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Representation Theorems for Ba
kward DoublySto
hasti
 Di�erential EquationsAuguste AmanUFR de Mathématiques et Informatique,22 BP 582 Abidjan 22, C�te d'IvoireAbstra
tIn this paper we study the 
lass of ba
kward doubly sto
hasti
 di�erential equation(BDSDE, for short) whose terminal value depends on the history of forward di�usion.We �rst establish a probabilisti
 representation for the spatial gradient of the sto
hasti
vis
osity solution to a quasilinear paraboli
 SPDE in the spirit of the Feynman-Ka
 for-mula, without using the derivatives of the 
oe�
ients of the 
orresponding BDSDE. Thensu
h a representation leads to a 
losed-form representation of the martingale integrand ofBDSDE, under only standard Lips
hitz 
ondition on the 
oe�
ients.Key Words: Ba
kward doubly SDEs, Sto
hasti
 Partial Di�erential equation, Adaptedsolution, anti
ipating sto
hasti
 
al
ulus, sto
hasti
 vis
osity solutions.1 Introdu
tionBa
kward sto
hasti
 di�erential equations (BSDE, for short) were �rstly been 
onsidered in itlinear form by Bismut [1, 2℄ in the 
ontext of optimal sto
hasti
 
ontrol. However, nonlinearBSDEs and their theory have been introdu
ed by Pardoux and Peng [16℄. It has been enjoyinga great interest in the last ten year be
ause of its 
onne
tion with applied �elds. We 
an 
itesto
hasti
 
ontrol and sto
hasti
 games (see [10℄, ) and mathemati
al �nan
e (see [6℄, ). BSDEalso provide a probabilisti
 interpretation for solutions to ellipti
 or paraboli
 nonlinear partialdi�erential equation generalizing the 
lassi
al Feynman-Ka
 formula [17, 18℄.In an other work, to give a probabilisti
 representation to solutions of quasi-linear sto
hasti
PDEs, Pardoux and Peng [19℄ introdu
ed a new type of BSDE with presen
e of two sto
hasti
integrals driven by two independent Brownian motions B and W . The so-
alled ba
kward1



doubly sto
hasti
 di�erential equations (BDSDE in short) is of the form
Ys = ξ +

∫ T

s

f(r, Yr, Zr) dr +

∫ T

s

g(r, Yr, Zr) ↓ dBr

−

∫ T

s

Zr dWr. s ∈ [t, T ], . (1.1)where ξ is a square integrable variable. Let us remark that the integral driven by {Br}r≥0 is aba
kward It� integral and the other one driven by {Wr}r≥0 is the standard forward It� integral.Under the global Lisp
hitz 
ondition on the 
oe�
ient, they prove that this BSDE have aunique solution (Y, Z). However in the markovian framework we point out that our version isin fa
t a time reversal of BDSDE (1.1), due to the set-up of our problem. (see Bukdahn andMa [3, 4] for more detail). For ea
h (t, x) ∈ [0, T ] × IRd, we 
onsider the following
Xx,t

s = x+

∫ t

s

b(r,Xx,t
r ) dr +

∫ t

s

σ(r,Xx,t
r ) ↓ dWr s ∈ [0, t], (1.2)

Y t,x
s = l(Xx,t

0 ) +

∫ s

0

f(r,Xx,t
r , Y x,t

r , Zx,t
r ) dr +

∫ s

0

g(r,Xx,t
r , Y x,t

r ) dBr

−

∫ s

0

Zx,t
r ↓ dWr, s ∈ [0, t]. (1.3)In this 
ase adding more stringent regularity 
onditions on the 
oe�
ients (b, σ and f , g, l arerespe
tively C1 and C3 in their spatial variable) Pardoux and Peng [19℄ provide that

Y x,t
s = u(t, Xx,t

s ) and Zx,t
s = ∂ux(t, X

x,t
s )σ(t, Xx,t

s ), s ∈ [0, t] (1.4)where {u(t, x), (t, x) ∈ [0, T ] × IRd} the 
lassi
al solution of the ba
kward sto
hasti
 PDE inthe form
du(t, x) = [Lu(t, x) + f(t, x, u(t, x), (∇uσ)(t, x))] dt

+g(t, x, u(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

u(0, x) = l(x), x ∈ IRd.

(1.5)with L the in�nitesimal operator generated by the solution of forward SDE in the form
L =

1

2

n
∑

i,j=1

k
∑

l=1

σilσlj(x)∂
2
xixj

+

n
∑

j=1

bj(x)∂xj
.In order to weak the 
ondition given in Pardoux and Peng [19], Bu
kdahn and Ma [3, 4]introdu
e notion of sto
hasti
 vis
osity solution of SPDE (1.5). Assuming the 
oe�
ient ofBDSDE f and l only Lips
hitz, they get that

Y x,t
t = u(t, x) = IE{

l(X t,x
0 ) +

∫ t

0

f(s,X t,x
s , Y t,x

s , Zt,x
s ) ds/FB

t

}2



is a sto
hasti
 vis
osity solution of SPDE (1.5). On the hand let us remark that a other notionof sto
hasti
 vis
osity solution of SPDE (1.5) have been involved by Lions and Souganidis [12].However there is no link betweens the two kind of vis
osity solution of SPDE.In this paper we 
onsider the one use by Bu
kdahn and Ma [3, 4] that in our mind isnatural and 
oin
ide (if g ≡ 0) with the well-know vis
osity solution of PDE introdu
ed byCrandall and al [5]. Moreover we have two goal. First we show that if the 
oe�
ients f and lare 
ontinuously di�erentiable, u the sto
hasti
 vis
osity solution (in the sense of [3, 4℄) of theSPDE (1.5) will have a 
ontinuous spatial gradient ∂xu(t, x) and more pre
isely, the followingprobabilisti
 representation holds:
∂xu(t, x) = IE{

l(X t,x
0 ) N t

0 +

∫ s

0

f(s,X t,x
s , Y t,x

s , Zt,x
s )N s

r dr/F
B
t

} (1.6)where N s
. is some pro
ess de�ned on [0, s], depending only on the solution of the forwardequation (1.2) and the solution of its variational equation. The importan
e of this formula isthat with the help of equality (1.4) we 
an derive a similar representation for the martingaleintegrand Z, under only Lips
hitz 
ondition on f and l. This representation 
an be thought ofas new type of nonlinear Feynman-Ka
 formula for the derivative of solution of SPDE whi
his new in the literature. Let us re
all that this two representations have already be given byMa and Zhang [13℄ in the 
ase of probabilisti
 representation for solutions of PDE via BSDE.Consequently our approa
h is be inspired by the one use in Ma and Zhang. However, be
auseof the presen
e of sto
hasti
 term in equation (1.5), some parti
ularities hold. The vis
ositysolution u is a random �eld that respe
t the �ltration generated by the Brownian motion B. Sothe derivative notion is take in the general sense (for �xed ω1). Moreover sin
e the family of σ−algebrai
 Ft = FB

t ⊗ FW
t,T is not a �ltration, there is real di�
ulty to proved the 
ontinuity ofthe representation of the pro
ess Z. The rest of this paper is organized as follows. In se
tion 2we give all the ne
essary preliminaries. In se
tion 3 we establish the new Feynman-Ka
 formulabetween 
oupled forward ba
kward SDE (1.1), (1.2) and the SPDE (1.5), under only the C1−assumption of the 
oe�
ients. The se
tion 4 is devoted to give the main representation theoremassuming only the Lips
hitz 
ondition of the 
oe�
ients l and f . In se
tion 5 we study thepath regularity of the pro
ess Z.2 PreliminariesLet T > 0 a �xed �nal time. Throughout this paper we 
onsider two 
omplete probabilityspa
es: (Ω1,F1, IP1) on whi
h is de�ned a d−dimensional Brownian motion {Bt, 0 ≤ t ≤ T}and (Ω2,F2, IP2) on whi
h we de�ne a other d− Brownian motion {Wt, 0 ≤ t ≤ T} independentto the �rst one. Let F
B = {FB}t≥0 denote the natural �ltration generated by B, augmentedby IP1− null set of F1; and let FB = FB

∞. On the hand we 
onsider the following family of σ−�elds:
FW

t,T = σ{Ws −WT , t ≤ s ≤ T} ∨ N2,3



where N2 denotes all the IP2− null set in F2. Denote FW
T = {FW

t,T}0≤t≤T .Next we 
onsider the produ
t spa
e (Ω,F , IP) where
Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 × IP2;and de�ne Ft = FB

t ⊗ FW
t,T for 0 ≤ t ≤ T . We should note that F = {Ft, t ∈ [0, T ]} is neitherin
reasing nor de
reasing. Therefore it is not a �ltration; but in other words they are 
omplete.Further, we assume that random variables ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are 
onsidered asrandom variables on Ω via the following identi�
ation:
ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2).Let us give the spa
e given that will be frequently used in the sequel; X denoting the a generi
Bana
h spa
e with it's norm ‖.‖X and E the generi
 Eu
lidean spa
e (or Ei, i = 1, 2, ....)

• for t ∈ [0, T ], L0([t, T ];X ) is the spa
e of all measurable fun
tions ϕ : [t, T ] 7→ X ;
• for 0 ≤ t ≤ T, C([t, T ];X ) is the spa
e of all 
ontinuous fun
tions ϕ : [t, T ] 7→ X ; fur-ther, for any p > 0 we denote |ϕ|∗,pt,T = sup

t≤s≤T
‖ϕ(s)‖p

X when the 
ontext is 
lear;
• for integers k and n, Ck,n([0, T ] ×E;E1) is the spa
e of all E1− valued fun
tions ϕ(t, e),
(t, e) ∈ [0, T ] × E, su
h that they are k−times 
ontinuously di�erentiable in t and n−times
ontinuously di�erentiable in e;
• C1

b ([0, T ] × E;E1) is the spa
e of those ϕ ∈ C1([0, T ] × E;E1) su
h that all the partialderivatives are uniformly bounded;
• W 1,∞(E,E1) is the spa
e of all measurable fun
tions ψ : E 7→ E1, su
h that for some
onstant K > 0 it holds that |ψ(x) − ψ(y)|E1

≤ K|x− y|E, ∀x, y ∈ E;
• for any sub-σ-�eld G ⊆ FT and 0 ≤ p < ∞, Lp(G;E) denote all E−valued G−measurablerandom variable ξ su
h that IE|ξ|p < ∞. Moreover, ξ ∈ L∞(G;E) means it is G−measurableand bounded;
• for 0 ≤ p <∞, Lp(F, [0, T ];X ) is the spa
e of all X−valued, F−adapted pro
esses ξ satisfyingIE(

∫ T

0

‖ξt‖
p
Xdt

)

<∞; and also, ξ ∈ L∞(F, [0, T ]; IRd) means that the pro
ess ξ is uniformlyessentially bounded in (t, ω);
• C(F, [0, T ] × E;E1) is the spa
e of E1−valued, 
ontinuous random �eld ϕ : Ω × [0, T ] × E,su
h that for �xed e ∈ E, ϕ(., ., e) is an F-adapted pro
ess.Now we 
onsider 
oe�
ients (b, σ) of the FSDE and (f, g, l) of BDSDE with the followingproperties: 4



(A1) The fun
tions σ ∈ C0,1
b ([0, T ]× IRd; IRd×d), b ∈ C0,1

b ([0, T ]× IRd; IRd); and all the partialderivatives of b and σ (with respe
t to x) are uniformly bounded by a 
ommon 
onstant
K > 0. Further, there exists 
onstants c > 0, su
h that

ξTσ(t, x)σ(t, x)T ξ ≥ c|ξ|2, ∀x, ξ ∈ IRd, t ∈ [0, T ]. (2.1)The fun
tion f ∈ C(FB, [0, T ] × IRd × IR × IRd; IR) ∩W 1,∞([0, T ] × IRd × IR × IRd; IR). Fur-thermore, we denote the Lips
hitz 
onstants of f by a 
onstant K > 0 as in A1; and weassume that
sup

0≤t≤T
{|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)|} ≤ K. (2.2)

(A3) The fun
tion g ∈ C0,2,3
b ([0, T ] × IRd × IR; IRd)

(A4) The fun
tion l: IRd 7→ IR is 
ontinuous, su
h that for some 
onstants K, p > 0,
l(x) ≤ K(1 + |x|p), x ∈ IRd. (2.3)We will give the following results that are either standard or slight variations of the well-know results of FSDE (see [9℄) and BDSDE (see [19℄)Lemma 2.1 Suppose that b ∈ C(F, [0, T ] × IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(Rd; IRd)),

σ ∈ C(F, [0, T ]× IRd; IRd×d)∩L0(F, [0, T ];W 1,∞(Rd; IRd×d)), with a 
ommon Lips
hitz 
onstant
K > 0. Suppose also that b(t, 0) ∈ L2(F, [0, T ]; IRd) and σ(t, 0) ∈ L2(F, [0, T ]; IRd×d). Let X bethe unique solution of the following forward SDE

Xs = x+

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr. (2.4)Then for any p ≥ 2, there exists a 
onstant C > 0 depending only on p, T and K, su
h that
E(|X|∗,p0,T ) ≤ C

{

|x|p + IE ∫ T

0

[|b(s, 0)|p + |σ(s, 0)|p] ds

} (2.5)Lemma 2.2 Assume f ∈ C(F, [0, T ] × IR× IRd; IR) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IR)), with auniform Lips
hitz 
onstant K > 0, su
h that f(s, 0, 0) ∈ L2(F, [0, T ]) and g ∈ C(F, [0, T ]×IR×IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IRl)) with a 
ommon uniform Lips
hitz 
onstant K > 0with respe
t the �rst variable and 0 < α < 1 a Lips
hitz 
onstant wit
h respe
t the se
ond onesu
h that g(s, 0, 0) ∈ L2(F, [0, T ]). For any ξ ∈ L2(F0; IR), let (Y, Z) be the adapted solution tothe BDSDE:
Ys = ξ +

∫ s

0

f(r, Yr, Zr) dr +

∫ s

0

g(r, Yr) dBr −

∫ s

0

Zr ↓ dWr. (2.6)5



Then there exists a 
onstant C > 0 depending only on T and the Lips
hitz 
onstants K,α of fand g, su
h thatIE∫ T

0

|Zs|
2ds ≤ CIE{

|ξ|2 +

∫ T

0

[|f(s, 0, 0)|2 + |g(s, 0, 0)|2] ds

}

. (2.7)Moreover, for all p ≥ 2, there exists a 
onstant Cp > 0, su
h thatIE(|Y |∗,p0,T ) ≤ CpIE{

|ξ|p +

∫ T

0

[|f(s, 0, 0)|p + |g(s, 0, 0)|p] ds

} (2.8)To 
ontinue we give the basi
 fa
ts of the malliavin 
al
ulus, espe
ially those related to BDSDE(see Pardoux-Peng [19]). To begin with, let S be the spa
e of all random variables of the form
ξ = F

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)where F ∈ C∞
b (IRn+p), ϕ1, ..., ϕn ∈ L2([0, T ], IRd) and ψ1, ..., ψn ∈ L2([0, T ], IRd). We 
all amapping D : S 7→ L([0, T ] × Ω) the malliavin derivative operator with respe
t to W if for ea
h

ξ ∈ S and t ∈ [0, T ],
Dtξ =

n
∑

i=

∂F

∂xi

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)

ϕi(t).Next, we de�ne a norm on S by
‖ξ‖2

1,2 = IE|ξ|2 + IE ∫ T

0

|Drξ|
2dr, ∀ξ ∈ S,and denote ID1,2 to be the 
ompletion of S in L2(Ω) under ‖.‖1,2. We show (see, Nualart [14℄)that D is a densely de�ned, 
losed linear operator from ID1,2 to L2(Ω× [0, T ]; IR) with domainID1,2.Now we shall apply the previous anti
ipative 
al
ulus to the following 
oupled forwardba
kward SDEs























Xx,t
s = x+

∫ t

s
b(r,Xx,t

r )dr +
∫ t

s
σ(r,Xx,t

r )dWr;

Y t,x
s = l(X t,x

0 ) +
∫ s

0
f(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r )dBr

−
∫ s

0
Zt,x

r ↓ dWr, 0 ≤ s ≤ t.

(2.9)Here the supers
ription t,x indi
ates the dependen
e of the solution on the initial date (t, x),and it will be omitted when the 
ontext is 
lear. Let us 
onsider following variational equation6



of 2.9 that is very important in this paper.






































∇iXs = ei +
∫ t

s
∂xb(r,Xr)∇iXrdr +

∑d
j=1

∫ t

s
∂xσ

j(r,Xr)∇iXr ↓ dW
j
r ,

∇iYs = ∂xl(X0)∇iX0 +
∫ s

0
[∂xf(r,Θ(r))∇iXr + ∂yf(r,Θ(r))∇iYr

+〈∂zf(r,Θ(r)),∇iZr〉]dr +
∫ s

0
[∂xg(r,Θ(r))∇iXr + ∂yg(r,Θ(r))∇iYr

+〈∂zg(r,Θ(r)),∇iZr〉]dBr −
∫ s

0
∇iZr ↓ dWr,

(2.10)
where ei = (0, ...,

i

1, ..., 0)T is the i-th 
oordinate ve
tor of IRd; σj(.) is the j-th 
olumn of thematrix σ(.) and Θ(r) = (Xr, Yr, Zr).We remark that (∇X,∇Y,∇Z) ∈ L2(F;C([0, T ]; IRd×d)) × C([0, T ]; IRd) × L2([0, T ]; IRd×d); the
d × d−matrix-valued pro
ess ∇X satis�es a linear SDE and ∇Xt = I so that ∇[Xs]

−1 existsfor s ∈ [t, T ], IP− a.s.The following lemma 
on
erns the Malliavin-derivatives of the solution (X, Y, Z) to (2.9). Theproof 
an be found in Pardoux-Peng [19℄.Lemma 2.3 Assume that (A1) holds; and suppose that f ∈ C0,1
b ([0, T ] × IR2d+1),

g ∈ C0,2,3
b ([0, T ] × IRd+1; IRd). Then (X, Y, Z) ∈ L2([0, T ]; ID1,2(IR2d+1)), and there exists aversion of (DsXr, DsYr, DsZr) that satis�es







DsXr = ∇Xr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsYr = ∇Yr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsZr = ∇Zr(∇Xs)
−1σ(s,Xs)1{s≤r},

0 ≤ s, r ≤ t; (2.11)To end this se
tion let us give the important properties of the anti
ipative integrals (see [14]).Lemma 2.4 Suppose that F ∈ ID1,2. Then
(i)(Integration by parts formula): for any u ∈ Dom(δ) su
h that Fu ∈ L2([0, T ]×Ω; IRd), onehas Fu ∈ Dom(δ), and it holds that

∫ T

0

〈Fut, dWt〉 = δ(Fu) = F

∫ T

0

〈ut, dWt〉 −

∫ T

0

DtFutdt;

(ii)(Clark-Hausman-O
one formula):
F = IE(F ) +

∫ T

0

IE{DtF/Ft}dWt.7



3 Relations to Sto
hasti
 PDE RevisitedIn this se
tion we prove the relation (1.4) between the forward ba
kward doubly SDE (2.8) andthe quasi-linear SPDE (1.5), under the 
ondition that the 
oe�
ients are only 
ontinuouslydi�erentiable. Indeed, sin
e Bu
kdahn and Ma [3, 4] provide that, if f and l are only Lips
hitz
ontinuous, the quantity u(t, x) = Y t,x
t is a sto
hasti
 vis
osity solution of the quasi-linear SPDE(1.5), the se
ond relation in (1.4) be
omes questionable. Our obje
tive is to �ll this gap in theliterature and to extend the results of Ma and Zhang [13] given in the 
ase of the probabilisti
interpretation of PDEs via the BSDEs.Theorem 3.1 Assume (A1), (A3) and suppose that f ∈ C0,1

b ([0, T ] × IRd × IR× IRd) and l ∈ C1
b (IRd).Let (X t,x, Y t,x, Zt,x) be the adapted solution to the FBDSDE (2.9), and de�ne u(t, x) = Y t,x

t thesto
hasti
 vis
osity of SPDE (1.5). Then,
(i) ∂xu(t, x) exists for all (t, x) ∈ [0, T ] × IRd; and for ea
h (t, x) and i=1,...,d, the followingrepresentation holds:

∂xi
u(t, x) = IE{

∂xl(X
t,x
0 )∇iX0 +

∫ t

0

[∂xf(r,Θt,x(r))∇iXr + ∂yf(r,Θt,x(r))∇iYr

+∂zf(r,Θt,x(r))∇iZr]dr/F
B
t

} (3.1)where Θt,x(r) = (X t,x
r , Y t,x

r , Zt,x
r ) and (∇X,∇Y,∇Z) are respe
tively the solution to equation

(2.9) and it variational equation (2.10);
(ii) ∂xu(t, x) is 
ontinuous on [0, T ] × IRd;
(iii) Zt,x

s = ∂xu(s,X
t,x
s )σ(s,X t,x

s ), ∀ s ∈ [0, t], IP− a.s.Proof. For the simple presentation we take d = 1. the higher dimensional 
ase 
an be treated inthe same way without substantial di�
ulty. We use the simpler notations lx, (fx, fy, fz), (gx, gy, gz)for the partial derivatives of l, f and g.The proof is inspired by the approa
h of Ma and Zhang [13] (see Theorem 3.1). Nevertheless,there exists important di�eren
e due in the fa
t that the solution of the SPDE is not deter-ministi
 but a random �eld; more pre
isely u(t, x) is a 
onditional expe
tation with respe
t the�ltration F
B.

(i) Let (t, x) ∈ [0, T ] × IR be �xed. For h 6= 0, we de�ne:
∇Xh

s =
X t,x+h

s −X t,x
s

h
;∇Y h

s =
Y t,x+h

s − Y t,x
s

h
;∇Zh

s =
Zt,x+h

s − Zt,x
s

h
s ∈ [0, t].By the roughly 
omputation of BDSDEs ( see Ma and Zhang [13] for BSDE 
ase) we show thatIE{|∆Y h|∗,20,T = IE{|∇Y h −∇Y |∗,20,T} → 0 as h→ 0. (3.2)8



Moreover sin
e, u(t, x) = Y x,t
t and u(t, x+ h) = Y x+h,t

t , we have ∇Y h
t =

1

h
[u(t, x) − u(t, x+ h)].Then, in view of (3.2) we obtain

∂xu(t, x) = lim
h−→0

1

h
[u(t, x) − u(t, x+ h)] = lim

h−→0
∇Y h

t

= ∇Yt. (3.3)On the other hand Y x,t
s , Y x+h,t

s , ∇Y h
s and ∆Y h

s are all FB
s ⊗ FW

s,t− measurable. In parti
ular
Y x,t

t , Y x+h,t
t , ∇Y h

t and ∆Y h
t are all FB

t ⊗ FW
t,t − measurable so is ∂xu(t, x). But sin
e W is aBrownian motion on (Ω,F , IP) applying the Blumenthal 0 − 1 law (see, e.g, [11℄) we 
on
ludethat ∂xu is independent of (or a 
onstant with respe
t to) ω2 ∈ Ω2. Therefore, we 
an identifythe random �eld ∂xu as one that is de�ned on Ω1 × [0, T ]× IRd, and is FB

t -measurable for ea
h
t ∈ [0, T ]. Finally, taking the 
onditional expe
tation on the both sides of (2.10) at s = t we
laim that the representation (3.1) hold. Indeed by the proof of Theorem 3.1 in [22], we haveIE ∫ s

0

[∂xg(r,Θ
t,x(r))∇Xr + ∂yg(r,Θ

t,x(r))∇Yr + ∂zg(r,Θ
t,x(r))∇Zr]dBr = 0IE ∫ s

0

∇Zr ↓ dWr = 0whi
h �nish the prove of (i)We now prove (ii). Let us remark that ∂xu is not deterministi
 as in the paper of Ma andZhang [13] but a random �eld. Sin
e this di�eren
e, the prove of (ii) is a slight modi�
ation.It is subdivided in two step. Firstly we get 
ontinuity w.r.t time variable. Indeed, for �xed
x ∈ IR, the pro
ess with parameter x {At(x), 0 ≤ t ≤ T} de�ne by

At(x) = ∂xl(X
t,x
0 )∇X0 +

∫ t

0

[∂xf(r,Θt,x(r))∇Xr + ∂yf(r,Θt,x(r))∇Yr

+∂zf(r,Θt,x(r))∇Zr] dr, (3.4)is uniformly integrable. Therefore, applying Theorem V I − 47 and Remark V I − 50 (f) ofDella
herie-Meyer [7] we see that ∂xu(t, x) is the FB
t −optional proje
tion of At(x), for all

t ∈ [0, T ]. Thus it has 
àdlàg paths. To show that those paths are a
tually 
ontinuous, we notethat the �ltration FB
t is Brownian, when
e quasi-left-
ontinuous. Thus every FB

t −stoppingtime τ > t is a

essible. That is, there exists a sequen
e of FB
t -stopping times {τk, k ≥ 0} su
hthat τk < τ, ∀ k, IP− a.s., and that τk ↑ τ , as k → ∞. Note that

∂xu(x, τk) − ∂xu(x, τ) = IE {

Aτk
(x)/FB

τk

}

− IE{

Aτ (x)/F
B
τ

}

= IE {

Aτk
(x) − Aτ (x)/F

B
τk

}

+(IE {

Aτ (x)/F
B
τk

}

− IE {

Aτ (x)F
B
τ

}

). (3.5)Letting k → ∞ we see that IE{

Aτ (x)/FB
τk

}

− IE{

Aτ (x)FB
τ

}

→ 0, thanks to the quasi-left
ontinuity of {

FB
t

}

0≤t≤T
. Moreover, we 
laim that IE{

Aτk
(x) −Aτ (x)/FB

τk

}

→ 0. Indeed in9



view of (3.4), standard 
omputation and 
onditions of l, f and g it follows easily thatIE|Aτk
(x) − Aτ (x)|

2 ≤ C|τk − τ |2. (3.6)Thus ∂xu(τ−, x) = ∂xu(τ, x), IP−a.s. Sin
e ∂xu(., x) is 
àdlàg and τ is arbitrary, we 
on
ludethat ∂xu(., x) is in fa
t 
ontinuous on [0, T ], almost surely whi
h �nish the �rst step. In these
ond step we study 
ontinuity w.r.t spa
ial variable. We �xe t ∈ [0, T ] and 
onsider the familyrandom variables {∂xu(t, x), x ∈ IR}. By using the same argument as previous we getIE|∂xu(t, x1) − ∂xu(t, x2)|
2 ≤ C|x1 − x2|

2. (3.7)Thus the mapping x 7→ ∂xu(t, x) is 
ontinuous. Finally by the two step we 
on
lude that
∂xu(., .) is 
ontinuous on [0, T ] × IRd and �nished the prove of (ii).It remains to prove (iii). For a 
ontinuous fun
tion ϕ, let us 
onsider {ϕε}ε>0 a family of C0,∞fun
tions that 
onverges to ϕ uniformly. Sin
e b, σ, l, f are all uniformly Lips
hitz 
ontinuous,we may assume that the �rst order partial derivatives of bε, σε, lε, f ε are all uniformly bounded,by the 
orresponding Lips
hitz 
onstants of b, σ, l, f uniformly in ε > 0. Now we 
onsider thefamily of FBDSDEs parameterized by ε > 0:






X t,x
s = x+

∫ t

s
bε(r,X t,x

r )dr +
∫ t

s
σε(r,X t,x

r ) ↓ dWr;

Y t,x
s = lε(X t,x

0 ) +
∫ s

0
f ε(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r , Zt,x

r )dBr −
∫ s

0
Zt,x

r ↓ dWr

(3.8)and denote it solution by (X t,x(ε), Y t,x(ε), Zt,x(ε)). We de�ne uε(t, x) = Y t,x
t (ε). ApplyingTheorem 3.2 of [19] it follow that uε is the 
lassi
al solution of sto
hasti
 PDE

duε(t, x) = [Lεu(t, x) + f ε(t, x, uε(t, x), (∇uεσε)(t, x))] dt

+g(t, x, uε(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

uε(0, x) = lε(x), x ∈ IRd.

(3.9)For any {xε} ⊂ IRn su
h that xε → x as ε → 0, de�ne
(Xε, Y ε, Zε) = (X t,xε

(ε), Y t,xε

(ε), Zt,xε

(ε)). Then it is well know a

ording the work of Pardouxand Peng [19℄ that
Y ε

s = uε(s,Xε
s ); Zε

s = ∂xu
ε(s,Xε

s )σ
ε(s,Xε

s ), ∀ s ∈ [0, t], IP− a.s. (3.10)Now by Lemma 2.1 and Lemma 2.2, for all p ≥ 2 it hold thatIE{

|Xε −X|∗,p0,T + |Y ε − Y |∗,p0,T +

∫ T

0

|Zε
s − Zs|

2ds

}

→ 0 (3.11)as ε → 0. Moreover let us re
all (∇Xε,∇Y ε,∇Zε) the unique solution of the variationalequation of (3.8). Using again Lemma 2.1 and Lemma 2.2 we getIE{

|∇Xε −∇X|∗,p0,T + |∇Y ε −∇Y |∗,p0,T +

∫ T

0

|∇Zε
s −∇Zs|

2ds

}

→ 0, (3.12)10



as ε→ 0. Thus, using the dominated 
onvergen
e theorem one derives that
lim
ε→0

IE{

lεx(X
ε
0)∇X

ε
0 +

∫ t

0

[f ε
x∇X

ε
r + f ε

y∇Y
ε
r + f ε

z∇Z
ε
r ]dr1A

}

= IE{

lx(X0)∇X0 +

∫ t

0

[fx∇Xr + fy∇Yr + fz∇Zr]dr1A

}for any A ∈ FB
t . Then

∂xu
ε(t, xε) → ∂xu(t, x), as ε→ 0 IP− a.s. ∀ (t, x).Consequently, possibly along a subsequen
e, we get

Zε
s = lim

ε→0
∂uε(s,Xε

s )σ
ε(s,Xε) = ∂u(s,Xs)σ(s,Xs), ds× dIP− a.e.Sin
e for IP− a.e. ω, ∂xu(., .) and X are both 
ontinuous, the above equalities a
tually holdsfor all s ∈ [0, t], IP-a.s., proving (iii) and end the proof.The following 
orollary is the dire
t 
onsequen
e of the Theorem 3.1. The 
onvention onthe generi
 
onstant C > 0 still true.Corollary 3.2 Assume that the same 
onditions as in Theorem 3.1 hold, and let (X, Y, Z) bethe solution of FBDSDE (2.9). Then, there exists a 
onstant C > 0 depending only on K, Tand a positive Lp(Ω,FB

t , IP1)− pro
ess Γ, (p ≥ 1), su
h that
|∂xu(t, x)| ≤ CΓt, ∀ (t, x) ∈ [0, T ] × IRd, IP− a.s. (3.13)Consequently, one has

|Zs| ≤ CΓs(1 + |Xs|), ∀s ∈ [0, t], IP− a.s. (3.14)Furthermore, ∀ p > 1, there exists a 
onstant Cp > 0, depending on K, T , and p su
h thatIE{

|X|∗,p0,T + |Y |∗,p0,T + |Z|∗,p0,T

}

≤ Cp(1 + |x|p). (3.15)Proof. Let us assume that p ≥ 2. The 
ase for 1 < p < 2 then follows easily from theHölder inequality. By the representation (3.1) and the 
ondition on l and f it follows that
|∂xu(t, x)| ≤ CIE(

|∇X0| +

∫ t

0

[|∇Xs| + |∇Ys| + |∇Zs|]ds/F
B
t

)

.Let us denote Γt = IE(

|∇X0| +

∫ t

0

[|∇Xs| + |∇Ys| + |∇Zs|]ds/F
B
t

). Then using Lemma 2.1and Lemma 2.2 we obtainIE|Γt|
p ≤ IE{|∇X|∗,p0,T + |∇Y |∗,p0,T +

∫ T

0

|∇Zr|
2dr} ≤ C.11



In view of (iii) of Theorem 3.1 it follows that
|Zs| ≤ CΓs(1 + |Xs|), ∀s ∈ [0, T ], IP− a.s.Applying again Lemma 2.1, Lemma 2.2 and hölder's inequality for p ≥ 2 we get (3.15).The following last theorem in this se
tion redu
es the 
onditions on l and f to (A2) and

(A4). Let us remark that this assumptions is mu
h weaker than that one of Theorem 3.1 inwhi
h the fun
tions l and f are assumed to be 
ontinuously di�erentiable in all spatial variableswith uniformly bounded partial derivatives.Theorem 3.3 Assume (A1) − (A4), and let (X, Y, Z) be the solution to the FBDSDE (2.9).Then for all p > 0, there exists a 
onstant Cp > 0 su
h thatIE{

|X|∗,p0,T + |Y |∗,p0,T + ess sup
0≤s≤T

|Zs|
p

}

≤ Cp(1 + |x|p). (3.16)Proof. In the light of the 
orollary 3.1, we need only 
onsider p ≥ 2. By Lemma 2.1 andLemma 2.2 it follows that for any p > 0 there exists Cp > 0 su
h thatIE{|X|∗,p0,T + |Y |∗,p0,T} ≤ Cp(1 + |x|p). (3.17)Next using the same argument as in the proof of part (iii) of Theorem 3.1 we 
onsider twosequen
es of smooth fun
tions {f ε}ε and {lε}ε su
h that
lim
ε→0

{

sup
(t,x,y,z)

|f ε(t, x, y, z) − f(t, x, y, z)| + sup
x

|lε(x) − l(x)|

}

= 0and that the �rst order derivatives of f ε's and lε's in (x, y, z) are uniformly bounded, uniformlyin t and ε. Let (Xε, Y ε, Zε) be the unique solution of the 
orresponding FBDSDEs. Thus applyCorollary 3.1 it follows that for any p ≥ 2 there exists a 
onstant Cp > 0, independent of ε,su
h that IE (

|Zε|∗,p0,T

)

≤ Cp(1 + |x|p). (3.18)Furthermore, we know that IE ∫ T

0

|Zε
s − Zs|

2ds→ 0 as ε→ 0. Thus, possibly along a sequen
esay (εn)n≥1 we have limn→∞ Zεn = Z ds × dIP− a.s. Applying Fatou's lemma to (3.18) weobtain IE{

ess sup
0≤s≤T

|Zs|
p

}

≤ Cp(1 + |x|p)whi
h end the proof. 12



4 The Representation TheoremNow let us give the se
ond main result of the paper. The following theorem 
an be regardedas an extension of the nonlinear Feynman-Ka
 formula obtained by Pardoux-Peng [19]. Itgives a probabilisti
 representation of the gradient w.r.t the spa
e variable of the vis
ositysolution, whenever it exists, to a quasi-linear paraboli
 sto
hasti
 PDE. The main feature ofour representation lies in the fa
t that it does not depend on the partial derivatives of thefun
tions f and l as in (3.1). Su
h representation give the argument for us to study the pathregularity of the pro
ess Z in the BDSDE with non-smooth 
oe�
ients. To Begin let denotethe following pro
esses that will play an important role in the sequel.
Ms

r =

∫ s

r

[σ−1(τ,Xτ)∇Xτ ]
T ↓ dWτand

N s
r =

1

s− r
(Ms

r )T [∇Xr]
−1, 0 ≤ r < s ≤ t.Let us re
all that IE|Ms

r |
2p ≤ CpIE(

∫ s

r

|σ−1(τ,Xτ )∇Xτ |
2dτ

)p (4.1)
≤ Cp(s− r)pIE (

|∇Xτ |
∗,2p
s,r

)

≤ Cp(s− r)p,where Cp > 0 is a generi
 
onstant.Before we give our main result let us introdu
e this two notationsF t =
{

FB
s ⊗FW

s,t , 0 ≤ s ≤ t
}

,

Gt =
{

FB
s ⊗ FW

0,t , 0 ≤ s ≤ t
} and give the following lemma that is slight modi�
ation versionof Lemma 4.1 in Ma and Zhang [13].Lemma 4.1 For any �xed t ∈ [0, T ] and any H ∈ L∞(Ft, [0, T ]; IR) we have

(i) E|
∫ s

0
1

s−r
HsM

r
s dr| < +∞

(ii) for IP.a.e., ω ∈ Ω, the mapping s 7→
∫ s

0
1

s−r
Hr(ω)M r

s (ω)dr(ω) is Hölder-([p0−2]/[p0(p0+
2)]) 
ontinuous on [0, t]

(iii) for IP.a.e. , ω ∈ Ω, the mapping s 7→ IE{∫ s

0
1

s−r
HrM

r
s dr/G

t
s}(ω) is 
ontinuous on [0, t]Proof. First, for any 0 ≤ τ < t we denote

As
τ =







∫ s

τ
1

s−r
HrM

s
r dr, 0 ≤ τ < s

0, if s = τ.
(4.2)13



To simplify notation, when τ = 0 we denote As
0 = As. Further, let q0 > 0 be su
h that

1
p0

+ 1
q0

= 1, and de�ne β = p0

2+p0
and α = 1 − β. It is readily seen that β > 1

q0
and α < 1

2
.Consider the random variable

M∗ = sup
0≤t1<t2≤t

|M t2
t1 |

(t2 − t1)α
. (4.3)A

ording (4.2) and Theorem 2.1 of Revuz-Yor [21], we have IE[M∗]2 < +∞.By Hölder's inequality one hasIE|As

τ | ≤ C(s− τ)(1/q0)−β‖H‖p0
M∗

≤ C‖H‖Lp0([0,T ]×Ω)‖M
∗‖L2(Ω) <∞. (4.4)Setting τ = 0 in (4.4) we proved (i).To prove (ii) let τ = 0 and observe that, for 0 < s1 < s2 ≤ t,

As1
−As2

=

∫ s2

s1

1

s2 − r
HrM

s2

r dr −

∫ s1

0

1

s2 − r
HrM

s2

s1
dr

+

∫ s1

0

(

1

s1 − r
−

1

s2 − r

)

HrM
s1

r dr = Γ1 + Γ2 + Γ3, (4.5)where Γi's are de�ned in an obvious way. Comparing to (4.2) and in view of (4.4),
Γ1 ≤ C(s2 − s1)

(1/q0)−β‖H‖p0
M∗. (4.6)Further, by de�nition (4.3) we see that

|Γ2| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0

M∗. (4.7)Finally it not di�
ult to prove
|Γ3| ≤ C(s2 − s1)

(1/q0)−β‖H‖p0
M∗. (4.8)Combining (4.6) − (4.8) we obtain that

|As2
− As1

| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0

M∗. (4.9)We should note that by (4.4) with τ = 0 we see that (4.9) holds true even when s1 = 0. This,together with the fa
t 1
q0
− β = p0−2

p0(p0+2)
, proves (ii).The proof of (iii) is the same as this one of Ma and Zhang [13] (see Lemma 4.1 (iii)).Theorem 4.2 Assume that the assumptions (A1) - (A4) hold, and let (X, Y, Z) be the adaptedsolution to FBDSDE (2.9). Then 14



(i) the following identity holds IP− almost surely:
Zs = IE{

l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr/F

t
s

}

σ(s,Xs). (4.10)
(ii)There exist a version of Z su
h that for IP−a.e.ω ∈ Ω, the mapping s 7→ Zs(ω) is 
ontin-uous;
(iii) If in addition the fun
tions f and l satisfy assumptions of Theorem 3.1, then for all

(t, x) ∈ [0, T ] × IRd it holds that
∂xu(t, x) = IE{

l(X0)N
t
0 +

∫ t

0

f(s,Xr, Yr, Zr)N
t
rdr/F

B
t

} (4.11)Proof. Again we shall 
onsider only the 
ase d = 1. We assume �rst that l ∈ C1
b (IR) and

f ∈ C0,1
b ([0, T ]× IR3). Using the nonlinear Feynman-Ka
 formula of Pardoux and Peng [19] weobtain that for 0 ≤ s ≤ t,

u(s,Xs) = Ys = IE{

l(X0) +

∫ s

0

f(r,Xr, Yr, Zr)dr/F
t
s

}

. (4.12)A

ording the step (i) in the proof of Theorem 4.1 in Ma and Zhang [13] we get
∂xu(s,Xs) = IE{

l(X0)N
s
0 +

∫ s

0

f(r,Θ(r))N s
rdr/F

t
s

}

.In parti
ular, setting s = t we obtain (4.11), this proves (iii).We now 
onsider the general 
ase. First we �x s ∈ [t, T ]. For ϕ = l, f , let ϕε ∈ C∞, ε > 0,be the molli�ers of ϕ, and let (Y ε, Zε) be the solution of the BDSDE in (2.9) with 
oe�
ients
(lε, f ε, g). Then for ea
h ε > 0, as the previous we get

Zε
s = IE{

lε(X0)N
s
0 +

∫ s

0

f ε(r,X, Y ε, Zε)N s
r dr/F

t
s

}

σ(s,Xs). (4.13)Passing to limit as ε goes to zero in (4.13), we get (4.10) IP− a.s., for ea
h �xed s ∈ [0, t].However in order to prove part (i) we still need to show that (4.10) a
tually holds for all
s ∈ [0, t], IP− a.s. But this will follow from part (ii), i.e., the pro
ess Z has the a 
ontinuousversion. Thus it remain to prove only (ii) For instan
e let us remark that a

ording someadaptation version of Pardoux and Peng work (see the proof of proposition 1.2) one 
an provethat

Zs = IE{

l(X0)N
s
0 +

∫ s

0

f(r,X, Y, Z)N s
rdr/G

t
s

}

σ(s,Xs).15



Hen
e it follows by Lemma 4.1 that mapping
s 7→ IE{

∫ T

s

f(r,X, Y, Z)N s
rdr/G

t
s

}is a.s. 
ontinuous on [0, t]. Next, sin
e l(.) is uniformly Lips
hitz, in view of proposition 1.23 ofNualart [14] , there exists ξ ∈ L2(Ω), su
h applying integration by part formula (Lemma 2.5)again we haveIE {

l(X0)N
s
0/G

t
s

}

=
1

s
IE{

l(X0)

∫ s

0

σ−1(r,Xr)∇XrdWr/G
t
s

}

(∇Xs)
−1

=
1

s
IE{

∫ s

0

[Drl(XT )]σ−1(r,Xr)∇Xrdr/F
t
s

}

(∇Xs)
−1

= IE {

ξ∇X0/G
t
s

}

(∇Xs)
−1.Thus using again Lemma 4.1 the mapping s 7→ IE {

l(X0)N
s
0/G

t
s

} is also 
ontinuous on [0, t].Consequently, the right side of (4.10) is a.s. 
ontinuous on [0, t], and hen
e (4.10) holds for all
s ∈ [0, t], P− a.s., proving (ii), when
e the theorem.Remark 4.3 A dire
t 
onsequen
e of Theorem 4.1 that might be useful in appli
ation is thefollowing improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,there exists a 
onstant Cp > 0 depending only on T,K and p su
h thatIE{

|X|∗,pt,T + |Y |∗,pt,T + |Z|∗,pt,T

}

≤ Cp(1 + |x|p) (4.14)Indeed, sin
e by Theorem 4.1, Z has a 
ontinuous version, thus (3.16) be
omes (4.14)5 Dis
rete fun
tion 
aseLet us re
all that we have proved in Theorem 4.1 that the pro
ess Z in the solution to theFBDSDE (2.1) has 
ontinuous paths, under the 
ondition that the 
oe�
ients f and l areonly uniformly Lips
hitz 
ontinuous. While su
h a result is already an improvement of that ofPardoux and Peng [19℄, it still within the paradigm of the standard FBDSDE in the literature,to wit, the terminal 
ondition of the BDSDE is of the form l(XT ) (see also [19℄). In this se
tionwe 
onsider the 
lass of BDSDEs whose terminal 
onditions are path dependent. More pre
isely,we assume that the terminal 
ondition of the BDSDE is the form ξ = l(Xt0 , Xt1, ...., Xtn), where
0 = t0 < t1 < .... < tn = t is any partition of [0, t]. We shall prove a new representation theoremfor the pro
ess Z, and will extend the path regularity result to su
h a 
ase.Theorem 5.4 Assume that (A1)− (A3) hold; and in (A3), l : Rd(n+1) → IR. Let π : 0 = t0 <
t1 < ..... < tn = t be a given partition of [0, t], and let (X, Y, Z) be the unique adapted solution16



to the following FBDSDE:
Xs = x+

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr,

Ys = l(Xt0 , Xt1 , ..., Xtn) +

∫ s

0

f(r,Xr, Yr, Zr)dr (5.15)
+

∫ s

0

g(r,Xr, Yr, Zr)dBr −

∫ s

0

ZrdWr, s ∈ [0, t].Then on ea
h interval (ti−1, ti), i = 1, ...., n, the following identity holds:
Zs = IE{

l(Xt0 , Xt1 , ..., Xtn)N s
ti−1

+

∫ s

0

f(r,Xr, Yr, Zr)N
s
r∨ti−1

dr|F t
s

}

σ(s,Xs). s ∈ (ti−1, ti) (5.16)Further, there exists a version of pro
ess Z that enjoys the following properties:
(i) the mapping s 7→ Zs is a.s. 
ontinuous on ea
h interval (ti−1, ti), i = 1, ....., n;
(ii) limits Zt−

i
= lims↑ti Zs and Zt+

i
= lims↓ti Zs exist;

(iii) ∀p > 0, there exists a 
onstant Cp > 0 depending only on T,K and p su
h thatIE|∆Zti |
p ≤ Cp(1 + |x|p) ≤ ∞. (5.17)Consequently, the pro
ess Z has both 
àdlàg and 
àglàd version with dis
ontinuities t0, ..., tnand jump sizes satisfying (5.17)Proof. Re
all again the argument of the proof of Theorem 4.1, we shall treat only the 
asewhen d = 1. and also assume �rst that f, l ∈ C1

b . We remark also that our demar
he is nearlyidenti
 as the one of Ma and Zhang. For this reason will give the important line. The reader
an see detail in [13]. We �rsty proved equality (5.16); For instan
e let us �x arbitrary index i.By virtue of the Malliavin operator, Theorem 2.4 and the uniqueness of the adapted solutionto BDSDE, we obtain
Zs =

∑

j≥i

∂jlDsXtj +

∫ s

0

[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr]dr

+

∫ s

0

[gx(r)DsXr + gy(r)DsYr + gz(r)DsZr]dBr −

∫ s

0

DsZrdWr

=

{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
iYr + fz(r)∇

iZr]dr

+

∫ s

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ s

0

∇iZrdWr

}

(∇Xs)
−1σ(s,Xs)

= ∇iYs(∇Xs)
−1σ(s,Xs), ti−1 < s < ti. (5.18)17



Taking the 
onditional expe
tation IE{.|F t
s} on two sides of (5.18) we then get

Zs = IE{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
i
sYr + fz(r)∇

iZr]dr|F
t
s

}

(∇Xs)
−1σ(s,Xs).(5.19)The rest of the proof is similar in the BSDE 
ase. Now we will prrove (i)−(iii) to end the proofaf this Theorem. For instan
e let us note that (i) is obvious, in light of Theorem 4.2 and thanksto representation (5.16). Property (ii) is a small variation of Lemma 4.1, with 0 here repla
edby ti−1, for ea
h i. We shall only 
he
k (iii). For this way, we de�ne ∆Zti = Zti+ − Zti−. From

(5.18) it not di�
ult to 
he
k that
Zti− = ∇iYti[∇Xti ]

−1σ(ti, Xti) Zti+ = ∇i+1Yti [∇Xti ]
−1σ(ti, Xti)Denoting αi

s = −(∇i+1Ys −∇iYs), i = 1, ...., n, we have
∆Zti = (∇i+1Ys −∇iYs)σ(ti, Xti) = −αi

ti
σ(ti, Xti). (5.20)Further, sin
e (∇iY,∇iZ) denotes the adapted solution of the following BDSDE

∇iYτ =
∑

j≥i

∂jl∇Xtj +

∫ τ

0

[fx(r)∇Xr + fy(r)∇
iYr + fz(r)∇Zr]dr

+

∫ τ

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ τ

0

∇iZrdWr, τ ∈ [ti−1, t],if we denote βis = −(∇i+1Zs −∇iZs), then we have
αi

s = ∂il∇ti +

∫ s

0

[fy(r)α
i
r + fz(r)β

i
r]dr +

∫ s

0

[gy(r)α
i
r + gz(r)β

i
r]dBr

−

∫ s

0

βi
rdWr, s ∈ [0, t]. (5.21)So (αi, βi) is the adapted solution to the linear BDSDE (5.21). It follows by Lemma 2.2 that

∀ p > 0 there exists a Cp > 0 su
h that IE{|αi
ti
|p} ≤ Cp. On the other hand the same estimateholds for σ(s,Xs) be
ause of assumption (A1) and Theorem 3.3; for [∇X]−1 sin
e it is solutionof a appropriated SDE. It readily seen that (5.17) follows from (5.20) whi
h prove (iii).Finally, we note that when f and l are only Lips
hitz, (5.16) still holds, modulo a standardapproximation the same as that in Theorem 4.2. Thus properties (i) and (ii) are obvious. Toprove (iii) we should observe that the standard approximation yield that ∆Zε

ti
→ ∆Zti a.s. Soif (5.17) holds for ∆Zε

ti
, then letting ε→ 0, (5.17) remains true for ∆Zti , a

ording the Fatou'slemma; that end the proof. 18
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