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Representation theorems for ba
kwarddoubly sto
hasti
 di�erential equationsAuguste Aman ∗UFR de Mathématiques et Informatique,22 BP 582 Abidjan 22, C�te d'Ivoire
Abstra
tIn this paper we study the 
lass of ba
kward doubly sto
hasti
 di�erential equations(BDSDEs, for short) whose terminal value depends on the history of forward di�usion.We �rst establish a probabilisti
 representation for the spatial gradient of the sto
hasti
vis
osity solution to a quasilinear paraboli
 SPDE in the spirit of the Feynman-Ka
 for-mula, without using the derivatives of the 
oe�
ients of the 
orresponding BDSDE. Thensu
h a representation leads to a 
losed-form representation of the martingale integrand ofBDSDE, under only standard Lips
hitz 
ondition on the 
oe�
ients.Key Words: Adapted solution, anti
ipating sto
hasti
 
al
ulus, ba
kward doubly SDEs,sto
hasti
 partial di�erential equation, sto
hasti
 vis
osity solutions.MSC: 60H15; 60H201 Introdu
tionBa
kward sto
hasti
 di�erential equations (BSDEs, for short) were �rstly been 
onsidered init linear form by Bismut [1, 2℄ in the 
ontext of optimal sto
hasti
 
ontrol. However, nonlinearBSDEs and their theory have been introdu
ed by Pardoux and Peng [12℄. It has been enjoyinga great interest in the last ten year be
ause of its 
onne
tion with applied �elds. We 
an 
itesto
hasti
 
ontrol and sto
hasti
 games (see [8℄) and mathemati
al �nan
e (see [6℄). BSDEsalso provide a probabilisti
 interpretation for solutions to ellipti
 or paraboli
 nonlinear partialdi�erential equations generalizing the 
lassi
al Feynman-Ka
 formula [13, 14℄. A new 
lass
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of BSDEs, 
alled ba
kward doubly sto
hasti
 di�erential equations (BDSDEs, in short), was
onsidered by Pardoux and Peng [15℄. This new kind of BSDEs present two sto
hasti
 integralsdriven by two independent Brownian motions B and W and is of the form
Ys = ξ +

∫ T

s

f(r, Yr, Zr) dr +

∫ T

s

g(r, Yr, Zr) ↓ dBr

−

∫ T

s

Zr dWr, s ∈ [t, T ], (1.1)where ξ is a square integrable variable. Let us remark that in the sens of Pardoux Peng, theintegral driven by {Br}r≥0 is a ba
kward It� integral and the other one driven by {Wr}r≥0is the standard forward It� integral. Further, ba
kward doubly SDEs seem to be suitablegiving a probabilisti
 representation for a system of paraboli
 sto
hasti
 partial di�erentialequations (SPDEs, in short). We refer to Pardoux and Peng [15℄ for the link between SPDEsand BDSDEs in the parti
ular 
ase where solutions of SPDEs are regular. The general situationis mu
h deli
ate to treat be
ause of di�
ulties of extending the notion of vis
osity solutions toSPDEs. The sto
hasti
 vis
osity solution for semi-linear SPDEs was introdu
ed for the �rsttime in Lions and Souganidis [10℄. They used the so-
alled "sto
hasti
 
hara
teristi
" to removethe sto
hasti
 integrals from an SPDE. Another way of de�ning a sto
hasti
 vis
osity solutionof SPDE is via an appeal to the Doss-Sussman transformation. Bu
kdahn and Ma [3, 4℄ werethe �rst to use this approa
h in order to 
onne
t the sto
hasti
 vis
osity solutions of SPDEswith BDSDEs.In this paper we 
onsider the approa
h of de�ning sto
hasti
 vis
osity solution of SPDEsgiven by Bu
kdahn and Ma [3, 4] whi
h, in our mind is natural and 
oin
ide (if g ≡ 0) withthe well-know vis
osity solution of PDEs introdu
ed by Crandall et al [5]. In this fa
t, we willwork in the sequel of this paper with the version of ba
kward doubly SDEs introdu
ed in [3, 4℄,whi
h is in fa
t a time reversal of that 
onsidered by Pardoux and Peng [15℄. Indeed, for l, fbe Lips
hitz 
ontinuous fun
tions in their spatial variables and g ∈ C0,2,3
b ([0, T ]× IRd × IR; IRd),they 
onsider a 
lass of ba
kward doubly SDEs is of this following form:

Y t,x
s = l(X t,x

0 ) +

∫ s

0

f(r,X t,x
r , Y t,x

r , Zt,x
r ) dr +

∫ s

0

g(r,X t,x
r , Y t,x

r ) dBr

−

∫ s

0

Zt,x
r ↓ dWr, s ∈ [0, t]. (1.2)The di�usion pro
ess X t,x is the unique solution of the forward SDE

X t,x
s = x+

∫ t

s

b(r,X t,x
r ) dr +

∫ t

s

σ(r,X t,x
r ) ↓ dWr s ∈ [0, t], (1.3)where b and σ are some measurable fun
tions. Here the supers
ript (t, x) indi
ates the depen-den
e of the solution on the initial date (t, x), and it will be omitted when the 
ontext is 
lear.2



Bu
kdahn and Ma proved in their two works [3, 4℄, among other things, that u(t, x) = Y t,x
t isa sto
hasti
 vis
osity solution of nonlinear paraboli
 SPDE:

du(t, x) = [Lu(t, x) + f(t, x, u(t, x), (∇uσ)(t, x))] dt

+g(t, x, u(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

u(0, x) = l(x), x ∈ IRd,

(1.4)where L de�ned by
L =

1

2

n
∑

i,j=1

k
∑

l=1

σilσlj(x)∂
2
xixj

+
n
∑

j=1

bj(x)∂xj
,is the in�nitesimal operator generated by the di�usion pro
ess X t,x. More pre
isely, they showthank to the Blumenthal 0-1 law that

u(t, x) = IE{l(X t,x
0 ) +

∫ t

0

f(r,X t,x
r , Y t,x

r , Zt,x
r ) ds

+

∫ t

0

g(r,X t,x
r , Y t,x

r ) dBr | F
B
t

}

. (1.5)It is well know that u is a FB-measurable �eld. However, to the best of our knowledge, to datethere has been no dis
ussion in the literature 
on
erning the path regularity of the pro
ess Zwhen f and l are only Lips
hitz 
ontinuous, even in the spe
ial 
ases where the 
oe�
ients areenough regular.Our goal in this paper is twofold. First we show that if the 
oe�
ients l and f are 
on-tinuously di�erentiable, then the vis
osity solution u of the SPDE (1.4) will have a 
ontinuousspatial gradient ∂xu and, more important, the following probabilisti
 representation holds:
∂xu(t, x) = IE{l(X t,x

0 ) N t
0 +

∫ s

0

f(r,X t,x
r , Y t,x

r , Zt,x
r )N s

r dr

+

∫ t

0

g(r,X t,x
r , Y t,x

r )N s
r dBr | F

B
t

} (1.6)where N s
. is some pro
ess de�ned on [0, s], depending only on the solutions of the forward SDE

(1.3) and its variational equation respe
tively. This representation 
an be thought of as a newtype of nonlinear Feynman-Ka
 formula for the derivative of u, whi
h does not seem to exist inthe literature. The main signi�
an
e of the formula, however, lies in that it does not depend onthe derivatives of the 
oe�
ients of the ba
kward doubly BSDE (1.2). Be
ause of this spe
ialfeature, we 
an then derive a representation
Zt,x

s = ∂xu(t, X
t,x
s )σ(t, X t,x

s ), s ∈ [0, t], (1.7)3



under only a Lips
hitz 
ondition on l and f . This latter representation then enables us to provethe path regularity of the pro
ess Z, the se
ond goal of this paper, even in the 
ase wherethe terminal value of Y t,x is of the form l(Xt0 , ..., Xtn), where π : 0 = t0 < .. < tn = t is anypartition of [0, t], a result that does not seem to be amendable by any existing method.Let us re
all that this two representations have already be given by Ma and Zhang [11℄ inthe 
ase of a probabilisti
 representation for solutions of PDEs via BSDEs. Consequently ourapproa
h is be inspired by their works. However, there are parti
ularities: �rst, the derivativenotion is take in the �ow sense (independent of ω1) be
ause u, the sto
hasti
 vis
osity solutionof the SPDE (1.4), is a random �eld. Se
ondly, the proof to the 
ontinuity of the representationof the pro
ess Z need, sin
e F
t
s = (FB

s ⊗ FW
s,t )0≤s≤t is not a �ltration, G

t
s = (FB

s ⊗ FW
0,t)0≤s≤twhi
h is a �ltration.The rest of this paper is organized as follows. In se
tion 2 we give all the ne
essary pre-liminaries. In se
tion 3 we establish the new Feynman-Ka
 formula between 
oupled forwardba
kward doubly SDE (1.1)-(1.3) and the SPDE (1.4), under the C1-assumption of the 
oef-�
ients. The se
tion 4 is devoted to give the main representation theorem assuming only theLips
hitz 
ondition of the 
oe�
ients l and f . In se
tion 5 we study the path regularity of thepro
ess Z.2 PreliminariesLet T > 0 a �xed time horizon. Throughout this paper {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤

t ≤ T} will denote two independent d-dimensional Brownian motions de�ned on the 
ompleteprobability spa
es (Ω1,F1, IP1) and (Ω2,F2, IP2) respe
tively. For any pro
ess {Us, 0 ≤ s ≤ T}de�ned on (Ωi,Fi, IPi) (i = 1, 2), we write FU
s,t = σ(Ur − Us, s ≤ r ≤ t) and FU

t = FU
0,t. Unlessotherwise spe
i�ed we 
onsider

Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 ⊗ IP2.In addition, we put for ea
h t ∈ [0, T ],
F = {Fs = FB

s ⊗FW
s,T ∨ N , 0 ≤ s ≤ T}where N is the 
olle
tion of IP-null sets. In other words, the 
olle
tion F is IP-
omplete butis neither in
reasing nor de
reasing so that, it is not a �ltration. Let us tell also that randomvariables ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are 
onsidered as random variables on Ω via thefollowing identi�
ation:

ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2).Let E denote a generi
 Eu
lidean spa
e; and regardless of its dimension we denote 〈; 〉 to bethe inner produ
t and |.| the norm in E. if an other Eu
lidean spa
es are needed, we shall label4



them as E1;E2, ., ., et
. Furthermore, we use the notation ∂t = ∂
∂t
, ∂x = ( ∂

∂x1
, ∂

∂x2
, .., ∂

∂xd
) and

∂2 = ∂xx = (∂2
xixj

)d
i,j=1, for (t, x) ∈ [0, T ] × IRd. Note that if ψ = (ψ1, .., ψd) : IRd → IRd, then

∂xψ , (∂xjψ
i)d

i,j=1 is a matrix. The meaning of ∂xy, ∂yy, et
. should be 
lear from the 
ontext.The following spa
es will be used frequently in the sequel (let X denote a generi
 Bana
hspa
e):1. For t ∈ [0, T ], L0([0, t];X ) is the spa
e of all measurable fun
tions ϕ : [0, t] 7→ X .2. For 0 ≤ t ≤ T, C([0, t];X ) is the spa
e of all 
ontinuous fun
tions ϕ : [0, t] 7→ X ; further,for any p > 0 we denote |ϕ|∗,p0,t = sup
0≤s≤t

‖ϕ(s)‖p
X when the 
ontext is 
lear.3. For any k, n ≥ 0, Ck,n([0, T ]×E;E1) is the spa
e of allE1-valued fun
tions ϕ(t, e), (t, e) ∈

[0, T ]×E, su
h that they are k-times 
ontinuously di�erentiable in t and n-times 
ontin-uously di�erentiable in e.4. C1
b ([0, T ] × E;E1) is the spa
e of those ϕ ∈ C1([0, T ] × E;E1) su
h that all the partialderivatives are uniformly bounded.5. W 1,∞(E,E1) is the spa
e of all measurable fun
tions ψ : E 7→ E1, su
h that for some
onstant K > 0 it holds that |ψ(x) − ψ(y)|E1

≤ K|x− y|E, ∀x, y ∈ E.6. For any sub-σ-�eld G ⊆ FB
T and 0 ≤ p <∞, Lp(G;E) denote all E-valued G-measurablerandom variable ξ su
h that IE|ξ|p < ∞. Moreover, ξ ∈ L∞(G;E) means it is G-measurable and bounded.7. For 0 ≤ p < ∞, Lp(F, [0, T ];X ) is the spa
e of all X -valued, F-adapted pro
esses ξsatisfying IE(∫ T

0

‖ξt‖
p
Xdt

)

<∞; and also, ξ ∈ L∞(F, [0, T ]; IRd) means that the pro
ess
ξ is uniformly essentially bounded in (t, ω).8. C(F, [0, T ]×E;E1) is the spa
e of E1-valued, 
ontinuous random �eld ϕ : Ω× [0, T ]×E,su
h that for �xed e ∈ E, ϕ(., ., e) is an F-adapted pro
ess.To simplify notation we often write C([0, T ]×E;E1) = C0,0([0, T ]×E;E1); and if E1 = IR, thenwe often suppress E1 for simpli
ity (e.g., Ck,n([0, T ]×E; IR) = Ck,n([0, T ]×E), Ck,n(F, [0, T ]×

E; IR) = Ck,n(F, [0, T ] × E), ..., et
.). Finally, unless otherwise spe
i�ed (su
h as pro
ess Zmentioned in Se
tion 1), all ve
tors in the paper will be regarded as 
olumn ve
tors.Throughout this paper we shall make use of the following standing assumptions:
(A1) The fun
tions σ ∈ C0,1

b ([0, T ]× IRd; IRd×d), b ∈ C0,1
b ([0, T ]× IRd; IRd); and all the partialderivatives of b and σ (with respe
t to x) are uniformly bounded by a 
ommon 
onstant

K > 0. Further, there exists 
onstant c > 0, su
h that
ξTσ(t, x)σ(t, x)T ξ ≥ c|ξ|2, ∀x, ξ ∈ IRd, t ∈ [0, T ]. (2.1)5



(A2) The fun
tion f ∈ C(FB, [0, T ] × IRd × IR × IRd) ∩W 1,∞([0, T ] × IRd × IR × IRd) and
l ∈W 1,∞(IRd). Furthermore, we denote the Lips
hitz 
onstants of f and l by a 
ommonone K > 0 as in (A1); and we assume that

sup
0≤t≤T

{|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)|+ |g(0)|} ≤ K. (2.2)
(A3) The fun
tion g ∈ C0,2,3

b ([0, T ] × IRd × IR; IRd)The following results are either standard or slight variations of the well-know results inSDE and ba
kward doubly SDE literature; we give only the statement for ready referen
e.Lemma 2.1 Suppose that b ∈ C(F, [0, T ] × IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(Rd; IRd)),
σ ∈ C(F, [0, T ]× IRd; IRd×d)∩L0(F, [0, T ];W 1,∞(Rd; IRd×d)), with a 
ommon Lips
hitz 
onstant
K > 0. Suppose also that b(t, 0) ∈ L2(F, [0, T ]; IRd) and σ(t, 0) ∈ L2(F, [0, T ]; IRd×d). Let X bethe unique solution of the following forward SDE

Xs = x+

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr. (2.3)Then for any p ≥ 2, there exists a 
onstant C > 0 depending only on p, T and K, su
h that
E(|X|∗,p0,t ) ≤ C

{

|x|p + IE∫ T

0

[|b(s, 0)|p + |σ(s, 0)|p] ds

} (2.4)Lemma 2.2 Assume f ∈ C(F, [0, T ]× IR× IRd)∩L0(F, [0, T ];W 1,∞(IR×Rd)), with a uniformLips
hitz 
onstant K > 0, su
h that f(s, 0, 0) ∈ L2(F, [0, T ]) and g ∈ C(F, [0, T ] × IR ×IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IRl)) with a 
ommon uniform Lips
hitz 
onstant K > 0with respe
t the �rst variable and the Lips
hitz 
onstant 0 < α < 1 whi
h respe
t the se
ondvariable and su
h that g(s, 0, 0) ∈ L2(F, [0, T ]). For any ξ ∈ L2(F0; IR), let (Y, Z) be the adaptedsolution to the BDSDE:
Ys = ξ +

∫ s

0

f(r, Yr, Zr) dr +

∫ s

0

g(r, Yr, Zr) dBr −

∫ s

0

Zr ↓ dWr. (2.5)Then there exists a 
onstant C > 0 depending only on T and on the Lips
hitz 
onstants K and
α, su
h that IE∫ T

0

|Zs|
2ds ≤ CIE{|ξ|2 +

∫ T

0

[|f(s, 0, 0)|2 + |g(s, 0, 0)|2] ds

}

. (2.6)Moreover, for all p ≥ 2, there exists a 
onstant Cp > 0, su
h thatIE(|Y |∗,p0,t ) ≤ CpIE{|ξ|p +

∫ T

0

[|f(s, 0, 0)|p + |g(s, 0, 0)|p] ds

} (2.7)6



We now review some basi
 fa
ts of the anti
ipating sto
hasti
 
al
ulus, espe
ially those relatedto the ba
kward doubly SDEs (see Pardoux-Peng [15]). For any random variables ξ of the form
ξ = F

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)with F ∈ C∞
b (IRn+p), ϕ1, ..., ϕn ∈ L2([0, T ], IRd), ψ1, ..., ψn ∈ L2([0, T ], IRd), we let

Dtξ =

n
∑

i=

∂F

∂xi

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)

ϕi(t).For su
h a ξ, we de�ne its 1, 2-norm as:
‖ξ‖2

1,2 = IE [|ξ|2 + IE ∫ T

0

|Drξ|
2dr

]

.

S denoting the set of random variable of the above form, we de�ne the Sobolev spa
eID1,2 , S
‖.‖1,2

.The "derivation operator" D. extends as an operator from ID1,2 into L2(Ω, L2([0, T ], IRd)).We shall apply the previous anti
ipative 
al
ulus to the 
oupled forward ba
kward doublySDEs (1.3)-(1.2). In this fa
t, let us 
onsider the following variational equation that will playa important role in this paper: for i = 1, .., d,
∇iX

t,x
s = ei +

∫ t

s

∂xb(r,X
t,x
r )∇iX

t,x
r dr +

d
∑

j=1

∫ t

s

∂xσ
j(r,X t,x

r )∇iX
t,x
r ↓ dW j

r ,

∇iY
t,x
s = ∂xl(X

t,x
0 )∇iX

t,x
0

+

∫ s

0

[∂xf(r,Ξt,x(r))∇iX
t,x
r + ∂yf(r,Ξt,x(r))∇iY

t,x
r + 〈∂zf(r,Ξt,x(r)),∇iZ

t,x
r 〉]dr

+

∫ s

0

[∂xg(r,Θ
t,x(r))∇iX

t,x
r + ∂yg(r,Θ

t,x(r))∇iY
t,x
r ]dBr −

∫ s

0

∇iZ
t,x
r ↓ dWr, (2.8)where ei = (0, ...,

i

1, ..., 0)T ∈ IRd,Ξt,x = (Θt,x, Zt,x), Θt,x = (X t,x, Y t,x) and σj(.) is the j-th
olumn of the matrix σ(.). We re
all again that the supers
ription t,x indi
ates the dependen
eof the solution on the initial date (t, x), and will be omitted when the 
ontext is 
lear. We alsoremark that under the above assumptions,
(

∇X t,x,∇Y t,x,∇Zt,x
)

∈ L2(F;C([0, T ]; IRd×d) × C([0, T ]; IRd) × L2([0, T ]; IRd×d)).Further the d × d-matrix-valued pro
ess ∇X t,x satis�es a linear SDE and ∇X t,x
t = I, so that

[∇X t,x
s ]−1 exists for s ∈ [0, t], IP-a.s. and we have the following:7



Lemma 2.3 Assume that (A1) holds; and suppose that f ∈ C0,1
b ([0, T ] × IR2d+1) and

g ∈ C0,2,3
b ([0, T ] × IRd+1; IRd). Then (X, Y, Z) ∈ L2([0, T ]; ID1,2(IR2d+1)), and there exists aversion of (DsXr, DsYr, DsZr) that satis�es







DsXr = ∇Xr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsYr = ∇Yr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsZr = ∇Zr(∇Xs)
−1σ(s,Xs)1{s≤r},

0 ≤ s, r ≤ t. (2.9)Lemma 2.4 Suppose that F ∈ ID1,2. Then
(i)(Integration by parts formula): for any u ∈ Dom(δ) su
h that Fu ∈ L2([0, T ]×Ω; IRd), onehas Fu ∈ Dom(δ), and it holds that

∫ T

0

〈Fut, dWt〉 = δ(Fu) = F

∫ T

0

〈ut, dWt〉 −

∫ T

0

DtFutdt;

(ii)(Clark-Hausman-O
one formula):
F = IE(F ) +

∫ T

0

IE{DtF | Ft}dWt.3 Relations to sto
hasti
 PDE revisitedIn this se
tion we prove the relation (1.7) between the forward ba
kward doubly SDE (1.2)-(1.3)and the quasi-linear SPDE (1.4), under the 
ondition that the 
oe�
ients are only 
ontinuouslydi�erentiable. Indeed, sin
e Bu
kdahn and Ma [3, 4] provide that, if f and l are only Lips
hitz
ontinuous, the quantity u(t, x) = Y t,x
t is a sto
hasti
 vis
osity solution of the quasi-linearSPDE (1.4), relation in (1.7) be
omes questionable. Our obje
tive is to �ll this gap in theliterature and to extend the results of Ma and Zhang [11] given in the 
ase of the probabilisti
interpretation of PDEs via the BSDEs.Theorem 3.1 Assume (A1) and (A3) and suppose that f ∈ C0,1

b ([0, T ]× IRd × IR× IRd) and
l ∈ C1

b (IRd). Let (X t,x, Y t,x, Zt,x) be the adapted solution to the FBDSDE (1.2)-(1.3), and set
u(t, x) = Y t,x

t the sto
hasti
 vis
osity of SPDE (1.4). Then,
(i) ∂xu(t, x) exists for all (t, x) ∈ [0, T ] × IRd; and for ea
h (t, x) and i=1,...,d, the followingrepresentation holds:
∂xi
u(t, x) = IE{∂xl(X

t,x
0 )∇iX

t,x
0

+

∫ t

0

[∂xf(r,Ξt,x(r))∇iX
t,x
r + ∂yf(r,Ξt,x(r))∇iY

t,x
r + ∂zf(r,Ξt,x(r))∇iZ

t,x
r ]dr

+

∫ t

0

[∂xg(r,Θ
t,x(r))∇iX

t,x
r + ∂yg(r,Θ

t,x(r))∇iY
t,x
r ]dBr | F

B
t

} (3.1)8



where Θt,x = (X t,x, Y t,x), Ξt,x = (Θt,x, Zt,x), and (∇X t,x,∇Y t,x,∇Zt,x) the unique solution ofequation (2.8);
(ii) ∂xu(t, x) is 
ontinuous on [0, T ] × IRd;
(iii) Zt,x

s = ∂xu(s,X
t,x
s )σ(s,X t,x

s ), ∀ s ∈ [0, t], IP-a.s.Proof. For the simple presentation we take d = 1. The higher dimensional 
ase 
an be treatedin the same way without substantial di�
ulty. We use the simpler notations lx, (fx, fy, fz), (gx, gy, gz)respe
tively for the partial derivatives of l, f and g.The proof is inspired by the approa
h of Ma and Zhang [11] (see Theorem 3.1). Nevertheless,there exists slight di�eren
e due in the fa
t that the solution of SPDE's is a random �eld; morepre
isely will show that it is a 
onditional expe
tation with respe
t the �ltration (FB
t )0≤t≤T .We �rst prove (i). Let (t, x) ∈ [0, T ] × IR be �xed. For h 6= 0, we de�ne:

∇Xh
s =

X t,x+h
s −X t,x

s

h
;∇Y h

s =
Y t,x+h

s − Y t,x
s

h
;∇Zh

s =
Zt,x+h

s − Zt,x
s

h
s ∈ [0, t].It follows analogously of the proof of Theorem 2.1 in [15℄) thatIE{|∆Y h|∗,20,t = IE{|∇Y h −∇Y t,x|∗,20,t} → 0 as h→ 0. (3.2)We know also that pro
esses Y t,x, Y t,x+h, ∇Y h and ∆Y h are all adapted to the σ-algebra

F
t = (F t

s)0≤s≤t, where F t
s = FB

s ⊗ FW
s,t . In parti
ular, sin
e W is a Brownian motion on

(Ω2,F2, IP2), applying the Blumenthal 0-1 law (see, e.g, [9℄), Y t,x
t = u(t, x), Y t,x+h

t = u(t, x +
h), ∇Y h

t = 1
h
[u(t, x+ h) − u(t, x)] and ∆Y h

t are all independent of (or a 
onstant with respe
tto) ω2 ∈ Ω2. Therefore we 
on
lude from the above that ∂xu exist, as the random �eld and
∂xu(t, x) = ∇Y t,x

t , for all (t, x). Finally, taking the 
onditional expe
tation on the both sidesof (2.8) at s = t, the representation (3.1) hold and �nish the prove of (i).We now prove (ii). Let (ti, xi) ∈ [0, T ]× IR, i = 1, 2. Knowing that t1 and t2 played inverseroles one another, we assume without losing a generality that t1 < t2. Sin
e ∂xu is a 
onditionalexpe
tation with respe
t the �ltration (FB
s )0≤s≤t, we have

|∂xu(t1, x1) − ∂xu(t2, x2)| ≤ IE{A(t1, x1) − A(t2, x2) | F
B
t1
}

+
∣

∣IE{A(t2, x2) | F
B
t1
} − IE{A(t2, x2) | F

B
t2
}
∣

∣ , (3.3)where
A(t, x) = lx(X

t,x
0 )∇X t,x

0

+

∫ t

0

[fx(r,Ξ
t,x(r))∇X t,x

r + fy(r,Ξ
t,x(r))∇Y t,x

r + fz(r,Ξ
t,x(r))∇Zt,x

r ] dr

+

∫ t

0

[gx(r,Θ
t,x(r))∇X t,x

r + gy(r,Θ
t,x(r))∇Y t,x

r ]dBr. (3.4)9



Thanks to the quasi-left-
ontinuity of (FB
s )0≤s≤t, we see that

lim
t1↓t2

∣

∣IE(A(t2, x2) | F
B
t1 ) − IE(A(t2, x2) | F

B
t2 )
∣

∣ = 0, (3.5)independently of x2. In virtue of (3.3) and (3.5)), to prove (ii) it remain to show that
lim

t1↓t2x1→x2

IE{A(t1, x1) − A(t2, x2) | F
B
t1
} = 0. (3.6)To this end, sin
e A(t, x) is a sto
hasti
 pro
ess and in virtue of Kolmogorov-Centsov Theorem(see [9℄), it su�
es to show thatIE (|A(t1, x1) −A(t2, x2)|

2
)

≤ C(|t1 − t2|
2 + |x1 − x2|

2),what we do now. Re
alling the de�nition of A(ti, xi), i = 1, 2 and denoting
Gt,x(r) = fx(r,Ξ

t,x(r))∇X t,x
r + fy(r,Ξ

t,x(r))∇Y t,x
r + fz(r,Ξ

t,x(r))∇Zt,x
rand

H t,x(r) = gx(r,Θ
t,x(r))∇X t,x

r + gy(r,Θ
t,x(r))∇Y t,x

r ,we get
|A(t1, x1) − A(t2, x2)| ≤ |lx(X

t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|dr +

∣

∣

∣

∣

∫ t1

0

(H t1,x1(r) −H t2,x2(r))dBr

∣

∣

∣

∣

+

∫ t2

t1

|Gt2,x2(r)|dr +

∣

∣

∣

∣

∫ t2

t1

H t2,x2(r)dBr

∣

∣

∣

∣

.Taking the expe
tation, it follows by Hölder's and Burkölder-Gundy Davis inequalities thatIE (|A(t1, x1) − A(t2, x2)|
2
)

≤ CIE {|lx(X t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |2

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|2dr +

∣

∣

∣

∣

∫ t1

0

(H t1,x1(r) −H t2,x2(r))dBr

∣

∣

∣

∣

2

+

∫ t2

t1

|Gt2,x2(r)|2dr +

∣

∣

∣

∣

∫ t2

t1

H t2,x2(r)dBr

∣

∣

∣

∣

2
}

≤ CIE {|lx(X t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |2

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|2dr +

∫ t1

0

|H t1,x1(r) −H t2,x2(r)|2dr

+ (t2 − t1)

∫ t2

t1

|Gt2,x2(r)|2dr + (t2 − t1)

∫ t2

t1

|H t2,x2(r)|2dr

}

.By similar standard 
omputations in Ma and Zhang [11℄ (see proof of Theorem 3.1), we obtainIE (|A(t1, x1) − A(t2, x2)|
2
)

≤ C(|t2 − t1|
2 + |x2 − x1|

2)10



that provide the proof of (ii).It remains to prove (iii). For a 
ontinuous fun
tion ϕ, let us 
onsider {ϕε}ε>0 a family of C0,∞fun
tions that 
onverges to ϕ uniformly. Sin
e b, σ, l, f are all uniformly Lips
hitz 
ontinuous,we may assume that the �rst order partial derivatives of bε, σε, lε, f ε are all uniformly bounded,by the 
orresponding Lips
hitz 
onstants of b, σ, l, f uniformly in ε > 0. Now we 
onsider thefamily of FBDSDEs parameterized by ε > 0:






X t,x
s = x+

∫ t

s
bε(r,X t,x

r )dr +
∫ t

s
σε(r,X t,x

r ) ↓ dWr;

Y t,x
s = lε(X t,x

0 ) +
∫ s

0
f ε(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r )dBr −

∫ s

0
Zt,x

r ↓ dWr

(3.7)and denote it solution by (X t,x(ε), Y t,x(ε), Zt,x(ε)). We de�ne uε(t, x) = Y t,x
t (ε). Theorem 3.2of [15] provide that uε is the 
lassi
al solution of sto
hasti
 PDE

duε(t, x) = [Lεu(t, x) + f ε(t, x, uε(t, x), (∇uεσε)(t, x))] dt

+g(t, x, uε(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

uε(0, x) = lε(x), x ∈ IRd.

(3.8)For any {xε} ⊂ IRn su
h that xε → x as ε → 0, de�ne
(Xε, Y ε, Zε) = (X t,xε

(ε), Y t,xε

(ε), Zt,xε

(ε)). Then it is well know a

ording the work of Pardouxand Peng [15℄ that
Y ε

s = uε(s,Xε
s ); Zε

s = ∂xu
ε(s,Xε

s )σ
ε(s,Xε

s ), ∀ s ∈ [0, t], IP− a.s. (3.9)Now by Lemma 2.1 and Lemma 2.2, for all p ≥ 2 it hold thatIE{|Xε −X|∗,p0,t + |Y ε − Y |∗,p0,t +

∫ t

0

|Zε
s − Zs|

2ds

}

→ 0 (3.10)as ε → 0. Moreover let us re
all (∇Xε,∇Y ε,∇Zε) the unique solution of the variationalequation of (3.7). Using again Lemma 2.1 and Lemma 2.2 we getIE{|∇Xε −∇X|∗,p0,t + |∇Y ε −∇Y |∗,p0,t +

∫ t

0

|∇Zε
s −∇Zs|

2ds

}

→ 0, (3.11)as ε→ 0. Thus it is readily seen thatIE{lεx(Xε
0)∇X

ε
0 |F

B
t } → IE{lx(X0)∇X0|F

B
t },IP-a.s., as ε→ 0. Furthermore, by the analogue step used in [11℄, one 
an show thatIE{∫ t

0

[f ε
x(r)∇Xε

r + f ε
y (r)∇Y ε

r + f ε
z (r)∇Zε

r ]dr +

∫ t

0

[gx(r)∇X
ε
r + gy(r)∇Y

ε
r ]dBr|F

B
t

}11




onverge toIE{∫ t

0

[fx(r)∇Xr + fy(r)∇Yr + fz(r)∇Zr]dr +

∫ t

0

[gx(r)∇Xr + gy(r)∇Yr]dBr|F
B
t

}IP-a.s., as ε→ 0. Therefore, we get
∂xu

ε(t, xε) → ∂xu(t, x), as ε→ 0 IP− a.s.,for ea
h �xed (t, x) ∈ [0, T ] × IR. Consequently, possibly along a subsequen
e, we obtain
Zε

s = lim
ε→0

∂uε(s,Xε
s )σ

ε(s,Xε) = ∂u(s,Xs)σ(s,Xs), ds× dIP− a.e.Sin
e for IP− a.e. ω, ∂xu(., .) and X are both 
ontinuous, the above equalities a
tually holdsfor all s ∈ [0, t], IP-a.s., proving (iii) and end the proof.The following 
orollary is the dire
t 
onsequen
e of the Theorem 3.1. The 
onvention onthe generi
 
onstant C > 0 still true.Corollary 3.2 Assume that the same 
onditions as in Theorem 3.1 hold, and let (X t,x, Y t,x, Zt,x)be the solution of FBDSDE (1.2)-(1.3). Then, there exists a 
onstant C > 0 depending only on
K, T, and for any p ≥ 1, a positive Lp(Ω, (F t

s)0≤s≤t, IP)-pro
ess Γt,x, su
h that
|∂xu(t, x)| ≤ CΓt,x

t , ∀ (t, x) ∈ [0, T ] × IRd, IP− a.s. (3.12)Consequently, one has
|Zt,x

s | ≤ CΓt,x
s (1 + |X t,x

s |), ∀s ∈ [0, t], IP− a.s. (3.13)Furthermore, ∀ p > 1, there exists a 
onstant Cp > 0, depending on K, T , and p su
h thatIE{|X t,x|∗,p0,t + |Y t,x|∗,p0,t + |Zt,x|∗,p0,t

}

≤ Cp(1 + |x|p). (3.14)Proof. We assume �rst that p ≥ 2. The 
ase 1 < p < 2 then follows easily from Hölderinequality. By Lemma 2.1 and Lemma 2.2, we 
an �nd 
onstant C > 0 su
h thatIE{|∇X t,x|∗,p0,t + |∇Y t,x|∗,p0,t +

(
∫ T

0

|∇Zt,x
r |2dr

)p/2
}

≤ C.Then, from the identity (3.1), we dedu
e immediately that |∂xu(t, x)| ≤ CΓt,x
t , for all (t, x) ∈

[0, T ] × IR, where
Γt,x

s = IE(|∇X t,x
0 | +

∫ s

0

[|∇X t,x
r | + |∇Y t,x

r | + |∇Zt,x
r |]dr +

∣

∣

∣

∣

∫ s

0

[∇X t,x
r + ∇Y t,x

r ]dBr

∣

∣

∣

∣

| F t
s

)

.12



Moreover we get for s ∈ [0, t], IE(|Γt,x
s |p) ≤ C. Then Theorem 3.1 (iii) implies that

|Zt,x
s | ≤ CΓt,x

s (1 + |X t,x
s |), ∀s ∈ [0, t], IP-a.s.Now, applying again Lemma 2.1 and 2.2 and re
alling (3.13) we get (3.14), for p ≥ 2.To 
on
lude this se
tion, we would like to point out that in Theorem 3.1, the fun
tions

f and l are assumed to be 
ontinuously di�erentiable in all spatial variables with uniformlybounded partial derivatives, whi
h is mu
h stronger than standing assumption (A2). Thefollowing theorem redu
es the requirement on f and l to only uniformly Lips
hitz 
ontinuous,whi
h will be important in our future dis
ussion.Theorem 3.3 Assume (A1)-(A4), and let (X, Y, Z) be the solution to the FBDSDE (1.2)-
(1.3). Then for all p > 0, there exists a 
onstant Cp > 0 su
h thatIE{|X|∗,p0,t + |Y |∗,p0,t + ess sup

0≤s≤t
|Zs|

p

}

≤ Cp(1 + |x|p). (3.15)Proof. In the light of the 
orollary 3.2, we need only 
onsider p ≥ 2. By Lemma 2.1 andLemma 2.2 it follows that for any p > 0 there exists Cp > 0 su
h thatIE{|X|∗,p0,t + |Y |∗,p0,t} ≤ Cp(1 + |x|p). (3.16)Next, by similar argument of Theorem 3.1 (iii), we 
onsider two sequen
es of smooth fun
tions
{f ε}ε and {lε}ε with their �rst order derivatives in (x, y, z) uniformly bounded in t and ε su
hthat

lim
ε→0

{

sup
(t,x,y,z)

|f ε(t, x, y, z) − f(t, x, y, z)| + sup
x

|lε(x) − l(x)|

}

= 0.Denoting (Xε, Y ε, Zε) the unique solution of the 
orresponding FBDSDEs and applying Corol-lary 3.2, we 
an �nd for any p ≥ 2 a 
onstant Cp > 0, independent of ε, su
h thatIE (|Zε|∗,p0,t

)

≤ Cp(1 + |x|p). (3.17)Furthermore, by (3.10) we know that IE ∫ t

0

|Zε
s − Zs|

2ds→ 0 as ε → 0. Thus, possibly alonga sequen
e say (εn)n≥1 we have limn→∞ Zεn = Z ds × dIP-a.s. Applying Fatou's lemma andre
alling (3.17) we the obtainIE{ess sup
0≤s≤t

|Zs|
p

}

≤ Cp(1 + |x|p)whi
h leads to (3.15), as desired. 13



4 Representation theoremIn this se
tion we shall prove the �rst main theorem of the paper. This theorem 
an beregarded as an extension of the nonlinear Feynman-Ka
 formula obtained by Pardoux-Peng
[15]. It gives a probabilisti
 representation of the gradient (rather than the solution itself)of the sto
hasti
 vis
osity solution, whenever it exists, to a quasi-linear paraboli
 sto
hasti
PDE. Unlike the 
ases studied in (3.1), in this se
tion, our representation does not dependon the partial derivatives of the fun
tions f, l and g. In this 
ontext su
h representation isthe best tool for us to study the path regularity of the pro
ess Z in the BDSDE with non-smooth 
oe�
ients. For notational simpli
ity, we shall drop the supers
ript t,x from the solution
(X, Y, Z) of FBDSDE (1.2)-(1.3).To begin with, let us introdu
e the two important sto
hasti
 integrals that will play a keyrole in the representation:

Ms
r =

∫ s

r

[σ−1(τ,Xτ)∇Xτ ]
T ↓ dWτand

N s
r =

1

s− r
(Ms

r )T [∇Xr]
−1, 0 ≤ r < s ≤ t.Let us re
all that IE|Ms

r |
2p ≤ CpIE(∫ s

r

|σ−1(τ,Xτ )∇Xτ |
2dτ

)p (4.1)
≤ Cp(s− r)pIE (|∇Xτ |

∗,2p
s,r

)

≤ Cp(s− r)p,where Cp > 0 is a generi
 
onstant.An other hand, let us de�ne the �ltration G
t =

{

FB
s ⊗ FW

t , 0 ≤ s ≤ t
} whi
h will play aimportant role in the proof of the 
ontinuity of the pro
ess Z in the BDSDE.Lemma 4.1 For any �xed t ∈ [0, T ] and any H ∈ L∞(Ft, [0, T ]; IR) we have

(i) IE| ∫ s

0
1

s−r
HrM

r
s dBr| < +∞

(ii) for IP.a.e., ω ∈ Ω, the mapping s 7→
∫ s

0
1

s−r
Hr(ω)M r

s (ω)dBr(ω) is 
ontinuous on [0, t]

(iii) for IP.a.e. , ω ∈ Ω, the mapping s 7→ IE{∫ s

0
1

s−r
HrM

r
s dBr/Gt

s}(ω) is 
ontinuous on [0, t]Proof. First, for any 0 ≤ τ < s ≤ t we denote
As

τ =







∫ s

τ
1

s−r
HrM

s
r dr, 0 ≤ τ < s

0, if s = τ.
(4.2)14



To simplify notation, when τ = 0 we denote As
0 = As. Further, let β be su
h that α = 1−2β < 1

2and β < 1. Consider the random variable
M∗ = sup

0≤t1<t2≤t

|M t2
t1 |

(t2 − t1)α
; (4.3)then by (4.2) and Theorem 2.1 of Revuz-Yor [16], we see that IE[M∗]2 < +∞.To prove (i) we note that for any 0 ≤ τ ≤ s ≤ t by Burkhölder-Gundy- Davis's inequalityone has IE|As

τ | ≤ CIE(∫ s

τ

∣

∣

∣

∣

HrM
s
r

s− r

∣

∣

∣

∣

2

dr

)1/2

≤ CIE(∫ s

τ

|Hr|2

(s− r)2β
.

|Ms
r |

2

(s− r)2α
dr

)1/2

≤ CIE(∫ s

τ

∣

∣

∣

∣

|Hr

(s− r)β

∣

∣

∣

∣

2

dr

)1/2

M∗

≤ CIE(∫ s

τ

dr

(s− r)2β

)1/2

‖H‖∞M
∗ = C(s− τ)(1/2)−βIE(‖H‖∞M

∗), (4.4)where ‖.‖ denotes the norm of L∞([0, T ]). Again letting C > 0 be a generi
 
onstant dependingonly on β and T , we haveIE|As
τ | ≤ C{IE‖H‖2

∞}1/2{IE(M∗)2}1/2

≤ C‖H‖L∞([0,T ]×Ω)‖M
∗‖L2(Ω) <∞. (4.5)Setting τ = 0 in (4.5) we proved (i).To prove (ii) let τ = 0 and observe that, in view of (i), As is a sto
hasti
 integral for

0 < s ≤ t. Consequently, the mapping s 7→ As is 
ontinuous on [0,t℄. It remain to prove (iii).In this fa
t, we remark that the right-hand side of the inequality (4.4) (with τ = 0) is 
learlyin L1; thus we 
he
k easily that the pro
ess A is uniformly integrable. Therefore, by similarstep in Ma and Zhang [11℄ (see proof for (iii) of Theorem 4.1) it follows that the G
t-optionalproje
tion of A, denoting oAs = IE(As|Gt

s), s ∈ [0, t], has 
ontinuous path. This prove (iii),when
e the lemma.Theorem 4.2 Assume that the assumptions (A1)-(A4) hold, and let (X, Y, Z) be the adaptedsolution to FBDSDE (1.3)-(1.2). Then
(i) the following identity holds IP-almost surely:

Zs = IE{l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|F

t
s

}

σ(s,Xs)

∀ 0 ≤ s ≤ t; (4.6)15



(ii)There exists a version of Z su
h that for IP-a.e. ω ∈ Ω, the mapping s 7→ Zs(ω) is 
ontin-uous;
(iii) If in addition the fun
tions f and l satisfy assumptions of Theorem 3.1, then for all

(t, x) ∈ [0, T ] × IRd it holds that
∂xu(t, x) = IE{l(X0)N

t
0 +

∫ t

0

f(s,Xr, Yr, Zr)N
t
rdr +

∫ t

0

g(r,Xr, Yr)N
s
rdBr|F

B
t

}

.(4.7)Proof. Again we shall 
onsider only the 
ase d = 1. We assume �rst that l ∈ C1
b (IR) and

f ∈ C0,1
b ([0, T ]× IR3). Using the nonlinear Feynman-Ka
 formula of Pardoux and Peng [15] weobtain that for 0 ≤ s ≤ t,
u(s,Xs) = Ys = IE{l(X0) +

∫ s

0

f(r,Xr, Yr, Zr)dr +

∫ s

0

g(r,Xr, Yr)dBr|F
t
s

}

. (4.8)Similar arguments to those used in the work of Ma and Zhang [11], provide the following:
∂xu(s,Xs) = IE{l(X0)N

s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|F

t
s

}

.In parti
ular, setting s = t we obtain (4.7), this proves (iii).We now 
onsider the general 
ase. First we �x s ∈ [0, t]. For ϕ = l, f , let ϕε ∈ C∞, ε > 0,be the molli�ers of ϕ, and let (Y ε, Zε) be the solution of the BDSDE in (1.2) with 
oe�
ients
(lε, f ε, g). Then for ea
h ε > 0, as the previous we get

Zε
s = IE{lε(X0)N

s
0 +

∫ s

0

f ε(r,X, Y ε
r , Z

ε
r )N

s
rdr +

∫ s

0

g(r,X, Y ε
r )N s

rdBr|F
t
s

}

σ(s,Xs).(4.9)Passing to limit as ε goes to zero in (4.9), we get (4.6) IP-a.s., for ea
h �xed s ∈ [0, t].We should note that to prove part (i) we still need to show that (4.6) a
tually holds for all
s ∈ [0, T ], IP-a.s., but it is easy to see that this will follow from part (ii); that is, the pro
ess
Z has a 
ontinuous version. Thus it remain to prove only (ii). To do this we �rst note that

Zs = IE{l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|G

t
s

}

σ(s,Xs).(4.10)Lemma 4.1 in [11℄ and Lemma 4.1 imply that the mapping
s 7→ IE{∫ T

s

f(r,Xr, Yr, Zr)N
s
r dr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|G

t
s

}16



is a.s. 
ontinuous on [0, t]. By the similar ideas used in Ma and Zhang [11℄ repla
ing F
twhi
h here is not a �ltration by G

t, it follows that the mapping s 7→ IE {l(X0)N
s
0 |G

t
s

} is also
ontinuous on [0, t]. Consequently, the right side of (4.6) is a.s. 
ontinuous on [0, t], and hen
e
(4.6) holds for all s ∈ [0, t], IP-a.s., proving (ii), when
e the theorem.Remark 4.3 A dire
t 
onsequen
e of Theorem 4.2 that might be useful in appli
ation is thefollowing improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,there exists a 
onstant Cp > 0 depending only on T,K and p su
h thatIE{|X|∗,p0,t + |Y |∗,p0,t + |Z|∗,p0,t

}

≤ Cp(1 + |x|p) (4.11)Indeed, sin
e by Theorem 4.1, Z has a 
ontinuous version, thus (3.15) be
omes (4.11)5 Dis
rete fun
tion 
aseLet us re
all that we have proved in Theorem 4.2 that the pro
ess Z in the solution to theFBDSDE (1.3)-(1.2) has 
ontinuous paths, under the 
ondition that the 
oe�
ients f and l areonly uniformly Lips
hitz 
ontinuous. While su
h a result is already an improvement of that ofPardoux and Peng [15℄, it still within the paradigm of the standard FBDSDE in the literature,to wit, the terminal 
ondition of the BDSDE is of the form l(X0) (see also [15℄). In this se
tionwe 
onsider the 
lass of BDSDEs whose terminal 
onditions are path dependent. More pre
isely,we assume that the terminal 
ondition of the BDSDE is the form ξ = l(Xt0 , Xt1, ...., Xtn), where
0 = t0 < t1 < .... < tn = t is any partition of [0, t]. We shall prove a new representation theoremfor the pro
ess Z, and will extend the path regularity result to su
h a 
ase.Theorem 5.1 Assume that (A1)-(A3) hold; and in (A3), l : Rd(n+1) → IR. Let π : 0 = t0 <
t1 < ..... < tn = t be a given partition of [0, t], and let (X, Y, Z) be the unique adapted solutionto the following FBDSDE:

Xs = x+

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr,

Ys = l(Xt0 , Xt1, ..., Xtn) +

∫ s

0

f(r,Xr, Yr, Zr)dr (5.1)
+

∫ s

0

g(r,Xr, Yr)dBr −

∫ s

0

ZrdWr, s ∈ [0, t].Then on ea
h interval (ti−1, ti), i = 1, ...., n, the following identity holds:
Zs = IE{l(Xt0 , Xt1 , ..., Xtn)N s

ti−1
+

∫ s

0

f(r,Xr, Yr, Zr)N
s
r∨ti−1

dr

+

∫ s

0

g(r,Xr, Yr)N
s
r∨ti−1

dBr|F
t
s

}

σ(s,Xs). s ∈ (ti−1, ti) (5.2)17



Further, there exists a version of pro
ess Z that enjoys the following properties:
(i) the mapping s 7→ Zs is a.s. 
ontinuous on ea
h interval (ti−1, ti), i = 1, ....., n;
(ii) limits Zt−i

= lims↑ti Zs and Zt+i
= lims↓ti Zs exist;

(iii) ∀p > 0, there exists a 
onstant Cp > 0 depending only on T,K and p su
h thatIE|∆Zti |
p ≤ Cp(1 + |x|p) ≤ ∞. (5.3)Consequently, the pro
ess Z has both 
àdlàg and 
àglàd version with dis
ontinuities t0, ..., tnand jump sizes satisfying (5.3)Proof. As before we will 
onsider only the 
ase d = 1, and we assume �rst that f, l ∈ C1

b .Let us �rst establish the identity (5.2). We �x an arbitrary index i and 
onsider the interval
(ti−1, ti). By virtue of the Malliavin operatorD, Theorem 2.4 and the uniqueness of the adaptedsolution to BDSDE, we obtain
Zs =

∑

j≥i

∂jlDsXtj +

∫ s

0

[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr]dr

+

∫ s

0

[gx(r)DsXr + gy(r)DsYr + gz(r)DsZr]dBr −

∫ s

0

DsZrdWr

=

{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
iYr + fz(r)∇

iZr]dr

+

∫ s

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ s

0

∇iZrdWr

}

(∇Xs)
−1σ(s,Xs)

= ∇iYs(∇Xs)
−1σ(s,Xs), ti−1 < s < ti. (5.4)Taking the 
onditional expe
tation IE{.|F t

s} on two sides of (5.4) we obtain
Zs = IE{∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
i
sYr + fz(r)∇

iZr]dr|F
t
s

}

(∇Xs)
−1σ(s,Xs).(5.5)The rest of the proof is similar to the BSDE 
ase. It is 
lear now that to prove the theoremwe need only prove properties (i)-(iii), whi
h we will do. Note that (i) is obvious, in light ofTheorem 4.2 and thanks to representation (5.2). Property (ii) is a slight variation of Lemma4.1 and Lemma 4.1 of Ma and Zhang [11℄, with 0 there being repla
ed by ti−1, for ea
h i.Therefore we shall only 
he
k (iii). To this end, we de�ne ∆Zti = Zti+ − Zti−. From (5.4) itnot di�
ult to 
he
k that

Zti− = ∇iYti [∇Xti ]
−1σ(ti, Xti) Zti+ = ∇i+1Yti[∇Xti ]

−1σ(ti, Xti).18



Denoting αi
s = −(∇i+1Ys −∇iYs), i = 1, ...., n, we have

∆Zti = (∇i+1Ys −∇iYs)σ(ti, Xti) = −αi
ti
σ(ti, Xti). (5.6)Further, sin
e (∇iY,∇iZ) denotes the adapted solution of the following BDSDE

∇iYτ =
∑

j≥i

∂jl∇Xtj +

∫ τ

0

[fx(r)∇Xr + fy(r)∇
iYr + fz(r)∇Zr]dr

+

∫ τ

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ τ

0

∇iZrdWr, τ ∈ [ti−1, t],if we denote βis = −(∇i+1Zs −∇iZs), then we have
αi

s = ∂il∇ti +

∫ s

0

[fy(r)α
i
r + fz(r)β

i
r]dr +

∫ s

0

[gy(r)α
i
r + gz(r)β

i
r]dBr

−

∫ s

0

βi
rdWr, s ∈ [0, t]. (5.7)So (αi, βi) is the adapted solution to the linear BDSDE (5.7). It follows by Lemma 2.2 that

∀ p > 0 there exists a Cp > 0 su
h that IE{|αi
ti
|p} ≤ Cp. On the other hand the same estimateholds for σ(s,Xs) be
ause of assumption (A1) and Theorem 3.3; for [∇X]−1 sin
e it is solutionof a appropriated SDE. It readily seen that (5.3) follows from (5.6) whi
h prove (iii).Finally, we note that when f and l are only Lips
hitz, (5.2) still holds, modulo a standardapproximation the same as that in Theorem 4.2. Thus properties (i) and (ii) are obvious. Toprove (iii) we should observe that the standard approximation yield that ∆Zε

ti
→ ∆Zti a.s. Soif (5.3) holds for ∆Zε

ti
, then letting ε → 0, (5.3) remains true for ∆Zti , a

ording the Fatou'slemma; that end the proof.A
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