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Representation Theorems for Bakward DoublyStohasti Di�erential EquationsAuguste AmanUFR de Mathématiques et Informatique,22 BP 582 Abidjan 22, C�te d'IvoireAbstratIn this paper we study the lass of bakward doubly stohasti di�erential equation(BDSDE, for short) whose terminal value depends on the history of forward di�usion.We �rst establish a probabilisti representation for the spatial gradient of the stohastivisosity solution to a quasilinear paraboli SPDE in the spirit of the Feynman-Ka for-mula, without using the derivatives of the oe�ients of the orresponding BDSDE. Thensuh a representation leads to a losed-form representation of the martingale integrand ofBDSDE, under only standard Lipshitz ondition on the oe�ients.Key Words: Bakward doubly SDEs, Stohasti Partial Di�erential equation, Adaptedsolution, antiipating stohasti alulus, stohasti visosity solutions.1 IntrodutionBakward stohasti di�erential equations (BSDE, for short) were �rstly been onsidered in itlinear form by Bismut [1, 2℄ in the ontext of optimal stohasti ontrol. However, nonlinearBSDEs and their theory have been introdued by Pardoux and Peng [16℄. It has been enjoyinga great interest in the last ten year beause of its onnetion with applied �elds. We an itestohasti ontrol and stohasti games (see [10℄, ) and mathematial �nane (see [6℄, ). BSDEalso provide a probabilisti interpretation for solutions to ellipti or paraboli nonlinear partialdi�erential equation generalizing the lassial Feynman-Ka formula [17, 18℄.In an other work, to give a probabilisti representation to solutions of quasi-linear stohastiPDEs, Pardoux and Peng [19℄ introdued a new type of BSDE with presene of two stohastiintegrals driven by two independent Brownian motions B and W . The so-alled bakward1



doubly stohasti di�erential equations (BDSDE in short) is of the form
Ys = ξ +

∫ T

s

f(r, Yr, Zr) dr +

∫ T

s

g(r, Yr, Zr) ↓ dBr

−

∫ T

s

Zr dWr. s ∈ [t, T ], . (1.1)where ξ is a square integrable variable. Let us remark that the integral driven by {Br}r≥0 is abakward It� integral and the other one driven by {Wr}r≥0 is the standard forward It� integral.Under the global Lisphitz ondition on the oe�ient, they prove that this BSDE have aunique solution (Y, Z). However in the markovian framework we point out that our version isin fat a time reversal of BDSDE (1.1), due to the set-up of our problem. (see Bukdahn andMa [3, 4] for more detail). For eah (t, x) ∈ [0, T ] × IRd, we onsider the following
Xx,t

s = x+

∫ t

s

b(r,Xx,t
r ) dr +

∫ t

s

σ(r,Xx,t
r ) ↓ dWr s ∈ [0, t], (1.2)

Y t,x
s = l(Xx,t

0 ) +

∫ s

0

f(r,Xx,t
r , Y x,t

r , Zx,t
r ) dr +

∫ s

0

g(r,Xx,t
r , Y x,t

r ) dBr

−

∫ s

0

Zx,t
r ↓ dWr, s ∈ [0, t]. (1.3)In this ase adding more stringent regularity onditions on the oe�ients (b, σ and f , g, l arerespetively C1 and C3 in their spatial variable) Pardoux and Peng [19℄ provide that

Y x,t
s = u(t, Xx,t

s ) and Zx,t
s = ∂ux(t, X

x,t
s )σ(t, Xx,t

s ), s ∈ [0, t] (1.4)where {u(t, x), (t, x) ∈ [0, T ] × IRd} the lassial solution of the bakward stohasti PDE inthe form
du(t, x) = [Lu(t, x) + f(t, x, u(t, x), (∇uσ)(t, x))] dt

+g(t, x, u(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

u(0, x) = l(x), x ∈ IRd.

(1.5)with L the in�nitesimal operator generated by the solution of forward SDE in the form
L =

1

2

n
∑

i,j=1

k
∑

l=1

σilσlj(x)∂
2
xixj

+

n
∑

j=1

bj(x)∂xj
.In order to weak the ondition given in Pardoux and Peng [19], Bukdahn and Ma [3, 4]introdue notion of stohasti visosity solution of SPDE (1.5). Assuming the oe�ient ofBDSDE f and l only Lipshitz, they get that

Y x,t
t = u(t, x) = IE{

l(X t,x
0 ) +

∫ t

0

f(s,X t,x
s , Y t,x

s , Zt,x
s ) ds/FB

t

}2



is a stohasti visosity solution of SPDE (1.5). On the hand let us remark that a other notionof stohasti visosity solution of SPDE (1.5) have been involved by Lions and Souganidis [12].However there is no link betweens the two kind of visosity solution of SPDE.In this paper we onsider the one use by Bukdahn and Ma [3, 4] that in our mind isnatural and oinide (if g ≡ 0) with the well-know visosity solution of PDE introdued byCrandall and al [5]. Moreover we have two goal. First we show that if the oe�ients f and lare ontinuously di�erentiable, u the stohasti visosity solution (in the sense of [3, 4℄) of theSPDE (1.5) will have a ontinuous spatial gradient ∂xu(t, x) and more preisely, the followingprobabilisti representation holds:
∂xu(t, x) = IE{

l(X t,x
0 ) N t

0 +

∫ s

0

f(s,X t,x
s , Y t,x

s , Zt,x
s )N s

r dr/F
B
t

} (1.6)where N s
. is some proess de�ned on [0, s], depending only on the solution of the forwardequation (1.2) and the solution of its variational equation. The importane of this formula isthat with the help of equality (1.4) we an derive a similar representation for the martingaleintegrand Z, under only Lipshitz ondition on f and l. This representation an be thought ofas new type of nonlinear Feynman-Ka formula for the derivative of solution of SPDE whihis new in the literature. Let us reall that this two representations have already be given byMa and Zhang [13℄ in the ase of probabilisti representation for solutions of PDE via BSDE.Consequently our approah is be inspired by the one use in Ma and Zhang. However, beauseof the presene of stohasti term in equation (1.5), some partiularities hold. The visositysolution u is a random �eld that respet the �ltration generated by the Brownian motion B. Sothe derivative notion is take in the general sense (for �xed ω1). Moreover sine the family of σ−algebrai Ft = FB

t ⊗ FW
t,T is not a �ltration, there is real di�ulty to proved the ontinuity ofthe representation of the proess Z. The rest of this paper is organized as follows. In setion 2we give all the neessary preliminaries. In setion 3 we establish the new Feynman-Ka formulabetween oupled forward bakward SDE (1.1), (1.2) and the SPDE (1.5), under only the C1−assumption of the oe�ients. The setion 4 is devoted to give the main representation theoremassuming only the Lipshitz ondition of the oe�ients l and f . In setion 5 we study thepath regularity of the proess Z.2 PreliminariesLet T > 0 a �xed �nal time. Throughout this paper we onsider two omplete probabilityspaes: (Ω1,F1, IP1) on whih is de�ned a d−dimensional Brownian motion {Bt, 0 ≤ t ≤ T}and (Ω2,F2, IP2) on whih we de�ne a other d− Brownian motion {Wt, 0 ≤ t ≤ T} independentto the �rst one. Let F
B = {FB}t≥0 denote the natural �ltration generated by B, augmentedby IP1− null set of F1; and let FB = FB

∞. On the hand we onsider the following family of σ−�elds:
FW

t,T = σ{Ws −WT , t ≤ s ≤ T} ∨ N2,3



where N2 denotes all the IP2− null set in F2. Denote FW
T = {FW

t,T}0≤t≤T .Next we onsider the produt spae (Ω,F , IP) where
Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 × IP2;and de�ne Ft = FB

t ⊗ FW
t,T for 0 ≤ t ≤ T . We should note that F = {Ft, t ∈ [0, T ]} is neitherinreasing nor dereasing. Therefore it is not a �ltration; but in other words they are omplete.Further, we assume that random variables ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are onsidered asrandom variables on Ω via the following identi�ation:
ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2).Let us give the spae given that will be frequently used in the sequel; X denoting the a generiBanah spae with it's norm ‖.‖X and E the generi Eulidean spae (or Ei, i = 1, 2, ....)

• for t ∈ [0, T ], L0([t, T ];X ) is the spae of all measurable funtions ϕ : [t, T ] 7→ X ;
• for 0 ≤ t ≤ T, C([t, T ];X ) is the spae of all ontinuous funtions ϕ : [t, T ] 7→ X ; fur-ther, for any p > 0 we denote |ϕ|∗,pt,T = sup

t≤s≤T
‖ϕ(s)‖p

X when the ontext is lear;
• for integers k and n, Ck,n([0, T ] ×E;E1) is the spae of all E1− valued funtions ϕ(t, e),
(t, e) ∈ [0, T ] × E, suh that they are k−times ontinuously di�erentiable in t and n−timesontinuously di�erentiable in e;
• C1

b ([0, T ] × E;E1) is the spae of those ϕ ∈ C1([0, T ] × E;E1) suh that all the partialderivatives are uniformly bounded;
• W 1,∞(E,E1) is the spae of all measurable funtions ψ : E 7→ E1, suh that for someonstant K > 0 it holds that |ψ(x) − ψ(y)|E1

≤ K|x− y|E, ∀x, y ∈ E;
• for any sub-σ-�eld G ⊆ FT and 0 ≤ p < ∞, Lp(G;E) denote all E−valued G−measurablerandom variable ξ suh that IE|ξ|p < ∞. Moreover, ξ ∈ L∞(G;E) means it is G−measurableand bounded;
• for 0 ≤ p <∞, Lp(F, [0, T ];X ) is the spae of all X−valued, F−adapted proesses ξ satisfyingIE(

∫ T

0

‖ξt‖
p
Xdt

)

<∞; and also, ξ ∈ L∞(F, [0, T ]; IRd) means that the proess ξ is uniformlyessentially bounded in (t, ω);
• C(F, [0, T ] × E;E1) is the spae of E1−valued, ontinuous random �eld ϕ : Ω × [0, T ] × E,suh that for �xed e ∈ E, ϕ(., ., e) is an F-adapted proess.Now we onsider oe�ients (b, σ) of the FSDE and (f, g, l) of BDSDE with the followingproperties: 4



(A1) The funtions σ ∈ C0,1
b ([0, T ]× IRd; IRd×d), b ∈ C0,1

b ([0, T ]× IRd; IRd); and all the partialderivatives of b and σ (with respet to x) are uniformly bounded by a ommon onstant
K > 0. Further, there exists onstants c > 0, suh that

ξTσ(t, x)σ(t, x)T ξ ≥ c|ξ|2, ∀x, ξ ∈ IRd, t ∈ [0, T ]. (2.1)The funtion f ∈ C(FB, [0, T ] × IRd × IR × IRd; IR) ∩W 1,∞([0, T ] × IRd × IR × IRd; IR). Fur-thermore, we denote the Lipshitz onstants of f by a onstant K > 0 as in A1; and weassume that
sup

0≤t≤T
{|b(t, 0)| + |σ(t, 0)| + |f(t, 0, 0, 0)|} ≤ K. (2.2)

(A3) The funtion g ∈ C0,2,3
b ([0, T ] × IRd × IR; IRd)

(A4) The funtion l: IRd 7→ IR is ontinuous, suh that for some onstants K, p > 0,
l(x) ≤ K(1 + |x|p), x ∈ IRd. (2.3)We will give the following results that are either standard or slight variations of the well-know results of FSDE (see [9℄) and BDSDE (see [19℄)Lemma 2.1 Suppose that b ∈ C(F, [0, T ] × IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(Rd; IRd)),

σ ∈ C(F, [0, T ]× IRd; IRd×d)∩L0(F, [0, T ];W 1,∞(Rd; IRd×d)), with a ommon Lipshitz onstant
K > 0. Suppose also that b(t, 0) ∈ L2(F, [0, T ]; IRd) and σ(t, 0) ∈ L2(F, [0, T ]; IRd×d). Let X bethe unique solution of the following forward SDE

Xs = x+

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr. (2.4)Then for any p ≥ 2, there exists a onstant C > 0 depending only on p, T and K, suh that
E(|X|∗,p0,T ) ≤ C

{

|x|p + IE ∫ T

0

[|b(s, 0)|p + |σ(s, 0)|p] ds

} (2.5)Lemma 2.2 Assume f ∈ C(F, [0, T ] × IR× IRd; IR) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IR)), with auniform Lipshitz onstant K > 0, suh that f(s, 0, 0) ∈ L2(F, [0, T ]) and g ∈ C(F, [0, T ]×IR×IRd; IRd) ∩ L0(F, [0, T ];W 1,∞(IR× Rd; IRl)) with a ommon uniform Lipshitz onstant K > 0with respet the �rst variable and 0 < α < 1 a Lipshitz onstant with respet the seond onesuh that g(s, 0, 0) ∈ L2(F, [0, T ]). For any ξ ∈ L2(F0; IR), let (Y, Z) be the adapted solution tothe BDSDE:
Ys = ξ +

∫ s

0

f(r, Yr, Zr) dr +

∫ s

0

g(r, Yr) dBr −

∫ s

0

Zr ↓ dWr. (2.6)5



Then there exists a onstant C > 0 depending only on T and the Lipshitz onstants K,α of fand g, suh thatIE∫ T

0

|Zs|
2ds ≤ CIE{

|ξ|2 +

∫ T

0

[|f(s, 0, 0)|2 + |g(s, 0, 0)|2] ds

}

. (2.7)Moreover, for all p ≥ 2, there exists a onstant Cp > 0, suh thatIE(|Y |∗,p0,T ) ≤ CpIE{

|ξ|p +

∫ T

0

[|f(s, 0, 0)|p + |g(s, 0, 0)|p] ds

} (2.8)To ontinue we give the basi fats of the malliavin alulus, espeially those related to BDSDE(see Pardoux-Peng [19]). To begin with, let S be the spae of all random variables of the form
ξ = F

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)where F ∈ C∞
b (IRn+p), ϕ1, ..., ϕn ∈ L2([0, T ], IRd) and ψ1, ..., ψn ∈ L2([0, T ], IRd). We all amapping D : S 7→ L([0, T ] × Ω) the malliavin derivative operator with respet to W if for eah

ξ ∈ S and t ∈ [0, T ],
Dtξ =

n
∑

i=

∂F

∂xi

(
∫ T

0

ϕ1dWt, ..,

∫ T

0

ϕndWs;

∫ T

0

ψ1dBs, ...,

∫ T

0

ψpdBs

)

ϕi(t).Next, we de�ne a norm on S by
‖ξ‖2

1,2 = IE|ξ|2 + IE ∫ T

0

|Drξ|
2dr, ∀ξ ∈ S,and denote ID1,2 to be the ompletion of S in L2(Ω) under ‖.‖1,2. We show (see, Nualart [14℄)that D is a densely de�ned, losed linear operator from ID1,2 to L2(Ω× [0, T ]; IR) with domainID1,2.Now we shall apply the previous antiipative alulus to the following oupled forwardbakward SDEs























Xx,t
s = x+

∫ t

s
b(r,Xx,t

r )dr +
∫ t

s
σ(r,Xx,t

r )dWr;

Y t,x
s = l(X t,x

0 ) +
∫ s

0
f(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r )dBr

−
∫ s

0
Zt,x

r ↓ dWr, 0 ≤ s ≤ t.

(2.9)Here the supersription t,x indiates the dependene of the solution on the initial date (t, x),and it will be omitted when the ontext is lear. Let us onsider following variational equation6



of 2.9 that is very important in this paper.






































∇iXs = ei +
∫ t

s
∂xb(r,Xr)∇iXrdr +

∑d
j=1

∫ t

s
∂xσ

j(r,Xr)∇iXr ↓ dW
j
r ,

∇iYs = ∂xl(X0)∇iX0 +
∫ s

0
[∂xf(r,Θ(r))∇iXr + ∂yf(r,Θ(r))∇iYr

+〈∂zf(r,Θ(r)),∇iZr〉]dr +
∫ s

0
[∂xg(r,Θ(r))∇iXr + ∂yg(r,Θ(r))∇iYr

+〈∂zg(r,Θ(r)),∇iZr〉]dBr −
∫ s

0
∇iZr ↓ dWr,

(2.10)
where ei = (0, ...,

i

1, ..., 0)T is the i-th oordinate vetor of IRd; σj(.) is the j-th olumn of thematrix σ(.) and Θ(r) = (Xr, Yr, Zr).We remark that (∇X,∇Y,∇Z) ∈ L2(F;C([0, T ]; IRd×d)) × C([0, T ]; IRd) × L2([0, T ]; IRd×d); the
d × d−matrix-valued proess ∇X satis�es a linear SDE and ∇Xt = I so that ∇[Xs]

−1 existsfor s ∈ [t, T ], IP− a.s.The following lemma onerns the Malliavin-derivatives of the solution (X, Y, Z) to (2.9). Theproof an be found in Pardoux-Peng [19℄.Lemma 2.3 Assume that (A1) holds; and suppose that f ∈ C0,1
b ([0, T ] × IR2d+1),

g ∈ C0,2,3
b ([0, T ] × IRd+1; IRd). Then (X, Y, Z) ∈ L2([0, T ]; ID1,2(IR2d+1)), and there exists aversion of (DsXr, DsYr, DsZr) that satis�es







DsXr = ∇Xr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsYr = ∇Yr(∇Xs)
−1σ(s,Xs)1{s≤r},

DsZr = ∇Zr(∇Xs)
−1σ(s,Xs)1{s≤r},

0 ≤ s, r ≤ t; (2.11)To end this setion let us give the important properties of the antiipative integrals (see [14]).Lemma 2.4 Suppose that F ∈ ID1,2. Then
(i)(Integration by parts formula): for any u ∈ Dom(δ) suh that Fu ∈ L2([0, T ]×Ω; IRd), onehas Fu ∈ Dom(δ), and it holds that

∫ T

0

〈Fut, dWt〉 = δ(Fu) = F

∫ T

0

〈ut, dWt〉 −

∫ T

0

DtFutdt;

(ii)(Clark-Hausman-Oone formula):
F = IE(F ) +

∫ T

0

IE{DtF/Ft}dWt.7



3 Relations to Stohasti PDE RevisitedIn this setion we prove the relation (1.4) between the forward bakward doubly SDE (2.8) andthe quasi-linear SPDE (1.5), under the ondition that the oe�ients are only ontinuouslydi�erentiable. Indeed, sine Bukdahn and Ma [3, 4] provide that, if f and l are only Lipshitzontinuous, the quantity u(t, x) = Y t,x
t is a stohasti visosity solution of the quasi-linear SPDE(1.5), the seond relation in (1.4) beomes questionable. Our objetive is to �ll this gap in theliterature and to extend the results of Ma and Zhang [13] given in the ase of the probabilistiinterpretation of PDEs via the BSDEs.Theorem 3.1 Assume (A1), (A3) and suppose that f ∈ C0,1

b ([0, T ] × IRd × IR× IRd) and l ∈ C1
b (IRd).Let (X t,x, Y t,x, Zt,x) be the adapted solution to the FBDSDE (2.9), and de�ne u(t, x) = Y t,x

t thestohasti visosity of SPDE (1.5). Then,
(i) ∂xu(t, x) exists for all (t, x) ∈ [0, T ] × IRd; and for eah (t, x) and i=1,...,d, the followingrepresentation holds:

∂xi
u(t, x) = IE{

∂xl(X
t,x
0 )∇iX0 +

∫ t

0

[∂xf(r,Θt,x(r))∇iXr + ∂yf(r,Θt,x(r))∇iYr

+∂zf(r,Θt,x(r))∇iZr]dr/F
B
t

} (3.1)where Θt,x(r) = (X t,x
r , Y t,x

r , Zt,x
r ) and (∇X,∇Y,∇Z) are respetively the solution to equation

(2.9) and it variational equation (2.10);
(ii) ∂xu(t, x) is ontinuous on [0, T ] × IRd;
(iii) Zt,x

s = ∂xu(s,X
t,x
s )σ(s,X t,x

s ), ∀ s ∈ [0, t], IP− a.s.Proof. For the simple presentation we take d = 1. the higher dimensional ase an be treated inthe same way without substantial di�ulty. We use the simpler notations lx, (fx, fy, fz), (gx, gy, gz)for the partial derivatives of l, f and g.The proof is inspired by the approah of Ma and Zhang [13] (see Theorem 3.1). Nevertheless,there exists important di�erene due in the fat that the solution of the SPDE is not deter-ministi but a random �eld; more preisely u(t, x) is a onditional expetation with respet the�ltration F
B.

(i) Let (t, x) ∈ [0, T ] × IR be �xed. For h 6= 0, we de�ne:
∇Xh

s =
X t,x+h

s −X t,x
s

h
;∇Y h

s =
Y t,x+h

s − Y t,x
s

h
;∇Zh

s =
Zt,x+h

s − Zt,x
s

h
s ∈ [0, t].By the roughly omputation of BDSDEs ( see Ma and Zhang [13] for BSDE ase) we show thatIE{|∆Y h|∗,20,T = IE{|∇Y h −∇Y |∗,20,T} → 0 as h→ 0. (3.2)8



Moreover sine, u(t, x) = Y x,t
t and u(t, x+ h) = Y x+h,t

t , we have ∇Y h
t =

1

h
[u(t, x) − u(t, x+ h)].Then, in view of (3.2) we obtain

∂xu(t, x) = lim
h−→0

1

h
[u(t, x) − u(t, x+ h)] = lim

h−→0
∇Y h

t

= ∇Yt. (3.3)On the other hand Y x,t
s , Y x+h,t

s , ∇Y h
s and ∆Y h

s are all FB
s ⊗ FW

s,t− measurable. In partiular
Y x,t

t , Y x+h,t
t , ∇Y h

t and ∆Y h
t are all FB

t ⊗ FW
t,t − measurable so is ∂xu(t, x). But sine W is aBrownian motion on (Ω,F , IP) applying the Blumenthal 0 − 1 law (see, e.g, [11℄) we onludethat ∂xu is independent of (or a onstant with respet to) ω2 ∈ Ω2. Therefore, we an identifythe random �eld ∂xu as one that is de�ned on Ω1 × [0, T ]× IRd, and is FB

t -measurable for eah
t ∈ [0, T ]. Finally, taking the onditional expetation on the both sides of (2.10) at s = t welaim that the representation (3.1) hold. Indeed by the proof of Theorem 3.1 in [22], we haveIE ∫ s

0

[∂xg(r,Θ
t,x(r))∇Xr + ∂yg(r,Θ

t,x(r))∇Yr + ∂zg(r,Θ
t,x(r))∇Zr]dBr = 0IE ∫ s

0

∇Zr ↓ dWr = 0whih �nish the prove of (i)We now prove (ii). Let us remark that ∂xu is not deterministi as in the paper of Ma andZhang [13] but a random �eld. Sine this di�erene, the prove of (ii) is a slight modi�ation.It is subdivided in two step. Firstly we get ontinuity w.r.t time variable. Indeed, for �xed
x ∈ IR, the proess with parameter x {At(x), 0 ≤ t ≤ T} de�ne by

At(x) = ∂xl(X
t,x
0 )∇X0 +

∫ t

0

[∂xf(r,Θt,x(r))∇Xr + ∂yf(r,Θt,x(r))∇Yr

+∂zf(r,Θt,x(r))∇Zr] dr, (3.4)is uniformly integrable. Therefore, applying Theorem V I − 47 and Remark V I − 50 (f) ofDellaherie-Meyer [7] we see that ∂xu(t, x) is the FB
t −optional projetion of At(x), for all

t ∈ [0, T ]. Thus it has àdlàg paths. To show that those paths are atually ontinuous, we notethat the �ltration FB
t is Brownian, whene quasi-left-ontinuous. Thus every FB

t −stoppingtime τ > t is aessible. That is, there exists a sequene of FB
t -stopping times {τk, k ≥ 0} suhthat τk < τ, ∀ k, IP− a.s., and that τk ↑ τ , as k → ∞. Note that

∂xu(x, τk) − ∂xu(x, τ) = IE {

Aτk
(x)/FB

τk

}

− IE{

Aτ (x)/F
B
τ

}

= IE {

Aτk
(x) − Aτ (x)/F

B
τk

}

+(IE {

Aτ (x)/F
B
τk

}

− IE {

Aτ (x)F
B
τ

}

). (3.5)Letting k → ∞ we see that IE{

Aτ (x)/FB
τk

}

− IE{

Aτ (x)FB
τ

}

→ 0, thanks to the quasi-leftontinuity of {

FB
t

}

0≤t≤T
. Moreover, we laim that IE{

Aτk
(x) −Aτ (x)/FB

τk

}

→ 0. Indeed in9



view of (3.4), standard omputation and onditions of l, f and g it follows easily thatIE|Aτk
(x) − Aτ (x)|

2 ≤ C|τk − τ |2. (3.6)Thus ∂xu(τ−, x) = ∂xu(τ, x), IP−a.s. Sine ∂xu(., x) is àdlàg and τ is arbitrary, we onludethat ∂xu(., x) is in fat ontinuous on [0, T ], almost surely whih �nish the �rst step. In theseond step we study ontinuity w.r.t spaial variable. We �xe t ∈ [0, T ] and onsider the familyrandom variables {∂xu(t, x), x ∈ IR}. By using the same argument as previous we getIE|∂xu(t, x1) − ∂xu(t, x2)|
2 ≤ C|x1 − x2|

2. (3.7)Thus the mapping x 7→ ∂xu(t, x) is ontinuous. Finally by the two step we onlude that
∂xu(., .) is ontinuous on [0, T ] × IRd and �nished the prove of (ii).It remains to prove (iii). For a ontinuous funtion ϕ, let us onsider {ϕε}ε>0 a family of C0,∞funtions that onverges to ϕ uniformly. Sine b, σ, l, f are all uniformly Lipshitz ontinuous,we may assume that the �rst order partial derivatives of bε, σε, lε, f ε are all uniformly bounded,by the orresponding Lipshitz onstants of b, σ, l, f uniformly in ε > 0. Now we onsider thefamily of FBDSDEs parameterized by ε > 0:






X t,x
s = x+

∫ t

s
bε(r,X t,x

r )dr +
∫ t

s
σε(r,X t,x

r ) ↓ dWr;

Y t,x
s = lε(X t,x

0 ) +
∫ s

0
f ε(r,X t,x

r , Y t,x
r , Zt,x

r )dr +
∫ s

0
g(r,X t,x

r , Y t,x
r , Zt,x

r )dBr −
∫ s

0
Zt,x

r ↓ dWr

(3.8)and denote it solution by (X t,x(ε), Y t,x(ε), Zt,x(ε)). We de�ne uε(t, x) = Y t,x
t (ε). ApplyingTheorem 3.2 of [19] it follow that uε is the lassial solution of stohasti PDE

duε(t, x) = [Lεu(t, x) + f ε(t, x, uε(t, x), (∇uεσε)(t, x))] dt

+g(t, x, uε(t, x)) dBt, (t, x) ∈ (0, T ) × IRd,

uε(0, x) = lε(x), x ∈ IRd.

(3.9)For any {xε} ⊂ IRn suh that xε → x as ε → 0, de�ne
(Xε, Y ε, Zε) = (X t,xε

(ε), Y t,xε

(ε), Zt,xε

(ε)). Then it is well know aording the work of Pardouxand Peng [19℄ that
Y ε

s = uε(s,Xε
s ); Zε

s = ∂xu
ε(s,Xε

s )σ
ε(s,Xε

s ), ∀ s ∈ [0, t], IP− a.s. (3.10)Now by Lemma 2.1 and Lemma 2.2, for all p ≥ 2 it hold thatIE{

|Xε −X|∗,p0,T + |Y ε − Y |∗,p0,T +

∫ T

0

|Zε
s − Zs|

2ds

}

→ 0 (3.11)as ε → 0. Moreover let us reall (∇Xε,∇Y ε,∇Zε) the unique solution of the variationalequation of (3.8). Using again Lemma 2.1 and Lemma 2.2 we getIE{

|∇Xε −∇X|∗,p0,T + |∇Y ε −∇Y |∗,p0,T +

∫ T

0

|∇Zε
s −∇Zs|

2ds

}

→ 0, (3.12)10



as ε→ 0. Thus, using the dominated onvergene theorem one derives that
lim
ε→0

IE{

lεx(X
ε
0)∇X

ε
0 +

∫ t

0

[f ε
x∇X

ε
r + f ε

y∇Y
ε
r + f ε

z∇Z
ε
r ]dr1A

}

= IE{

lx(X0)∇X0 +

∫ t

0

[fx∇Xr + fy∇Yr + fz∇Zr]dr1A

}for any A ∈ FB
t . Then

∂xu
ε(t, xε) → ∂xu(t, x), as ε→ 0 IP− a.s. ∀ (t, x).Consequently, possibly along a subsequene, we get

Zε
s = lim

ε→0
∂uε(s,Xε

s )σ
ε(s,Xε) = ∂u(s,Xs)σ(s,Xs), ds× dIP− a.e.Sine for IP− a.e. ω, ∂xu(., .) and X are both ontinuous, the above equalities atually holdsfor all s ∈ [0, t], IP-a.s., proving (iii) and end the proof.The following orollary is the diret onsequene of the Theorem 3.1. The onvention onthe generi onstant C > 0 still true.Corollary 3.2 Assume that the same onditions as in Theorem 3.1 hold, and let (X, Y, Z) bethe solution of FBDSDE (2.9). Then, there exists a onstant C > 0 depending only on K, Tand a positive Lp(Ω,FB

t , IP1)− proess Γ, (p ≥ 1), suh that
|∂xu(t, x)| ≤ CΓt, ∀ (t, x) ∈ [0, T ] × IRd, IP− a.s. (3.13)Consequently, one has

|Zs| ≤ CΓs(1 + |Xs|), ∀s ∈ [0, t], IP− a.s. (3.14)Furthermore, ∀ p > 1, there exists a onstant Cp > 0, depending on K, T , and p suh thatIE{

|X|∗,p0,T + |Y |∗,p0,T + |Z|∗,p0,T

}

≤ Cp(1 + |x|p). (3.15)Proof. Let us assume that p ≥ 2. The ase for 1 < p < 2 then follows easily from theHölder inequality. By the representation (3.1) and the ondition on l and f it follows that
|∂xu(t, x)| ≤ CIE(

|∇X0| +

∫ t

0

[|∇Xs| + |∇Ys| + |∇Zs|]ds/F
B
t

)

.Let us denote Γt = IE(

|∇X0| +

∫ t

0

[|∇Xs| + |∇Ys| + |∇Zs|]ds/F
B
t

). Then using Lemma 2.1and Lemma 2.2 we obtainIE|Γt|
p ≤ IE{|∇X|∗,p0,T + |∇Y |∗,p0,T +

∫ T

0

|∇Zr|
2dr} ≤ C.11



In view of (iii) of Theorem 3.1 it follows that
|Zs| ≤ CΓs(1 + |Xs|), ∀s ∈ [0, T ], IP− a.s.Applying again Lemma 2.1, Lemma 2.2 and hölder's inequality for p ≥ 2 we get (3.15).The following last theorem in this setion redues the onditions on l and f to (A2) and

(A4). Let us remark that this assumptions is muh weaker than that one of Theorem 3.1 inwhih the funtions l and f are assumed to be ontinuously di�erentiable in all spatial variableswith uniformly bounded partial derivatives.Theorem 3.3 Assume (A1) − (A4), and let (X, Y, Z) be the solution to the FBDSDE (2.9).Then for all p > 0, there exists a onstant Cp > 0 suh thatIE{

|X|∗,p0,T + |Y |∗,p0,T + ess sup
0≤s≤T

|Zs|
p

}

≤ Cp(1 + |x|p). (3.16)Proof. In the light of the orollary 3.1, we need only onsider p ≥ 2. By Lemma 2.1 andLemma 2.2 it follows that for any p > 0 there exists Cp > 0 suh thatIE{|X|∗,p0,T + |Y |∗,p0,T} ≤ Cp(1 + |x|p). (3.17)Next using the same argument as in the proof of part (iii) of Theorem 3.1 we onsider twosequenes of smooth funtions {f ε}ε and {lε}ε suh that
lim
ε→0

{

sup
(t,x,y,z)

|f ε(t, x, y, z) − f(t, x, y, z)| + sup
x

|lε(x) − l(x)|

}

= 0and that the �rst order derivatives of f ε's and lε's in (x, y, z) are uniformly bounded, uniformlyin t and ε. Let (Xε, Y ε, Zε) be the unique solution of the orresponding FBDSDEs. Thus applyCorollary 3.1 it follows that for any p ≥ 2 there exists a onstant Cp > 0, independent of ε,suh that IE (

|Zε|∗,p0,T

)

≤ Cp(1 + |x|p). (3.18)Furthermore, we know that IE ∫ T

0

|Zε
s − Zs|

2ds→ 0 as ε→ 0. Thus, possibly along a sequenesay (εn)n≥1 we have limn→∞ Zεn = Z ds × dIP− a.s. Applying Fatou's lemma to (3.18) weobtain IE{

ess sup
0≤s≤T

|Zs|
p

}

≤ Cp(1 + |x|p)whih end the proof. 12



4 The Representation TheoremNow let us give the seond main result of the paper. The following theorem an be regardedas an extension of the nonlinear Feynman-Ka formula obtained by Pardoux-Peng [19]. Itgives a probabilisti representation of the gradient w.r.t the spae variable of the visositysolution, whenever it exists, to a quasi-linear paraboli stohasti PDE. The main feature ofour representation lies in the fat that it does not depend on the partial derivatives of thefuntions f and l as in (3.1). Suh representation give the argument for us to study the pathregularity of the proess Z in the BDSDE with non-smooth oe�ients. To Begin let denotethe following proesses that will play an important role in the sequel.
Ms

r =

∫ s

r

[σ−1(τ,Xτ)∇Xτ ]
T ↓ dWτand

N s
r =

1

s− r
(Ms

r )T [∇Xr]
−1, 0 ≤ r < s ≤ t.Let us reall that IE|Ms

r |
2p ≤ CpIE(

∫ s

r

|σ−1(τ,Xτ )∇Xτ |
2dτ

)p (4.1)
≤ Cp(s− r)pIE (

|∇Xτ |
∗,2p
s,r

)

≤ Cp(s− r)p,where Cp > 0 is a generi onstant.Before we give our main result let us introdue this two notationsF t =
{

FB
s ⊗FW

s,t , 0 ≤ s ≤ t
}

,

Gt =
{

FB
s ⊗ FW

0,t , 0 ≤ s ≤ t
} and give the following lemma that is slight modi�ation versionof Lemma 4.1 in Ma and Zhang [13].Lemma 4.1 For any �xed t ∈ [0, T ] and any H ∈ L∞(Ft, [0, T ]; IR) we have

(i) E|
∫ s

0
1

s−r
HsM

r
s dr| < +∞

(ii) for IP.a.e., ω ∈ Ω, the mapping s 7→
∫ s

0
1

s−r
Hr(ω)M r

s (ω)dr(ω) is Hölder-([p0−2]/[p0(p0+
2)]) ontinuous on [0, t]

(iii) for IP.a.e. , ω ∈ Ω, the mapping s 7→ IE{∫ s

0
1

s−r
HrM

r
s dr/G

t
s}(ω) is ontinuous on [0, t]Proof. First, for any 0 ≤ τ < t we denote

As
τ =







∫ s

τ
1

s−r
HrM

s
r dr, 0 ≤ τ < s

0, if s = τ.
(4.2)13



To simplify notation, when τ = 0 we denote As
0 = As. Further, let q0 > 0 be suh that

1
p0

+ 1
q0

= 1, and de�ne β = p0

2+p0
and α = 1 − β. It is readily seen that β > 1

q0
and α < 1

2
.Consider the random variable

M∗ = sup
0≤t1<t2≤t

|M t2
t1 |

(t2 − t1)α
. (4.3)Aording (4.2) and Theorem 2.1 of Revuz-Yor [21], we have IE[M∗]2 < +∞.By Hölder's inequality one hasIE|As

τ | ≤ C(s− τ)(1/q0)−β‖H‖p0
M∗

≤ C‖H‖Lp0([0,T ]×Ω)‖M
∗‖L2(Ω) <∞. (4.4)Setting τ = 0 in (4.4) we proved (i).To prove (ii) let τ = 0 and observe that, for 0 < s1 < s2 ≤ t,

As1
−As2

=

∫ s2

s1

1

s2 − r
HrM

s2

r dr −

∫ s1

0

1

s2 − r
HrM

s2

s1
dr

+

∫ s1

0

(

1

s1 − r
−

1

s2 − r

)

HrM
s1

r dr = Γ1 + Γ2 + Γ3, (4.5)where Γi's are de�ned in an obvious way. Comparing to (4.2) and in view of (4.4),
Γ1 ≤ C(s2 − s1)

(1/q0)−β‖H‖p0
M∗. (4.6)Further, by de�nition (4.3) we see that

|Γ2| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0

M∗. (4.7)Finally it not di�ult to prove
|Γ3| ≤ C(s2 − s1)

(1/q0)−β‖H‖p0
M∗. (4.8)Combining (4.6) − (4.8) we obtain that

|As2
− As1

| ≤ C(s2 − s1)
(1/q0)−β‖H‖p0

M∗. (4.9)We should note that by (4.4) with τ = 0 we see that (4.9) holds true even when s1 = 0. This,together with the fat 1
q0
− β = p0−2

p0(p0+2)
, proves (ii).The proof of (iii) is the same as this one of Ma and Zhang [13] (see Lemma 4.1 (iii)).Theorem 4.2 Assume that the assumptions (A1) - (A4) hold, and let (X, Y, Z) be the adaptedsolution to FBDSDE (2.9). Then 14



(i) the following identity holds IP− almost surely:
Zs = IE{

l(X0)N
s
0 +

∫ s

0

f(r,Xr, Yr, Zr)N
s
rdr/F

t
s

}

σ(s,Xs). (4.10)
(ii)There exist a version of Z suh that for IP−a.e.ω ∈ Ω, the mapping s 7→ Zs(ω) is ontin-uous;
(iii) If in addition the funtions f and l satisfy assumptions of Theorem 3.1, then for all

(t, x) ∈ [0, T ] × IRd it holds that
∂xu(t, x) = IE{

l(X0)N
t
0 +

∫ t

0

f(s,Xr, Yr, Zr)N
t
rdr/F

B
t

} (4.11)Proof. Again we shall onsider only the ase d = 1. We assume �rst that l ∈ C1
b (IR) and

f ∈ C0,1
b ([0, T ]× IR3). Using the nonlinear Feynman-Ka formula of Pardoux and Peng [19] weobtain that for 0 ≤ s ≤ t,

u(s,Xs) = Ys = IE{

l(X0) +

∫ s

0

f(r,Xr, Yr, Zr)dr/F
t
s

}

. (4.12)Aording the step (i) in the proof of Theorem 4.1 in Ma and Zhang [13] we get
∂xu(s,Xs) = IE{

l(X0)N
s
0 +

∫ s

0

f(r,Θ(r))N s
rdr/F

t
s

}

.In partiular, setting s = t we obtain (4.11), this proves (iii).We now onsider the general ase. First we �x s ∈ [t, T ]. For ϕ = l, f , let ϕε ∈ C∞, ε > 0,be the molli�ers of ϕ, and let (Y ε, Zε) be the solution of the BDSDE in (2.9) with oe�ients
(lε, f ε, g). Then for eah ε > 0, as the previous we get

Zε
s = IE{

lε(X0)N
s
0 +

∫ s

0

f ε(r,X, Y ε, Zε)N s
r dr/F

t
s

}

σ(s,Xs). (4.13)Passing to limit as ε goes to zero in (4.13), we get (4.10) IP− a.s., for eah �xed s ∈ [0, t].However in order to prove part (i) we still need to show that (4.10) atually holds for all
s ∈ [0, t], IP− a.s. But this will follow from part (ii), i.e., the proess Z has the a ontinuousversion. Thus it remain to prove only (ii) For instane let us remark that aording someadaptation version of Pardoux and Peng work (see the proof of proposition 1.2) one an provethat

Zs = IE{

l(X0)N
s
0 +

∫ s

0

f(r,X, Y, Z)N s
rdr/G

t
s

}

σ(s,Xs).15



Hene it follows by Lemma 4.1 that mapping
s 7→ IE{

∫ T

s

f(r,X, Y, Z)N s
rdr/G

t
s

}is a.s. ontinuous on [0, t]. Next, sine l(.) is uniformly Lipshitz, in view of proposition 1.23 ofNualart [14] , there exists ξ ∈ L2(Ω), suh applying integration by part formula (Lemma 2.5)again we haveIE {

l(X0)N
s
0/G

t
s

}

=
1

s
IE{

l(X0)

∫ s

0

σ−1(r,Xr)∇XrdWr/G
t
s

}

(∇Xs)
−1

=
1

s
IE{

∫ s

0

[Drl(XT )]σ−1(r,Xr)∇Xrdr/F
t
s

}

(∇Xs)
−1

= IE {

ξ∇X0/G
t
s

}

(∇Xs)
−1.Thus using again Lemma 4.1 the mapping s 7→ IE {

l(X0)N
s
0/G

t
s

} is also ontinuous on [0, t].Consequently, the right side of (4.10) is a.s. ontinuous on [0, t], and hene (4.10) holds for all
s ∈ [0, t], P− a.s., proving (ii), whene the theorem.Remark 4.3 A diret onsequene of Theorem 4.1 that might be useful in appliation is thefollowing improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,there exists a onstant Cp > 0 depending only on T,K and p suh thatIE{

|X|∗,pt,T + |Y |∗,pt,T + |Z|∗,pt,T

}

≤ Cp(1 + |x|p) (4.14)Indeed, sine by Theorem 4.1, Z has a ontinuous version, thus (3.16) beomes (4.14)5 Disrete funtion aseLet us reall that we have proved in Theorem 4.1 that the proess Z in the solution to theFBDSDE (2.1) has ontinuous paths, under the ondition that the oe�ients f and l areonly uniformly Lipshitz ontinuous. While suh a result is already an improvement of that ofPardoux and Peng [19℄, it still within the paradigm of the standard FBDSDE in the literature,to wit, the terminal ondition of the BDSDE is of the form l(XT ) (see also [19℄). In this setionwe onsider the lass of BDSDEs whose terminal onditions are path dependent. More preisely,we assume that the terminal ondition of the BDSDE is the form ξ = l(Xt0 , Xt1, ...., Xtn), where
0 = t0 < t1 < .... < tn = t is any partition of [0, t]. We shall prove a new representation theoremfor the proess Z, and will extend the path regularity result to suh a ase.Theorem 5.4 Assume that (A1)− (A3) hold; and in (A3), l : Rd(n+1) → IR. Let π : 0 = t0 <
t1 < ..... < tn = t be a given partition of [0, t], and let (X, Y, Z) be the unique adapted solution16



to the following FBDSDE:
Xs = x+

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr,

Ys = l(Xt0 , Xt1 , ..., Xtn) +

∫ s

0

f(r,Xr, Yr, Zr)dr (5.15)
+

∫ s

0

g(r,Xr, Yr, Zr)dBr −

∫ s

0

ZrdWr, s ∈ [0, t].Then on eah interval (ti−1, ti), i = 1, ...., n, the following identity holds:
Zs = IE{

l(Xt0 , Xt1 , ..., Xtn)N s
ti−1

+

∫ s

0

f(r,Xr, Yr, Zr)N
s
r∨ti−1

dr|F t
s

}

σ(s,Xs). s ∈ (ti−1, ti) (5.16)Further, there exists a version of proess Z that enjoys the following properties:
(i) the mapping s 7→ Zs is a.s. ontinuous on eah interval (ti−1, ti), i = 1, ....., n;
(ii) limits Zt−

i
= lims↑ti Zs and Zt+

i
= lims↓ti Zs exist;

(iii) ∀p > 0, there exists a onstant Cp > 0 depending only on T,K and p suh thatIE|∆Zti |
p ≤ Cp(1 + |x|p) ≤ ∞. (5.17)Consequently, the proess Z has both àdlàg and àglàd version with disontinuities t0, ..., tnand jump sizes satisfying (5.17)Proof. Reall again the argument of the proof of Theorem 4.1, we shall treat only the asewhen d = 1. and also assume �rst that f, l ∈ C1

b . We remark also that our demarhe is nearlyidenti as the one of Ma and Zhang. For this reason will give the important line. The readeran see detail in [13]. We �rsty proved equality (5.16); For instane let us �x arbitrary index i.By virtue of the Malliavin operator, Theorem 2.4 and the uniqueness of the adapted solutionto BDSDE, we obtain
Zs =

∑

j≥i

∂jlDsXtj +

∫ s

0

[fx(r)DsXr + fy(r)DsYr + fz(r)DsZr]dr

+

∫ s

0

[gx(r)DsXr + gy(r)DsYr + gz(r)DsZr]dBr −

∫ s

0

DsZrdWr

=

{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
iYr + fz(r)∇

iZr]dr

+

∫ s

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ s

0

∇iZrdWr

}

(∇Xs)
−1σ(s,Xs)

= ∇iYs(∇Xs)
−1σ(s,Xs), ti−1 < s < ti. (5.18)17



Taking the onditional expetation IE{.|F t
s} on two sides of (5.18) we then get

Zs = IE{

∑

j≥i

∂jl∇Xtj +

∫ s

0

[fx(r)∇sXr + fy(r)∇
i
sYr + fz(r)∇

iZr]dr|F
t
s

}

(∇Xs)
−1σ(s,Xs).(5.19)The rest of the proof is similar in the BSDE ase. Now we will prrove (i)−(iii) to end the proofaf this Theorem. For instane let us note that (i) is obvious, in light of Theorem 4.2 and thanksto representation (5.16). Property (ii) is a small variation of Lemma 4.1, with 0 here replaedby ti−1, for eah i. We shall only hek (iii). For this way, we de�ne ∆Zti = Zti+ − Zti−. From

(5.18) it not di�ult to hek that
Zti− = ∇iYti[∇Xti ]

−1σ(ti, Xti) Zti+ = ∇i+1Yti [∇Xti ]
−1σ(ti, Xti)Denoting αi

s = −(∇i+1Ys −∇iYs), i = 1, ...., n, we have
∆Zti = (∇i+1Ys −∇iYs)σ(ti, Xti) = −αi

ti
σ(ti, Xti). (5.20)Further, sine (∇iY,∇iZ) denotes the adapted solution of the following BDSDE

∇iYτ =
∑

j≥i

∂jl∇Xtj +

∫ τ

0

[fx(r)∇Xr + fy(r)∇
iYr + fz(r)∇Zr]dr

+

∫ τ

0

[gx(r)∇Xr + gy(r)∇
iYr + gz(r)∇

iZr]dBr −

∫ τ

0

∇iZrdWr, τ ∈ [ti−1, t],if we denote βis = −(∇i+1Zs −∇iZs), then we have
αi

s = ∂il∇ti +

∫ s

0

[fy(r)α
i
r + fz(r)β

i
r]dr +

∫ s

0

[gy(r)α
i
r + gz(r)β

i
r]dBr

−

∫ s

0

βi
rdWr, s ∈ [0, t]. (5.21)So (αi, βi) is the adapted solution to the linear BDSDE (5.21). It follows by Lemma 2.2 that

∀ p > 0 there exists a Cp > 0 suh that IE{|αi
ti
|p} ≤ Cp. On the other hand the same estimateholds for σ(s,Xs) beause of assumption (A1) and Theorem 3.3; for [∇X]−1 sine it is solutionof a appropriated SDE. It readily seen that (5.17) follows from (5.20) whih prove (iii).Finally, we note that when f and l are only Lipshitz, (5.16) still holds, modulo a standardapproximation the same as that in Theorem 4.2. Thus properties (i) and (ii) are obvious. Toprove (iii) we should observe that the standard approximation yield that ∆Zε

ti
→ ∆Zti a.s. Soif (5.17) holds for ∆Zε

ti
, then letting ε→ 0, (5.17) remains true for ∆Zti , aording the Fatou'slemma; that end the proof. 18
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