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Representation Theorems for Bakward DoublyStohasti Di�erential EquationsAuguste Aman ∗UFR de Mathématiques et Informatique,22 BP 582 Abidjan 22, C�te d'Ivoire
AbstratIn this paper we study the lass of bakward doubly stohasti di�erential equations(BDSDEs, for short) whose terminal value depends on the history of forward di�usion.We �rst establish a probabilisti representation for the spatial gradient of the stohastivisosity solution to a quasilinear paraboli SPDE in the spirit of the Feynman-Ka for-mula, without using the derivatives of the oe�ients of the orresponding BDSDE. Thensuh a representation leads to a losed-form representation of the martingale integrand ofBDSDE, under only standard Lipshitz ondition on the oe�ients.Key Words: Adapted solution, antiipating stohasti alulus, bakward doubly SDEs,stohasti partial di�erential equation, stohasti visosity solutions.MSC: 60H15; 60H201 IntrodutionBakward stohasti di�erential equations (BSDEs, for short) were �rstly been onsidered init linear form by Bismut [1, 2℄ in the ontext of optimal stohasti ontrol. However, nonlinearBSDEs and their theory have been introdued by Pardoux and Peng [12℄. It has been enjoyinga great interest in the last ten year beause of its onnetion with applied �elds. We an itestohasti ontrol and stohasti games (see [8℄) and mathematial �nane (see [6℄). BSDEsalso provide a probabilisti interpretation for solutions to ellipti or paraboli nonlinear partialdi�erential equations generalizing the lassial Feynman-Ka formula [13, 14℄. A new lass
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of BSDEs, alled bakward doubly stohasti di�erential equations (BDSDEs, in short), wasonsidered by Pardoux and Peng [15℄. This new kind of BSDEs present two stohasti integralsdriven by two independent Brownian motions B and W and is of the form
Ys = ξ +

∫ T

s

f(r, Yr, Zr) dr +

∫ T

s

g(r, Yr, Zr) ↓ dBr

−

∫ T

s

Zr dWr, s ∈ [t, T ], (1.1)where ξ is a square integrable variable. Let us remark that in the sens of Pardoux Peng, theintegral driven by {Br}r≥0 is a bakward It� integral and the other one driven by {Wr}r≥0is the standard forward It� integral. Further, bakward doubly SDEs seem to be suitablegiving a probabilisti representation for a system of paraboli stohasti partial di�erentialequations (SPDEs, in short). We refer to Pardoux and Peng [15℄ for the link between SPDEsand BDSDEs in the partiular ase where solutions of SPDEs are regular. The general situationis muh deliate to treat beause of di�ulties of extending the notion of visosity solutions toSPDEs. The stohasti visosity solution for semi-linear SPDEs was introdued for the �rsttime in Lions and Souganidis [10℄. They used the so-alled "stohasti harateristi" to removethe stohasti integrals from an SPDE. Another way of de�ning a stohasti visosity solutionof SPDE is via an appeal to the Doss-Sussman transformation. Bukdahn and Ma [3, 4℄ werethe �rst to use this approah in order to onnet the stohasti visosity solutions of SPDEswith BDSDEs.In this paper we onsider the approah of de�ning stohasti visosity solution of SPDEsgiven by Bukdahn and Ma [3, 4] whih, in our mind is natural and oinide (if g ≡ 0) withthe well-know visosity solution of PDEs introdued by Crandall et al [5]. In this fat, we willwork in the sequel of this paper with the version of bakward doubly SDEs introdued in [3, 4℄,whih is in fat a time reversal of that onsidered by Pardoux and Peng [15℄. Indeed, for l, fbe Lipshitz ontinuous funtions in their spatial variables and g ∈ C0,2,3
b ([0, T ]× IRd × IR; IRd),they onsider a lass of bakward doubly SDEs is of this following form:

Y t,x
s = l(X t,x

0 ) +

∫ s

0

f(r,X t,x
r , Y t,x

r , Zt,x
r ) dr +

∫ s

0

g(r,X t,x
r , Y t,x

r ) dBr

−

∫ s

0

Zt,x
r ↓ dWr, s ∈ [0, t]. (1.2)The di�usion proess X t,x is the unique solution of the forward SDE

X t,x
s = x+

∫ t

s

b(r,X t,x
r ) dr +

∫ t

s

σ(r,X t,x
r ) ↓ dWr s ∈ [0, t], (1.3)where b and σ are some measurable funtions. Here the supersript (t, x) indiates the depen-dene of the solution on the initial date (t, x), and it will be omitted when the ontext is lear.2



Bukdahn and Ma proved in their two works [3, 4℄, among other things, that u(t, x) = Y t,x
t isa stohasti visosity solution of nonlinear paraboli SPDE:

du(t, x) = [Lu(t, x) + f(t, x, u(t, x), (∇uσ)(t, x))] dt

+g(t, x, u(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

u(0, x) = l(x), x ∈ IRd,

(1.4)where L de�ned by
L =

1

2

n
∑

i,j=1

k
∑

l=1

σilσlj(x)∂
2
xixj

+
n
∑

j=1

bj(x)∂xj
,is the in�nitesimal operator generated by the di�usion proess X t,x. More preisely, they showthank to the Blumenthal 0-1 law that

u(t, x) = IE{l(X t,x
0 ) +

∫ t

0

f(r,X t,x
r , Y t,x

r , Zt,x
r ) ds

+

∫ t

0

g(r,X t,x
r , Y t,x

r ) dBr | F
B
t

}

. (1.5)It is well know that u is a FB-measurable �eld. However, to the best of our knowledge, to datethere has been no disussion in the literature onerning the path regularity of the proess Zwhen f and l are only Lipshitz ontinuous, even in the speial ases where the oe�ients areenough regular.Our goal in this paper is twofold. First we show that if the oe�ients l and f are on-tinuously di�erentiable, then the visosity solution u of the SPDE (1.4) will have a ontinuousspatial gradient ∂xu and, more important, the following probabilisti representation holds:
∂xu(t, x) = IE{l(X t,x

0 ) N t
0 +

∫ s

0

f(r,X t,x
r , Y t,x

r , Zt,x
r )N s

r dr

+

∫ t

0

g(r,X t,x
r , Y t,x

r )N s
r dBr | F

B
t

} (1.6)where N s
. is some proess de�ned on [0, s], depending only on the solutions of the forward SDE

(1.3) and its variational equation respetively. This representation an be thought of as a newtype of nonlinear Feynman-Ka formula for the derivative of u, whih does not seem to exist inthe literature. The main signi�ane of the formula, however, lies in that it does not depend onthe derivatives of the oe�ients of the bakward doubly BSDE (1.2). Beause of this speialfeature, we an then derive a representation
Zt,x

s = ∂xu(t, X
t,x
s )σ(t, X t,x

s ), s ∈ [0, t], (1.7)3



under only a Lipshitz ondition on l and f . This latter representation then enables us to provethe path regularity of the proess Z, the seond goal of this paper, even in the ase wherethe terminal value of Y t,x is of the form l(Xt0 , ..., Xtn), where π : 0 = t0 < .. < tn = t is anypartition of [0, t], a result that does not seem to be amendable by any existing method.Let us reall that this two representations have already be given by Ma and Zhang [11℄ inthe ase of a probabilisti representation for solutions of PDEs via BSDEs. Consequently ourapproah is be inspired by their works. However, there are partiularities: �rst, the derivativenotion is take in the �ow sense (independent of ω1) beause u, the stohasti visosity solutionof the SPDE (1.4), is a random �eld. Seondly, to prove the ontinuity of the representationof the proess Z, and sine F
t
s = (FB

s ⊗ FW
s,t )0≤s≤t is not a �ltration, we onsider the �ltration

G
t
s = (FB

s ⊗ FW
0,t)0≤s≤t.The rest of this paper is organized as follows. In setion 2 we give all the neessary pre-liminaries. In setion 3 we establish the new Feynman-Ka formula between oupled forwardbakward doubly SDE (1.1)-(1.3) and the SPDE (1.4), under the C1-assumption of the oef-�ients. The setion 4 is devoted to give the main representation theorem assuming only theLipshitz ondition of the oe�ients l and f . In setion 5 we study the path regularity of theproess Z.2 PreliminariesLet T > 0 a �xed time horizon. Throughout this paper {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤

t ≤ T} will denote two independent d-dimensional Brownian motions de�ned on the ompleteprobability spaes (Ω1,F1, IP1) and (Ω2,F2, IP2) respetively. For any proess {Us, 0 ≤ s ≤ T}de�ned on (Ωi,Fi, IPi) (i = 1, 2), we write FU
s,t = σ(Ur − Us, s ≤ r ≤ t) and FU

t = FU
0,t. Unlessotherwise spei�ed we onsider

Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 ⊗ IP2.In addition, we put for eah t ∈ [0, T ],
F = {Fs = FB

s ⊗FW
s,T ∨ N , 0 ≤ s ≤ T}where N is the olletion of IP-null sets. In other words, the olletion F is IP-omplete butis neither inreasing nor dereasing so that, it is not a �ltration. Let us tell also that randomvariables ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are onsidered as random variables on Ω via thefollowing identi�ation:

ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2).Let E denote a generi Eulidean spae; and regardless of its dimension we denote 〈; 〉 to bethe inner produt and |.| the norm in E. if an other Eulidean spaes are needed, we shall label4



them as E1;E2, ., ., et. Furthermore, we use the notation ∂t = ∂
∂t
, ∂x = ( ∂

∂x1
, ∂

∂x2
, .., ∂

∂xd
) and

∂2 = ∂xx = (∂2
xixj

)d
i,j=1, for (t, x) ∈ [0, T ] × IRd. Note that if ψ = (ψ1, .., ψd) : IRd → IRd, then

∂xψ , (∂xjψ
i)d

i,j=1 is a matrix. The meaning of ∂xy, ∂yy, et. should be lear from the ontext.The following spaes will be used frequently in the sequel (let X denote a generi Banahspae):1. For t ∈ [0, T ], L0([0, t];X ) is the spae of all measurable funtions ϕ : [0, t] 7→ X .2. For 0 ≤ t ≤ T, C([0, t];X ) is the spae of all ontinuous funtions ϕ : [0, t] 7→ X ; further,for any p > 0 we denote |ϕ|∗,p0,t = sup
0≤s≤t

‖ϕ(s)‖p
X when the ontext is lear.3. For any k, n ≥ 0, Ck,n([0, T ]×E;E1) is the spae of allE1-valued funtions ϕ(t, e), (t, e) ∈

[0, T ]×E, suh that they are k-times ontinuously di�erentiable in t and n-times ontin-uously di�erentiable in e.4. C1
b ([0, T ] × E;E1) is the spae of those ϕ ∈ C1([0, T ] × E;E1) suh that all the partialderivatives are uniformly bounded.5. W 1,∞(E,E1) is the spae of all measurable funtions ψ : E 7→ E1, suh that for someonstant K > 0 it holds that |ψ(x) − ψ(y)|E1

≤ K|x− y|E, ∀x, y ∈ E.6. For any sub-σ-�eld G ⊆ FB
T and 0 ≤ p <∞, Lp(G;E) denote all E-valued G-measurablerandom variable ξ suh that IE|ξ|p < ∞. Moreover, ξ ∈ L∞(G;E) means it is G-measurable and bounded.7. For 0 ≤ p < ∞, Lp(F, [0, T ];X ) is the spae of all X -valued, F-adapted proesses ξsatisfying IE(∫ T

0

‖ξt‖
p
Xdt

)

<∞; and also, ξ ∈ L∞(F, [0, T ]; IRd) means that the proess
ξ is uniformly essentially bounded in (t, ω).8. C(F, [0, T ]×E;E1) is the spae of E1-valued, ontinuous random �eld ϕ : Ω× [0, T ]×E,suh that for �xed e ∈ E, ϕ(., ., e) is an F-adapted proess.To simplify notation we often write C([0, T ]×E;E1) = C0,0([0, T ]×E;E1); and if E1 = IR, thenwe often suppress E1 for simpliity (e.g., Ck,n([0, T ]×E; IR) = Ck,n([0, T ]×E), Ck,n(F, [0, T ]×

E; IR) = Ck,n(F, [0, T ] × E), ..., et.). Finally, unless otherwise spei�ed (suh as proess Zmentioned in Setion 1), all vetors in the paper will be regarded as olumn vetors.Throughout this paper we shall make use of the following standing assumptions:
(A1) The funtions σ ∈ C0,1

b ([0, T ]× IRd; IRd×d), b ∈ C0,1
b ([0, T ]× IRd; IRd); and all the partialderivatives of b and σ (with respet to x) are uniformly bounded by a ommon onstant

K > 0. Further, there exists onstant c > 0, suh that
ξTσ(t, x)σ(t, x)T ξ ≥ c|ξ|2, ∀x, ξ ∈ IRd, t ∈ [0, T ]. (2.1)5



(A2) The funtion f ∈ C(FB, [0, T ] × IRd × IR × IRd) ∩W 1,∞([0, T ] × IRd × IR × IRd) and
l ∈W 1,∞(IRd). Furthermore, we denote the Lipshitz onstants of f and l by a ommonone K > 0 as in (A1); and we assume that

sup
0≤t≤T

{|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)|+ |g(0)|} ≤ K. (2.2)
(A3) The funtion g ∈ C0,2,3

b ([0, T ] × IRd × IR; IRd)The following results are either standard or slight variations of the well-know results inSDE and bakward doubly SDE literature; we give only the statement for ready referene.Lemma 2.1 Suppose that b ∈ C(F, [0, T ] × IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(Rd; IRd)),
σ ∈ C(F, [0, T ]× IRd; IRd×d)∩L0(F, [0, T ];W 1,∞(Rd; IRd×d)), with a ommon Lipshitz onstant
K > 0. Suppose also that b(t, 0) ∈ L2(F, [0, T ]; IRd) and σ(t, 0) ∈ L2(F, [0, T ]; IRd×d). Let X bethe unique solution of the following forward SDE

Xs = x+

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr. (2.3)Then for any p ≥ 2, there exists a onstant C > 0 depending only on p, T and K, suh that
E(|X|∗,p0,t ) ≤ C

{

|x|p + IE∫ T

0

[|b(s, 0)|p + |σ(s, 0)|p] ds

} (2.4)Lemma 2.2 Assume f ∈ C(F, [0, T ]× IR× IRd)∩L0(F, [0, T ];W 1,∞(IR×Rd)), with a uniformLipshitz onstant K > 0, suh that f(s, 0, 0) ∈ L2(F, [0, T ]) and g ∈ C(F, [0, T ] × IR ×IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IRl)) with a ommon uniform Lipshitz onstant K > 0with respet the �rst variable and the Lipshitz onstant 0 < α < 1 whih respet the seondvariable and suh that g(s, 0, 0) ∈ L2(F, [0, T ]). For any ξ ∈ L2(F0; IR), let (Y, Z) be the adaptedsolution to the BDSDE:
Ys = ξ +

∫ s

0

f(r, Yr, Zr) dr +

∫ s

0

g(r, Yr, Zr) dBr −

∫ s

0

Zr ↓ dWr. (2.5)Then there exists a onstant C > 0 depending only on T and on the Lipshitz onstants K and
α, suh that IE∫ T

0

|Zs|
2ds ≤ CIE{|ξ|2 +

∫ T

0

[|f(s, 0, 0)|2 + |g(s, 0, 0)|2] ds

}

. (2.6)Moreover, for all p ≥ 2, there exists a onstant Cp > 0, suh thatIE(|Y |∗,p0,t ) ≤ CpIE{|ξ|p +

∫ T

0

[|f(s, 0, 0)|p + |g(s, 0, 0)|p] ds

} (2.7)6



We now review some basi fats of the antiipating stohasti alulus, espeially those relatedto the bakward doubly SDEs (see Pardoux-Peng [15]). For any random variables ξ of the form
ξ = F

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)with F ∈ C∞
b (IRn+p), ϕ1, ..., ϕn ∈ L2([0, T ], IRd), ψ1, ..., ψn ∈ L2([0, T ], IRd), we let

Dtξ =

n
∑

i=

∂F

∂xi

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)

ϕi(t).For suh a ξ, we de�ne its 1, 2-norm as:
‖ξ‖2

1,2 = IE [|ξ|2 + IE ∫ T

0

|Drξ|
2dr

]

.

S denoting the set of random variable of the above form, we de�ne the Sobolev spaeID1,2 , S
‖.‖1,2

.The "derivation operator" D. extends as an operator from ID1,2 into L2(Ω, L2([0, T ], IRd)).We shall apply the previous antiipative alulus to the oupled forward bakward doublySDEs (1.3)-(1.2). In this fat, let us onsider the following variational equation that will playa important role in this paper: for i = 1, .., d,
∇iX

t,x
s = ei +

∫ t

s

∂xb(r,X
t,x
r )∇iX

t,x
r dr +

d
∑

j=1

∫ t

s

∂xσ
j(r,X t,x

r )∇iX
t,x
r ↓ dW j

r ,

∇iY
t,x
s = ∂xl(X

t,x
0 )∇iX

t,x
0

+

∫ s

0

[∂xf(r,Ξt,x(r))∇iX
t,x
r + ∂yf(r,Ξt,x(r))∇iY

t,x
r + 〈∂zf(r,Ξt,x(r)),∇iZ

t,x
r 〉]dr

+

∫ s

0

[∂xg(r,Θ
t,x(r))∇iX

t,x
r + ∂yg(r,Θ

t,x(r))∇iY
t,x
r ]dBr −

∫ s

0

∇iZ
t,x
r ↓ dWr, (2.8)where ei = (0, ...,

i

1, ..., 0)T ∈ IRd,Ξt,x = (Θt,x, Zt,x), Θt,x = (X t,x, Y t,x) and σj(.) is the j-tholumn of the matrix σ(.). We reall again that the supersription t,x indiates the dependeneof the solution on the initial date (t, x), and will be omitted when the ontext is lear. We alsoremark that under the above assumptions,
(

∇X t,x,∇Y t,x,∇Zt,x
)

∈ L2(F;C([0, T ]; IRd×d) × C([0, T ]; IRd) × L2([0, T ]; IRd×d)).Further the d × d-matrix-valued proess ∇X t,x satis�es a linear SDE and ∇X t,x
t = I, so that

[∇X t,x
s ]−1 exists for s ∈ [0, t], IP-a.s. and we have the following:7



Lemma 2.3 Assume that (A1) holds; and suppose that f ∈ C0,1
b ([0, T ] × IR2d+1) and

g ∈ C0,2,3
b ([0, T ] × IRd+1; IRd). Then (X, Y, Z) ∈ L2([0, T ]; ID1,2(IR2d+1)), and there exists aversion of (DsXr, DsYr, DsZr) that satis�es







DsXr = ∇Xr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsYr = ∇Yr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsZr = ∇Zr(∇Xs)
−1σ(s,Xs)1{s≤r},

0 ≤ s, r ≤ t. (2.9)Lemma 2.4 Suppose that F ∈ ID1,2. Then
(i)(Integration by parts formula): for any u ∈ Dom(δ) suh that Fu ∈ L2([0, T ]×Ω; IRd), onehas Fu ∈ Dom(δ), and it holds that

∫ T

0

〈Fut, dWt〉 = δ(Fu) = F

∫ T

0

〈ut, dWt〉 −

∫ T

0

DtFutdt;

(ii)(Clark-Hausman-Oone formula):
F = IE(F ) +

∫ T

0

IE{DtF | Ft}dWt.3 Relations to stohasti PDE revisitedIn this setion we prove the relation (1.7) between the forward bakward doubly SDE (1.2)-(1.3)and the quasi-linear SPDE (1.4), under the ondition that the oe�ients are only ontinuouslydi�erentiable. Indeed, sine Bukdahn and Ma [3, 4] provide that, if f and l are only Lipshitzontinuous, the quantity u(t, x) = Y t,x
t is a stohasti visosity solution of the quasi-linearSPDE (1.4), relation in (1.7) beomes questionable. Our objetive is to �ll this gap in theliterature and to extend the results of Ma and Zhang [11] given in the ase of the probabilistiinterpretation of PDEs via the BSDEs.Theorem 3.1 Assume (A1) and (A3) and suppose that f ∈ C0,1

b ([0, T ]× IRd × IR× IRd) and
l ∈ C1

b (IRd). Let (X t,x, Y t,x, Zt,x) be the adapted solution to the FBDSDE (1.2)-(1.3), and set
u(t, x) = Y t,x

t the stohasti visosity of SPDE (1.4). Then,
(i) ∂xu(t, x) exists for all (t, x) ∈ [0, T ] × IRd; and for eah (t, x) and i=1,...,d, the followingrepresentation holds:
∂xi
u(t, x) = IE{∂xl(X

t,x
0 )∇iX

t,x
0

+

∫ t

0

[∂xf(r,Ξt,x(r))∇iX
t,x
r + ∂yf(r,Ξt,x(r))∇iY

t,x
r + ∂zf(r,Ξt,x(r))∇iZ

t,x
r ]dr

+

∫ t

0

[∂xg(r,Θ
t,x(r))∇iX

t,x
r + ∂yg(r,Θ

t,x(r))∇iY
t,x
r ]dBr | F

B
t

} (3.1)8



where Θt,x = (X t,x, Y t,x), Ξt,x = (Θt,x, Zt,x), with (∇X t,x,∇Y t,x,∇Zt,x) the unique solution ofequation (2.8);
(ii) ∂xu(t, x) is ontinuous on [0, T ] × IRd;
(iii) Zt,x

s = ∂xu(s,X
t,x
s )σ(s,X t,x

s ), ∀ s ∈ [0, t], IP-a.s.Proof. For the simple presentation we take d = 1. The higher dimensional ase an be treatedin the same way without substantial di�ulty. We use the simpler notations lx, (fx, fy, fz), (gx, gy, gz)respetively for the partial derivatives of l, f and g.The proof is inspired by the approah of Ma and Zhang [11] (see Theorem 3.1). Nevertheless,there exists slight di�erene due in the fat that the SPDE's solution is not deterministi buta random �eld; more preisely will show that it is a onditional expetation with respet the�ltration (FB
t )0≤t≤T .We �rst prove (i). Let (t, x) ∈ [0, T ] × IR be �xed. For h 6= 0, we de�ne:

∇Xh
s =

X t,x+h
s −X t,x

s

h
;∇Y h

s =
Y t,x+h

s − Y t,x
s

h
;∇Zh

s =
Zt,x+h

s − Zt,x
s

h
s ∈ [0, t].It follows analogously of the proof of Theorem 2.1 in [15℄) thatIE{|∆Y h|∗,20,t = IE{|∇Y h −∇Y t,x|∗,20,t} → 0 as h→ 0. (3.2)We know also that proesses Y t,x, Y t,x+h, ∇Y h and ∆Y h are all adapted to the σ-algebra

F
t = (F t

s)0≤s≤t, where F t
s = FB

s ⊗ FW
s,t . In partiular, sine W is a Brownian motion on

(Ω2,F2, IP2), applying the Blumenthal 0-1 law (see, e.g, [9℄), Y t,x
t = u(t, x), Y t,x+h

t = u(t, x +
h), ∇Y h

t = 1
h
[u(t, x+ h) − u(t, x)] and ∆Y h

t are all independent of (or a onstant with respetto) ω2 ∈ Ω2. Therefore we onlude from the above that ∂xu exist, as the random �eld and
∂xu(t, x) = ∇Y t,x

t , for all (t, x). Finally, taking the onditional expetation on the both sidesof (2.8) at s = t, the representation (3.1) hold and �nish the prove of (i).We now prove (ii). Let (ti, xi) ∈ [0, T ]× IR, i = 1, 2. Knowing that t1 and t2 played inverseroles one another, we assume without losing a generality that t1 < t2. Sine ∂xu is a onditionalexpetation with respet the �ltration (FB
s )0≤s≤t, we have

|∂xu(t1, x1) − ∂xu(t2, x2)| ≤ IE{A(t1, x1) − A(t2, x2) | F
B
t1}

+
∣

∣IE{A(t2, x2) | F
B
t1
} − IE{A(t2, x2) | F

B
t2
}
∣

∣ , (3.3)where
A(t, x) = lx(X

t,x
0 )∇X t,x

0

+

∫ t

0

[fx(r,Ξ
t,x(r))∇X t,x

r + fy(r,Ξ
t,x(r))∇Y t,x

r + fz(r,Ξ
t,x(r))∇Zt,x

r ] dr

+

∫ t

0

[gx(r,Θ
t,x(r))∇X t,x

r + gy(r,Θ
t,x(r))∇Y t,x

r ]dBr. (3.4)9



Thanks to the quasi-left-ontinuity of (FB
s )0≤s≤t, we see that

lim
t1↓t2

∣

∣IE(A(t2, x2) | F
B
t1 ) − IE(A(t2, x2) | F

B
t2 )
∣

∣ = 0, (3.5)independently of x2. In virtue of (3.3) and (3.5)), to prove (ii) it remain to show that
lim

t1↓t2x1→x2

IE{A(t1, x1) − A(t2, x2) | F
B
t1
} = 0. (3.6)To this end, sine A(t, x) is a stohasti proess and in virtue of Kolmogorov-Centsov Theorem(see [9℄), it su�es to show thatIE (|A(t1, x1) −A(t2, x2)|

2
)

≤ C(|t1 − t2|
2 + |x1 − x2|

2),what we do now. Realling the de�nition of A(ti, xi), i = 1, 2 and denoting
Gt,x(r) = fx(r,Ξ

t,x(r))∇X t,x
r + fy(r,Ξ

t,x(r))∇Y t,x
r + fz(r,Ξ

t,x(r))∇Zt,x
rand

H t,x(r) = gx(r,Θ
t,x(r))∇X t,x

r + gy(r,Θ
t,x(r))∇Y t,x

r ,we get
|A(t1, x1) − A(t2, x2)| ≤ |lx(X

t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|dr +

∣

∣

∣

∣

∫ t1

0

(H t1,x1(r) −H t2,x2(r))dBr

∣

∣

∣

∣

+

∫ t2

t1

|Gt2,x2(r)|dr +

∣

∣

∣

∣

∫ t2

t1

H t2,x2(r)dBr

∣

∣

∣

∣

.Taking the expetation, it follows by Hölder's and Burkölder-Gundy Davis inequalities thatIE (|A(t1, x1) − A(t2, x2)|
2
)

≤ CIE {|lx(X t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |2

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|2dr +

∣

∣

∣

∣

∫ t1

0

(H t1,x1(r) −H t2,x2(r))dBr

∣

∣

∣

∣

2

+

∫ t2

t1

|Gt2,x2(r)|2dr +

∣

∣

∣

∣

∫ t2

t1

H t2,x2(r)dBr

∣

∣

∣

∣

2
}

≤ CIE {|lx(X t1,x1

0 )∇X t1,x1

0 − lx(X
t2,x2

0 )∇X t2,x2

0 |2

+

∫ t1

0

|Gt1,x1(r) −Gt2,x2(r)|2dr +

∫ t1

0

|H t1,x1(r) −H t2,x2(r)|2dr

+ (t2 − t1)

∫ t2

t1

|Gt2,x2(r)|2dr + (t2 − t1)

∫ t2

t1

|H t2,x2(r)|2dr

}

.By similar standard omputations in Ma and Zhang [11℄ (see proof of Theorem 3.1), we obtainIE (|A(t1, x1) − A(t2, x2)|
2
)

≤ C(|t2 − t1|
2 + |x2 − x1|

2)10



that provide the proof of (ii).It remains to prove (iii). For a ontinuous funtion ϕ, let us onsider {ϕε}ε>0 a family of C0,∞funtions that onverges to ϕ uniformly. Sine b, σ, l, f are all uniformly Lipshitz ontinuous,we may assume that the �rst order partial derivatives of bε, σε, lε, f ε are all uniformly bounded,by the orresponding Lipshitz onstants of b, σ, l, f uniformly in ε > 0. Now we onsider thefamily of FBDSDEs parameterized by ε > 0:






X t,x
s = x+

∫ t

s
bε(r,X t,x

r )dr +
∫ t

s
σε(r,X t,x

r ) ↓ dWr;

Y t,x
s = lε(X t,x

0 ) +
∫ s

0
f ε(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r )dBr −

∫ s

0
Zt,x

r ↓ dWr

(3.7)and denote it solution by (X t,x(ε), Y t,x(ε), Zt,x(ε)). We de�ne uε(t, x) = Y t,x
t (ε). Theorem 3.2of [15] provide that uε is the lassial solution of stohasti PDE

duε(t, x) = [Lεu(t, x) + f ε(t, x, uε(t, x), (∇uεσε)(t, x))] dt

+g(t, x, uε(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

uε(0, x) = lε(x), x ∈ IRd.

(3.8)For any {xε} ⊂ IRn suh that xε → x as ε → 0, de�ne
(Xε, Y ε, Zε) = (X t,xε

(ε), Y t,xε

(ε), Zt,xε

(ε)). Then it is well know aording the work of Pardouxand Peng [15℄ that
Y ε

s = uε(s,Xε
s ); Zε

s = ∂xu
ε(s,Xε

s )σ
ε(s,Xε

s ), ∀ s ∈ [0, t], IP− a.s. (3.9)Now by Lemma 2.1 and Lemma 2.2, for all p ≥ 2 it hold thatIE{|Xε −X|∗,p0,t + |Y ε − Y |∗,p0,t +

∫ t

0

|Zε
s − Zs|

2ds

}

→ 0 (3.10)as ε → 0. Moreover let us reall (∇Xε,∇Y ε,∇Zε) the unique solution of the variationalequation of (3.7). Using again Lemma 2.1 and Lemma 2.2 we getIE{|∇Xε −∇X|∗,p0,t + |∇Y ε −∇Y |∗,p0,t +

∫ t

0

|∇Zε
s −∇Zs|

2ds

}

→ 0, (3.11)as ε→ 0. Thus it is readily seen thatIE{lεx(Xε
0)∇X

ε
0 |F

B
t } → IE{lx(X0)∇X0|F

B
t },IP-a.s., as ε→ 0. Furthermore, by the analogue step used in [11℄, one an show thatIE{∫ t

0

[f ε
x(r)∇Xε

r + f ε
y (r)∇Y ε

r + f ε
z (r)∇Zε

r ]dr +

∫ t

0

[gx(r)∇X
ε
r + gy(r)∇Y

ε
r ]dBr|F

B
t

}11



onverge toIE{∫ t

0

[fx(r)∇Xr + fy(r)∇Yr + fz(r)∇Zr]dr +

∫ t

0

[gx(r)∇Xr + gy(r)∇Yr]dBr|F
B
t

}IP-a.s., as ε→ 0. Therefore, we get
∂xu

ε(t, xε) → ∂xu(t, x), as ε→ 0 IP− a.s.,for eah �xed (t, x) ∈ [0, T ] × IR. Consequently, possibly along a subsequene, we obtain
Zε

s = lim
ε→0

∂uε(s,Xε
s )σ

ε(s,Xε) = ∂u(s,Xs)σ(s,Xs), ds× dIP− a.e.Sine for IP− a.e. ω, ∂xu(., .) and X are both ontinuous, the above equalities atually holdsfor all s ∈ [0, t], IP-a.s., proving (iii) and end the proof.The following orollary is the diret onsequene of the Theorem 3.1. The onvention onthe generi onstant C > 0 still true.Corollary 3.2 Assume that the same onditions as in Theorem 3.1 hold, and let (X t,x, Y t,x, Zt,x)be the solution of FBDSDE (1.2)-(1.3). Then, there exists a onstant C > 0 depending only on
K, T, and for any p ≥ 1, a positive Lp(Ω, (F t

s)0≤s≤t, IP)-proess Γt,x, suh that
|∂xu(t, x)| ≤ CΓt,x

t , ∀ (t, x) ∈ [0, T ] × IRd, IP− a.s. (3.12)Consequently, one has
|Zt,x

s | ≤ CΓt,x
s (1 + |X t,x

s |), ∀s ∈ [0, t], IP− a.s. (3.13)Furthermore, ∀ p > 1, there exists a onstant Cp > 0, depending on K, T , and p suh thatIE{|X t,x|∗,p0,t + |Y t,x|∗,p0,t + |Zt,x|∗,p0,t

}

≤ Cp(1 + |x|p). (3.14)Proof. We assume �rst that p ≥ 2. The ase 1 < p < 2 then follows easily from Hölderinequality. By Lemma 2.1 and Lemma 2.2, we an �nd onstant C > 0 suh thatIE{|∇X t,x|∗,p0,t + |∇Y t,x|∗,p0,t +

(
∫ T

0

|∇Zt,x
r |2dr

)p/2
}

≤ C.Then, from the identity (3.1), we dedue immediately that |∂xu(t, x)| ≤ CΓt,x
t , for all (t, x) ∈

[0, T ] × IR, where
Γt,x

s = IE(|∇X t,x
0 | +

∫ s

0

[|∇X t,x
r | + |∇Y t,x

r | + |∇Zt,x
r |]dr +

∣

∣

∣

∣

∫ s

0

[∇X t,x
r + ∇Y t,x

r ]dBr

∣

∣

∣

∣

| F t
s

)

.12



Moreover we get for s ∈ [0, t], IE(|Γt,x
s |p) ≤ C. Then Theorem 3.1 (iii) implies that

|Zt,x
s | ≤ CΓt,x

s (1 + |X t,x
s |), ∀s ∈ [0, t], IP-a.s.Now, applying again Lemma 2.1 and 2.2 and realling (3.13) we get (3.14), for p ≥ 2.To onlude this setion, we would like to point out that in Theorem 3.1, the funtions

f and l are assumed to be ontinuously di�erentiable in all spatial variables with uniformlybounded partial derivatives, whih is muh stronger than standing assumption (A2). Thefollowing theorem redues the requirement on f and l to only uniformly Lipshitz ontinuous,whih will be important in our future disussion.Theorem 3.3 Assume (A1)-(A4), and let (X, Y, Z) be the solution to the FBDSDE (1.2)-
(1.3). Then for all p > 0, there exists a onstant Cp > 0 suh thatIE{|X|∗,p0,t + |Y |∗,p0,t + ess sup

0≤s≤t
|Zs|

p

}

≤ Cp(1 + |x|p). (3.15)Proof. In the light of the orollary 3.2, we need only onsider p ≥ 2. By Lemma 2.1 andLemma 2.2 it follows that for any p > 0 there exists Cp > 0 suh thatIE{|X|∗,p0,t + |Y |∗,p0,t} ≤ Cp(1 + |x|p). (3.16)Next, by similar argument of Theorem 3.1 (iii), we onsider two sequenes of smooth funtions
{f ε}ε and {lε}ε with their �rst order derivatives in (x, y, z) uniformly bounded in t and ε suhthat

lim
ε→0

{

sup
(t,x,y,z)

|f ε(t, x, y, z) − f(t, x, y, z)| + sup
x

|lε(x) − l(x)|

}

= 0.Denoting (Xε, Y ε, Zε) the unique solution of the orresponding FBDSDEs and applying Corol-lary 3.2, we an �nd for any p ≥ 2 a onstant Cp > 0, independent of ε, suh thatIE (|Zε|∗,p0,t

)

≤ Cp(1 + |x|p). (3.17)Furthermore, by (3.10) we know that IE ∫ t

0

|Zε
s − Zs|

2ds→ 0 as ε → 0. Thus, possibly alonga sequene say (εn)n≥1 we have limn→∞ Zεn = Z ds × dIP-a.s. Applying Fatou's lemma andrealling (3.17) we the obtainIE{ess sup
0≤s≤t

|Zs|
p

}

≤ Cp(1 + |x|p)whih leads to (3.15), as desired. 13



4 Representation theoremIn this setion we shall prove the �rst main theorem of the paper. This theorem an beregarded as an extension of the nonlinear Feynman-Ka formula obtained by Pardoux-Peng
[15]. It gives a probabilisti representation of the gradient (rather than the solution itself)of the stohasti visosity solution, whenever it exists, to a quasi-linear paraboli stohastiPDE. Unlike the ases studied in (3.1), in this setion, our representation does not dependon the partial derivatives of the funtions f, l and g. In this ontext suh representation isthe best tool for us to study the path regularity of the proess Z in the BDSDE with non-smooth oe�ients. For notational simpliity, we shall drop the supersript t,x from the solution
(X, Y, Z) of FBDSDE (1.2)-(1.3).To begin with, let us introdue the two important stohasti integrals that will play a keyrole in the representation:

Ms
r =

∫ s

r

[σ−1(τ,Xτ)∇Xτ ]
T ↓ dWτand

N s
r =

1

s− r
(Ms

r )T [∇Xr]
−1, 0 ≤ r < s ≤ t.Let us reall that IE|Ms

r |
2p ≤ CpIE(∫ s

r

|σ−1(τ,Xτ )∇Xτ |
2dτ

)p (4.1)
≤ Cp(s− r)pIE (|∇Xτ |

∗,2p
s,r

)

≤ Cp(s− r)p,where Cp > 0 is a generi onstant.An other hand, let us de�ne the �ltration G
t =

{

FB
s ⊗ FW

t , 0 ≤ s ≤ t
} whih will play aimportant role in the proof of the ontinuity of the proess Z in the BDSDE.Lemma 4.1 For any �xed t ∈ [0, T ] and any H ∈ L∞(Ft, [0, T ]; IR) we have

(i) IE| ∫ s

0
1

s−r
HrM

r
s dBr| < +∞

(ii) for IP.a.e., ω ∈ Ω, the mapping s 7→
∫ s

0
1

s−r
Hr(ω)M r

s (ω)dBr(ω) is ontinuous on [0, t]

(iii) for IP.a.e. , ω ∈ Ω, the mapping s 7→ IE{∫ s

0
1

s−r
HrM

r
s dBr/Gt

s}(ω) is ontinuous on [0, t]Proof. First, for any 0 ≤ τ < s ≤ t we denote
As

τ =







∫ s

τ
1

s−r
HrM

s
r dr, 0 ≤ τ < s

0, if s = τ.
(4.2)14



To simplify notation, when τ = 0 we denote As
0 = As. Further, let β be suh that α = 1−2β < 1

2and β < 1. Consider the random variable
M∗ = sup

0≤t1<t2≤t

|M t2
t1 |

(t2 − t1)α
; (4.3)then by (4.2) and Theorem 2.1 of Revuz-Yor [16], we see that IE[M∗]2 < +∞.To prove (i) we note that for any 0 ≤ τ ≤ s ≤ t by Burkhölder-Gundy- Davis's inequalityone has IE|As

τ | ≤ CIE(∫ s

τ

∣

∣

∣

∣

HrM
s
r

s− r

∣

∣

∣

∣

2

dr

)1/2

≤ CIE(∫ s

τ

|Hr|2

(s− r)2β
.

|Ms
r |

2

(s− r)2α
dr

)1/2

≤ CIE(∫ s

τ

∣

∣

∣

∣

|Hr

(s− r)β

∣

∣

∣

∣

2

dr

)1/2

M∗

≤ CIE(∫ s

τ

dr

(s− r)2β

)1/2

‖H‖∞M
∗ = C(s− τ)(1/2)−βIE(‖H‖∞M

∗), (4.4)where ‖.‖ denotes the norm of L∞([0, T ]). Again letting C > 0 be a generi onstant dependingonly on β and T , we haveIE|As
τ | ≤ C{IE‖H‖2

∞}1/2{IE(M∗)2}1/2

≤ C‖H‖L∞([0,T ]×Ω)‖M
∗‖L2(Ω) <∞. (4.5)Setting τ = 0 in (4.5) we proved (i).To prove (ii) let τ = 0 and observe that, in view of (i), As is a stohasti integral for

0 < s ≤ t. Consequently, the mapping s 7→ As is ontinuous on [0,t℄. It remain to prove (iii).In this fat, we remark that the right-hand side of the inequality (4.4) (with τ = 0) is learlyin L1; thus we hek easily that the proess A is uniformly integrable. Therefore, by similarstep in Ma and Zhang [11℄ (see proof for (iii) of Theorem 4.1) it follows that the G
t-optionalprojetion of A, denoting oAs = IE(As|Gt

s), s ∈ [0, t], has ontinuous path. This prove (iii),whene the lemma.Theorem 4.2 Assume that the assumptions (A1)-(A4) hold, and let (X, Y, Z) be the adaptedsolution to FBDSDE (1.3)-(1.2). Then
(i) the following identity holds IP-almost surely:

Zs = IE{l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|F

t
s

}

σ(s,Xs)

∀ 0 ≤ s ≤ t; (4.6)15



(ii)There exists a version of Z suh that for IP-a.e. ω ∈ Ω, the mapping s 7→ Zs(ω) is ontin-uous;
(iii) If in addition the funtions f and l satisfy assumptions of Theorem 3.1, then for all

(t, x) ∈ [0, T ] × IRd it holds that
∂xu(t, x) = IE{l(X0)N

t
0 +

∫ t

0

f(s,Xr, Yr, Zr)N
t
rdr +

∫ t

0

g(r,Xr, Yr)N
s
rdBr|F

B
t

}

.(4.7)Proof. Again we shall onsider only the ase d = 1. We assume �rst that l ∈ C1
b (IR) and

f ∈ C0,1
b ([0, T ]× IR3). Using the nonlinear Feynman-Ka formula of Pardoux and Peng [15] weobtain that for 0 ≤ s ≤ t,
u(s,Xs) = Ys = IE{l(X0) +

∫ s

0

f(r,Xr, Yr, Zr)dr +

∫ s

0

g(r,Xr, Yr)dBr|F
t
s

}

. (4.8)Similar arguments to those used in the work of Ma and Zhang [11], provide the following:
∂xu(s,Xs) = IE{l(X0)N

s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|F

t
s

}

.In partiular, setting s = t we obtain (4.7), this proves (iii).We now onsider the general ase. First we �x s ∈ [0, t]. For ϕ = l, f , let ϕε ∈ C∞, ε > 0,be the molli�ers of ϕ, and let (Y ε, Zε) be the solution of the BDSDE in (1.2) with oe�ients
(lε, f ε, g). Then for eah ε > 0, as the previous we get

Zε
s = IE{lε(X0)N

s
0 +

∫ s

0

f ε(r,X, Y ε
r , Z

ε
r )N

s
rdr +

∫ s

0

g(r,X, Y ε
r )N s

rdBr|F
t
s

}

σ(s,Xs).(4.9)Passing to limit as ε goes to zero in (4.9), we get (4.6) IP-a.s., for eah �xed s ∈ [0, t].We should note that to prove part (i) we still need to show that (4.6) atually holds for all
s ∈ [0, T ], IP-a.s., but it is easy to see that this will follow from part (ii); that is, the proess
Z has a ontinuous version. Thus it remain to prove only (ii). To do this we �rst note that

Zs = IE{l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|G

t
s

}

σ(s,Xs).(4.10)Lemma 4.1 in [11℄ and Lemma 4.1 imply that the mapping
s 7→ IE{∫ T

s

f(r,Xr, Yr, Zr)N
s
r dr +

∫ s

0

g(r,Xr, Yr)N
s
rdBr|G

t
s

}16



is a.s. ontinuous on [0, t]. By the similar ideas used in Ma and Zhang [11℄ replaing F
twhih here is not a �ltration by G

t, it follows that the mapping s 7→ IE {l(X0)N
s
0 |G

t
s

} is alsoontinuous on [0, t]. Consequently, the right side of (4.6) is a.s. ontinuous on [0, t], and hene
(4.6) holds for all s ∈ [0, t], IP-a.s., proving (ii), whene the theorem.Remark 4.3 A diret onsequene of Theorem 4.2 that might be useful in appliation is thefollowing improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,there exists a onstant Cp > 0 depending only on T,K and p suh thatIE{|X|∗,p0,t + |Y |∗,p0,t + |Z|∗,p0,t

}

≤ Cp(1 + |x|p) (4.11)Indeed, sine by Theorem 4.1, Z has a ontinuous version, thus (3.15) beomes (4.11)5 Disrete funtion aseLet us reall that we have proved in Theorem 4.2 that the proess Z in the solution to theFBDSDE (1.3)-(1.2) has ontinuous paths, under the ondition that the oe�ients f and l areonly uniformly Lipshitz ontinuous. While suh a result is already an improvement of that ofPardoux and Peng [15℄, it still within the paradigm of the standard FBDSDE in the literature,to wit, the terminal ondition of the BDSDE is of the form l(X0) (see also [15℄). In this setionwe onsider the lass of BDSDEs whose terminal onditions are path dependent. More preisely,we assume that the terminal ondition of the BDSDE is the form ξ = l(Xt0 , Xt1, ...., Xtn), where
0 = t0 < t1 < .... < tn = t is any partition of [0, t]. We shall prove a new representation theoremfor the proess Z, and will extend the path regularity result to suh a ase.Theorem 5.1 Assume that (A1)-(A3) hold; and in (A3), l : Rd(n+1) → IR. Let π : 0 = t0 <
t1 < ..... < tn = t be a given partition of [0, t], and let (X, Y, Z) be the unique adapted solutionto the following FBDSDE:

Xs = x+

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr,

Ys = l(Xt0 , Xt1, ..., Xtn) +

∫ s

0

f(r,Xr, Yr, Zr)dr (5.1)
+

∫ s

0

g(r,Xr, Yr)dBr −

∫ s

0

ZrdWr, s ∈ [0, t].Then on eah interval (ti−1, ti), i = 1, ...., n, the following identity holds:
Zs = IE{l(Xt0 , Xt1 , ..., Xtn)N s

ti−1
+

∫ s

0

f(r,Xr, Yr, Zr)N
s
r∨ti−1

dr

+

∫ s

0

g(r,Xr, Yr)N
s
r∨ti−1

dBr|F
t
s

}

σ(s,Xs). s ∈ (ti−1, ti) (5.2)17



Further, there exists a version of proess Z that enjoys the following properties:
(i) the mapping s 7→ Zs is a.s. ontinuous on eah interval (ti−1, ti), i = 1, ....., n;
(ii) limits Zt−i

= lims↑ti Zs and Zt+i
= lims↓ti Zs exist;

(iii) ∀p > 0, there exists a onstant Cp > 0 depending only on T,K and p suh thatIE|∆Zti |
p ≤ Cp(1 + |x|p) ≤ ∞. (5.3)Consequently, the proess Z has both àdlàg and àglàd version with disontinuities t0, ..., tnand jump sizes satisfying (5.3)Proof. As before we will onsider only the ase d = 1, and we assume �rst that f, l ∈ C1

b .Let us �rst establish the identity (5.2). We �x an arbitrary index i and onsider the interval
(ti−1, ti). By virtue of the Malliavin operatorD, Theorem 2.4 and the uniqueness of the adaptedsolution to BDSDE, we obtain
Zs =

∑

j≥i

∂jlDsXtj +

∫ s

0

[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr]dr

+

∫ s

0

[gx(r)DsXr + gy(r)DsYr + gz(r)DsZr]dBr −

∫ s

0

DsZrdWr

=

{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
iYr + fz(r)∇

iZr]dr

+

∫ s

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ s

0

∇iZrdWr

}

(∇Xs)
−1σ(s,Xs)

= ∇iYs(∇Xs)
−1σ(s,Xs), ti−1 < s < ti. (5.4)Taking the onditional expetation IE{.|F t

s} on two sides of (5.4) we obtain
Zs = IE{∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
i
sYr + fz(r)∇

iZr]dr|F
t
s

}

(∇Xs)
−1σ(s,Xs).(5.5)The rest of the proof is similar to the BSDE ase. It is lear now that to prove the theoremwe need only prove properties (i)-(iii), whih we will do. Note that (i) is obvious, in light ofTheorem 4.2 and thanks to representation (5.2). Property (ii) is a slight variation of Lemma4.1 and Lemma 4.1 of Ma and Zhang [11℄, with 0 there being replaed by ti−1, for eah i.Therefore we shall only hek (iii). To this end, we de�ne ∆Zti = Zti+ − Zti−. From (5.4) itnot di�ult to hek that

Zti− = ∇iYti [∇Xti ]
−1σ(ti, Xti) Zti+ = ∇i+1Yti[∇Xti ]

−1σ(ti, Xti).18



Denoting αi
s = −(∇i+1Ys −∇iYs), i = 1, ...., n, we have

∆Zti = (∇i+1Ys −∇iYs)σ(ti, Xti) = −αi
ti
σ(ti, Xti). (5.6)Further, sine (∇iY,∇iZ) denotes the adapted solution of the following BDSDE

∇iYτ =
∑

j≥i

∂jl∇Xtj +

∫ τ

0

[fx(r)∇Xr + fy(r)∇
iYr + fz(r)∇Zr]dr

+

∫ τ

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ τ

0

∇iZrdWr, τ ∈ [ti−1, t],if we denote βis = −(∇i+1Zs −∇iZs), then we have
αi

s = ∂il∇ti +

∫ s

0

[fy(r)α
i
r + fz(r)β

i
r]dr +

∫ s

0

[gy(r)α
i
r + gz(r)β

i
r]dBr

−

∫ s

0

βi
rdWr, s ∈ [0, t]. (5.7)So (αi, βi) is the adapted solution to the linear BDSDE (5.7). It follows by Lemma 2.2 that

∀ p > 0 there exists a Cp > 0 suh that IE{|αi
ti
|p} ≤ Cp. On the other hand the same estimateholds for σ(s,Xs) beause of assumption (A1) and Theorem 3.3; for [∇X]−1 sine it is solutionof a appropriated SDE. It readily seen that (5.3) follows from (5.6) whih prove (iii).Finally, we note that when f and l are only Lipshitz, (5.2) still holds, modulo a standardapproximation the same as that in Theorem 4.2. Thus properties (i) and (ii) are obvious. Toprove (iii) we should observe that the standard approximation yield that ∆Zε

ti
→ ∆Zti a.s. Soif (5.3) holds for ∆Zε

ti
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