,
0

12



Moreover we get for s € [0,t], IE(|T'%*|P) < C. Then Theorem B] (i) implies that
| Zo7| < OTL(1+ [Xg7)), Vs e[0,t], IP-as.

Now, applying again Lemma 2.1 and 2.2 and recalling (B.13) we get (B:I4), forp > 2. =

To conclude this section, we would like to point out that in Theorem 3.1, the functions
f and [ are assumed to be continuously differentiable in all spatial variables with uniformly
bounded partial derivatives, which is much stronger than standing assumption (A2). The
following theorem reduces the requirement on f and [ to only uniformly Lipschitz continuous,
which will be important in our future discussion.

Theorem 3.3 Assume (Al)-(A4), and let (X,Y,Z) be the solution to the FBDSDE ([L.3)-
(L3). Then for all p > 0, there exists a constant C,, > 0 such that

B{IXI57+ V157 + ess sup (2P} < Cyl1+ el (3.15)
t

0<s<

Proof. In the light of the corollary B.2, we need only consider p > 2. By Lemma 2.1 and
Lemma 2.2 it follows that for any p > 0 there exists Cj, > 0 such that

E{IX[o7 + Yo7} < Go(1 + [2/?). (3.16)

Next, by similar argument of Theorem 3.1 (iii), we consider two sequences of smooth functions
{f¢}: and {i°}. with their first order derivatives in (x,y, z) uniformly bounded in ¢ and ¢ such
that

lim {( sSup |f€(t,l‘,y, Z) - f(t,{L‘,y,Z)l + sup |l€(ZL‘) - Z(ZL‘)|} = 0.

=0 | (t2,9,2)

Denoting (X¢,Y*¢, Z¢) the unique solution of the corresponding FBDSDESs and applying Corol-
lary B.2, we can find for any p > 2 a constant C), > 0, independent of ¢, such that

I (1257) < Cp(1+ JoP). (3.17)

t
Furthermore, by (B.10) we know that IE/ |Z¢ — Z,|*ds — 0 as € — 0. Thus, possibly along
0

a sequence say (€,)n,>1 we have lim, ., Z°» = Z ds x dIP-a.s. Applying Fatou’s lemma and
recalling (B.17) we the obtain

IE {ess sup |Z8|p} < Cp(1 4 |z]P)

0<s<t

which leads to (B.19), as desired. m
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4 Representation theorem

In this section we shall prove the first main theorem of the paper. This theorem can be
regarded as an extension of the nonlinear Feynman-Kac formula obtained by Pardoux-Peng
[[3]. It gives a probabilistic representation of the gradient (rather than the solution itself)
of the stochastic viscosity solution, whenever it exists, to a quasi-linear parabolic stochastic
PDE. Unlike the cases studied in (B.I]), in this section, our representation does not depend
on the partial derivatives of the functions f,/ and g. In this context such representation is
the best tool for us to study the path regularity of the process Z in the BDSDE with non-
smooth coefficients. For notational simplicity, we shall drop the superscript »* from the solution
(X,Y, Z) of FBDSDE ([[.2)-(L.3).

To begin with, let us introduce the two important stochastic integrals that will play a key
role in the representation:

T

M= / o r X)X | W,

and
1
s—r

N? = (MHTIVX, ], 0<r<s<t.

Let us recall that
s p
E|M:* < CJE (/ lo1(r, XT)VXT|2dT) (4.1)

< Cypls —r)E ([VX,[52P) < Cy(s — )P,

s,T

where C}, > 0 is a generic constant.
An other hand, let us define the filtration G' = {fsB ®ftW, 0<s< t} which will play a
important role in the proof of the continuity of the process Z in the BDSDE.

Lemma 4.1 For any fized t € [0,T] and any H € L= (F*,[0,T]; IR) we have

(i) IB| [J = H,M!dB,| < 400

0 s—r

(i) for IP.a.e., w € Q, the mapping s — [; ==H,(w)M(w)dB,(w) is continuous on [0,1]

T

(it1) for IP.a.e. ,w € Q, the mapping s — IE{[; Z=H,M[dB,/G!}(w) is continuous on [0,t]

Proof. First, for any 0 < 7 < s <t we denote

f; ﬁHrMﬁdr, 0<7<s

A = (4.2)
0, if s=r.
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To simplify notation, when 7 = 0 we denote Aj = A,. Further, let 3 be such that « = 1-25 < %
and # < 1. Consider the random variable

M
M* — sup | t1 |

0<ti<tr<t (ta — 1)

(4.3)

then by ([2)) and Theorem 2.1 of Revuz-Yor [[[§], we see that IE[M*]? < +oc.

To prove (i) we note that for any 0 < 7 < s < ¢ by Burkholder-Gundy- Davis’s inequality

one has
s 5 1/2
E|As| < COF (/ dr)
Com P Mg\
cr (/ (5 (s ) d””)
s 9 1/2
CIE </ dr) M*

C_dr \” : . :
< CB([ ) A = Cl - B ), (1)

H,M?
S—7T

IA

|H,

(s —1r)8

VAN

where ||.|| denotes the norm of L>([0, 7). Again letting C' > 0 be a generic constant depending
only on 3 and T, we have

E[A3] < C{B|H|Z}*{IE(M")*}?

<
S C”HHLO"([O,T}XQ)HM*HLQ(Q) < 0. (45)

Setting 7 = 0 in (£.3) we proved (i).

To prove (ii) let 7 = 0 and observe that, in view of (i), A is a stochastic integral for
0 < s < t. Consequently, the mapping s — Ay is continuous on [0,t]. It remain to prove (ii).
In this fact, we remark that the right-hand side of the inequality (f.4) (with 7 = 0) is clearly
in L'; thus we check easily that the process A is uniformly integrable. Therefore, by similar
step in Ma and Zhang [[[T]] (see proof for (iii) of Theorem 4.1) it follows that the G'-optional
projection of A, denoting °A; = IE(A,|G!), s € [0,¢], has continuous path. This prove (iii),
whence the lemma. m

Theorem 4.2 Assume that the assumptions (A1)-(A4) hold, and let (X,Y,Z) be the adapted
solution to FBDSDE ([3)-(L3). Then

(1) the following identity holds IP-almost surely:

Z, = JE{Z<X0>N5+ / f(r, X, Yy, Z,)Nzdr + / g(r,Xr,mNﬁdBAf;}a(s,Xs>
0 0

VOo<s<t;
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(73) There ezists a version of Z such that for IP-a.e. w € §2, the mapping s — Zs(w) is contin-
UOUS;

(zii) If in addition the functions f and | satisfy assumptions of Theorem 3.1, then for all
(t,z) € [0,T] x IR* it holds that
t t
dpult,r) = JE{Z(XO)N3+/ f(s,XT,K,Zr)Nﬁdr+/ g(r, XT,K)N;?dBTU-"tB}.
0 0
(4.7)

Proof. Again we shall consider only the case d = 1. We assume first that | € C}(IR) and
f € P[0, T] x IR?). Using the nonlinear Feynman-Kac formula of Pardoux and Peng [[J] we
obtain that for 0 < s <'t,

u(s, X,) =Y, = IE {Z(XO) +/ f(r,X,..Y,, Z.)dr +/ g(r, X,, K)dBA]—"ﬁ} . (4.8)
0 0
Similar arguments to those used in the work of Ma and Zhang [[], provide the following:
deu(s, Xs) =1E {Z(XO)NOS +/ f(r, X, Y, Z,)N2dr +/ g(r, XT,K)Nder|fst} .
0 0

In particular, setting s = ¢ we obtain ([L7), this proves (ii7).

We now consider the general case. First we fix s € [0,¢]. For o =1, f, let o € C* & > 0,
be the mollifiers of ¢, and let (Y¢, Z%) be the solution of the BDSDE in ([.J) with coefficients
(¢, f¢,g). Then for each ¢ > 0, as the previous we get

zi = w{reans+ [ Xz [ oo X veNBIF ot X.)
0 0
(4.9)

Passing to limit as & goes to zero in (f.9), we get ([.§) IP-a.s., for each fixed s € [0, ¢].

We should note that to prove part (i) we still need to show that (f.§) actually holds for all
s € [0,T], IP-a.s., but it is easy to see that this will follow from part (ii); that is, the process
Z has a continuous version. Thus it remain to prove only (ii). To do this we first note that

7, = E{z<X0>N5+ / F(r, X, Vi, Z,)Nidr + / g(T,Xr,K)NidBAGﬁ}U(S,Xs)-
0 0
(4.10)

Lemma 4.1 in [[J]] and Lemma 4.1 imply that the mapping

T s
s— IE {/ f(r, X, Y., Z, )N dr + / g(r, X, Yr)NdeAQE}
s 0
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is a.s. continuous on [0,¢]. By the similar ideas used in Ma and Zhang [[1] replacing F*
which here is not a filtration by G, it follows that the mapping s — IE {{(Xo)N§|G:} is also
continuous on [0, ¢]. Consequently, the right side of ([L.6]) is a.s. continuous on [0, ¢], and hence
(E-6) holds for all s € [0, ], IP-a.s., proving (ii), whence the theorem. m

Remark 4.3 A direct consequence of Theorem 4.2 that might be useful in application is the
following improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,
there exists a constant C, > 0 depending only on T, K and p such that

E{|X[57 + 1Yy + 12107} < Co(1+ [af) (4.11)
Indeed, since by Theorem 4.1, Z has a continuous version, thus (B.15) becomes (f.11))

5 Discrete function case

Let us recall that we have proved in Theorem 4.2 that the process Z in the solution to the
FBDSDE ([.3)-(L.9) has continuous paths, under the condition that the coefficients f and [ are
only uniformly Lipschitz continuous. While such a result is already an improvement of that of
Pardoux and Peng [[F], it still within the paradigm of the standard FBDSDE in the literature,
to wit, the terminal condition of the BDSDE is of the form [(X;) (see also [13]). In this section
we consider the class of BDSDEs whose terminal conditions are path dependent. More precisely,
we assume that the terminal condition of the BDSDE is the form £ = I(X,,, Xy, ...., X}, ), where
0=ty <t <.. <t,="tisany partition of [0, ¢]. We shall prove a new representation theorem
for the process Z, and will extend the path regularity result to such a case.

Theorem 5.1 Assume that (A1)-(A3) hold; and in (A3), | : RY"D — IR, Letw:0 =1, <
t < ... < t, =t be a given partition of [0,t], and let (X,Y, Z) be the unique adapted solution
to the following FBDSDE:

t t
X, = x—i—/ b(r,Xr)d'r’—l—/ o(r, X,.)dW,,
}/; = Z(Xtoatha"'ath)+/ f(T,XT-,}/;,Zr)dT (51)
0

+/ g(r,Xr,K)dBr—/ Z.dW,, s € [0,t].
0 0

Then on each interval (t;_1,t;),i = 1,....,n, the following identity holds:
Jy = ]E{l(XtO,th,...,th)Nél +/ f(r, XraYer)N{?vti,ldT
0
+/ g(T, XraK’)Nf\/ti_ldBr|f§} O'(S,XS). S € (ti—lati) (52)
0
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Further, there exists a version of process Z that enjoys the following properties:

(1) the mapping s — Z is a.s. continuous on each interval (t;_1,t;), i =1,.....n;

(1) limits Zt; = limgyy, Z5 and th = limg4, Zs exist;

(13i) Vp > 0, there exists a constant C, > 0 depending only on T, K and p such that
EIAZ, P < Cp(1+ |z|") < 0. (5.3)

Consequently, the process Z has both cadlag and caglad version with discontinuities to, ..., t,
and jump sizes satisfying (p.3)

Proof. As before we will consider only the case d = 1, and we assume first that f, [ € C}.
Let us first establish the identity (B.3). We fix an arbitrary index 7 and consider the interval
(t;—1,t;). By virtue of the Malliavin operator D, Theorem 2.4 and the uniqueness of the adapted
solution to BDSDE, we obtain

Z, = Zalethj + /Os[f’“(r)Der + £,(r)DyY, + f.(r)DyZ,)dr
Jj=i

+/ [gx(r)Der + gy(T)DsY;’ + gz(T)DSZr]dBr - / DsZrdWr

0 0

_ {Z 9V Xy, + / [fe(V X, 4 £,(N)VY, + f.(r)VZ,]dr
j>i 0

n / (VX + 6y (F) Vs + g () V' 2, dB, — / vizrdwr} (VX,) o(s, X.)
0 0
= ViY;<VXS)_1O'<8,Xs), tiog < s <t (54)

Taking the conditional expectation TE{.|F!} on two sides of (F-4) we obtain

Z, = E{Zajzvxtj + / S[fm(T)Ver+fy(7“)Vi5ﬁ+fz(7“)Vin]dT|7:§} (VX,) o(s, X,).
j>i 0

(5.5)

The rest of the proof is similar to the BSDE case. It is clear now that to prove the theorem
we need only prove properties (i)-(ii7), which we will do. Note that (i) is obvious, in light of
Theorem 4.2 and thanks to representation (5.7). Property (i7) is a slight variation of Lemma
4.1 and Lemma 4.1 of Ma and Zhang [LI], with 0 there being replaced by t; i, for each i.
Therefore we shall only check (éii). To this end, we define AZ;, = 7., — Z;,_. From (B4) it
not difficult to check that

Ly = VZY;% [VXti]ilo-@ivXti) Ly = viJrlY;i [VXti]ila(tiv th’)'
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Denoting o = —(V'*Y, — V'Y,), i = 1,....,n, we have
AZ, = (V'Y = VYot Xi) = —aj o(t;, Xy,). (5.6)

Further, since (V'Y, V'Z) denotes the adapted solution of the following BDSDE

VY, = Zﬁleth + /T[fx(r)VXr + f,("V'Y, + £.(r)V Z,]dr
0

J2i

+ / [9:(r) VX, 4 g,(r)V'Y, + g.(r)V' Z,]dB, — / V' ZdW,, T € [tiiy,t],
0 0
if we denote Bi, = —(V't1Z, — V'Z,), then we have

ol = IV, + / (el + £ (r)Fdr + / g,(r)ai + g.(r)B11dB,
0 0
—/ BLdW,, s € [0,1]. (5.7)
0

So (af, 3%) is the adapted solution to the linear BDSDE (b.7). It follows by Lemma 2.2 that
Vp > 0 there exists a C, > 0 such that IE{|aj [} < C,. On the other hand the same estimate
holds for (s, X,) because of assumption (A1) and Theorem 3.3; for [VX] ! since it is solution
of a appropriated SDE. It readily seen that (p.J) follows from (f.6) which prove (i7).

Finally, we note that when f and [ are only Lipschitz, (5.9) still holds, modulo a standard
approximation the same as that in Theorem 4.2. Thus properties (i) and (i7) are obvious. To
prove (i77) we should observe that the standard approximation yield that AZ; — AZ,, a.s. So
if (5.3) holds for AZ;, then letting ¢ — 0, (B.3) remains true for AZ;,, according the Fatou’s
lemma; that end the proof. m
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