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Representation Theorems for Backward Doubly
Stochastic Differential Equations

Auguste Aman
UFR de Mathématiques et Informatique,
22 BP 582 Abidjan 22, Cote d’Ivoire

Abstract

In this paper we study the class of backward doubly stochastic differential equation
(BDSDE, for short) whose terminal value depends on the history of forward diffusion.
We first establish a probabilistic representation for the spatial gradient of the stochastic
viscosity solution to a quasilinear parabolic SPDE in the spirit of the Feynman-Kac for-
mula, without using the derivatives of the coefficients of the corresponding BDSDE. Then
such a representation leads to a closed-form representation of the martingale integrand of
BDSDE, under only standard Lipschitz condition on the coefficients.

Key Words: Backward doubly SDEs, Stochastic Partial Differential equation, Adapted
solution, anticipating stochastic calculus, stochastic viscosity solutions.

1 Introduction

Backward stochastic differential equations (BSDE, for short) were firstly been considered in it
linear form by Bismut [, P in the context of optimal stochastic control. However, nonlinear
BSDEs and their theory have been introduced by Pardoux and Peng [[§]. It has been enjoying
a great interest in the last ten year because of its connection with applied fields. We can cite
stochastic control and stochastic games (see [[L0], ) and mathematical finance (see ], ). BSDE
also provide a probabilistic interpretation for solutions to elliptic or parabolic nonlinear partial
differential equation generalizing the classical Feynman-Kac formula [[[7, [[§].

In an other work, to give a probabilistic representation to solutions of quasi-linear stochastic
PDEs, Pardoux and Peng [[9] introduced a new type of BSDE with presence of two stochastic
integrals driven by two independent Brownian motions B and W. The so-called backward



doubly stochastic differential equations (BDSDE in short) is of the form
T T
Vo = ¢ [ f0xz)dre [ g% Z) Vb,
T

—/ Z.dW.. s [t.T],. (1.1)

where ¢ is a square integrable variable. Let us remark that the integral driven by {B,},>¢ is a
backward Ito integral and the other one driven by {W,},> is the standard forward Ito6 integral.
Under the global Lispchitz condition on the coefficient, they prove that this BSDE have a
unique solution (Y, Z). However in the markovian framework we point out that our version is
in fact a time reversal of BDSDE ([[1)), due to the set-up of our problem. (see Bukdahn and
Ma [f, [ for more detail). For each (¢,z) € [0,T] x IR?, we consider the following

¢ ¢
X2t =g +/ b(r, X" dr +/ o(r, X2Y | dW, s € (0,1, (1.2)

Vi = OG0+ [ XY 25 e [ gl X2 YY) B,
0 0

_/ 25| W, s € [0,4] (1.3)
0

In this case adding more stringent regularity conditions on the coefficients (b, o and f, g, [ are
respectively C! and C® in their spatial variable) Pardoux and Peng [[I9] provide that

Y2 =u(t, X2 and Z2" = Qu,(t, X2 o (t, X21), s € [0,1] (1.4)

where {u(t,z), (t,2) € [0,T] x IR?} the classical solution of the backward stochastic PDE in
the form

du(t,x) = [Lu(t,x) + f(t,x,u(t,x), (Vuo)(t, x))] dt
+g(t,z,u(t,z)) dBy, (t,z) € (0,T) x R?, (1.5)

u(0,x) = I(x), r € R

with £ the infinitesimal operator generated by the solution of forward SDE in the form

n k n
L= % Z Zailalj('r)aiixj + 21 bj(x)arj'
=

ij=1 I=1

In order to weak the condition given in Pardoux and Peng [[J], Buckdahn and Ma [, []
introduce notion of stochastic viscosity solution of SPDE ([[.J). Assuming the coefficient of
BDSDE f and [ only Lipschitz, they get that

t
Yo = ut,z) = IE{Z(XS’””H / fs, X7, Y0, Z07) ds/ff}
0
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is a stochastic viscosity solution of SPDE ([.§). On the hand let us remark that a other notion
of stochastic viscosity solution of SPDE ([.J) have been involved by Lions and Souganidis [[[J].
However there is no link betweens the two kind of viscosity solution of SPDE.

In this paper we consider the one use by Buckdahn and Ma [B, f] that in our mind is
natural and coincide (if ¢ = 0) with the well-know viscosity solution of PDE introduced by
Crandall and al [{]. Moreover we have two goal. First we show that if the coefficients f and [
are continuously differentiable, u the stochastic viscosity solution (in the sense of [, ) of the
SPDE (L) will have a continuous spatial gradient d,u(t, x) and more precisely, the following
probabilistic representation holds:

uttr) = B0 N+ [ 16, X0 v 200N; a7 (1.6)
0

where N°® is some process defined on [0, s], depending only on the solution of the forward
equation ([.J) and the solution of its variational equation. The importance of this formula is
that with the help of equality ([.4) we can derive a similar representation for the martingale
integrand Z, under only Lipschitz condition on f and [. This representation can be thought of
as new type of nonlinear Feynman-Kac formula for the derivative of solution of SPDE which
is new in the literature. Let us recall that this two representations have already be given by
Ma and Zhang [[3] in the case of probabilistic representation for solutions of PDE via BSDE.
Consequently our approach is be inspired by the one use in Ma and Zhang. However, because
of the presence of stochastic term in equation ([.J), some particularities hold. The viscosity
solution u is a random field that respect the filtration generated by the Brownian motion B. So
the derivative notion is take in the general sense (for fixed w;). Moreover since the family of o—
algebraic F; = FP ® .7-"1% is not a filtration, there is real difficulty to proved the continuity of
the representation of the process Z. The rest of this paper is organized as follows. In section 2
we give all the necessary preliminaries. In section 3 we establish the new Feynman-Kac formula
between coupled forward backward SDE (I.1), ([.2) and the SPDE ([.5), under only the C'—
assumption of the coefficients. The section 4 is devoted to give the main representation theorem
assuming only the Lipschitz condition of the coefficients [ and f. In section 5 we study the
path regularity of the process Z.

2 Preliminaries

Let T > 0 a fixed final time. Throughout this paper we consider two complete probability
spaces: (€, F1,IP1) on which is defined a d—dimensional Brownian motion {B;,0 < ¢t < T’}
and (€9, F»,IP3) on which we define a other d— Brownian motion {W;,0 <t < T'} independent
to the first one. Let F¥ = {FP},5, denote the natural filtration generated by B, augmented
by IP;— null set of Fy; and let 72 = FZ. On the hand we consider the following family of o—
fields:

Flp=0{W,—=Wr, t <s <T} VN,

3



where A3 denotes all the IP,— null set in F,. Denote F}" = {F} Yo<i<r-
Next we consider the product space (€2, F,IP) where

QIlegzg,f:fl@fg and]P:IP1XIP2;

and define F; = FF @ F/ for 0 <t <T. We should note that F = {F, t € [0,T]} is neither
increasing nor decreasing. Therefore it is not a filtration; but in other words they are complete.
Further, we assume that random variables &(w),w; € € and ((ws),ws € €2y are considered as
random variables on {2 via the following identification:

{(wr,wa) = &(w1);  C(wi,wa) = ((wa).

Let us give the space given that will be frequently used in the sequel; X denoting the a generic
Banach space with it’s norm ||.|x and E the generic Euclidean space (or E;; i =1,2,....)

o for t € [0, 7], L°([t, T]; X) is the space of all measurable functions ¢ : [t,T] — X;

e for 0 <t < T,C([t,T); X) is the space of all continuous functions ¢ : [t,T] — X; fur-
ther, for any p > 0 we denote |p|;% = sup |¢(s)||5 when the context is clear;
’ t<s<T

e for integers k and n, C*"([0,T] x E; E;) is the space of all E;— valued functions (¢, €),
(t,e) € [0,T] x E, such that they are k—times continuously differentiable in ¢t and n—times
continuously differentiable in e;

e Ci([0,T] x E;E;) is the space of those ¢ € C'([0,T] x E; E;) such that all the partial
derivatives are uniformly bounded;

o WH(E,E;) is the space of all measurable functions ¢ : E — E;, such that for some
constant K > 0 it holds that [ (z) — ¥(y)|g, < K|z — y|g, Vz,y € E;

e for any sub-o-field G C Fr and 0 < p < oo, LP(G; E) denote all E—valued G—measurable

random variable £ such that IE[£|P < co. Moreover, £ € L*(G; E) means it is G—measurable

and bounded;

e for 0 < p < oo, LP(F,[0,T]; X) is the space of all ¥ —valued, F—adapted processes £ satisfying
T

E (/ ||§t||’)’(dt) < oo; and also, ¢ € L=(F, [0, T]; IR?) means that the process ¢ is uniformly
0

essentially bounded in (¢, w);

e C(F,[0,T] x E;Ey) is the space of E;—valued, continuous random field ¢ : Q x [0,7] x E,
such that for fixed e € E, (., ., e) is an F-adapted process.

Now we consider coefficients (b, o) of the FSDE and (f, g,!) of BDSDE with the following
properties:



(A1) The functions o € C,"'([0, T] x R IR%), b € C"*([0,T] x R%; IR?); and all the partial
derivatives of b and o (with respect to x) are uniformly bounded by a common constant
K > 0. Further, there exists constants ¢ > 0, such that

lo(t,x)o(t,x)T¢ > ¢, Vo, & e Rt € [0, T]. (2.1)

The function f € C(FF,[0,T] x R? x R x R:IR) N W>([0,T] x R? x R x R%; IR). Fur-
thermore, we denote the Lipschitz constants of f by a constant K > 0 as in A1l; and we
assume that

sup {|b(t,0)| + |o(t,0)| + |f(£,0,0,0)|} < K. (2.2)

0<t<T
(A3) The function g € C"**([0,T] x IR? x IR; IR%)
(A4) The function I: IR¢ — TR is continuous, such that for some constants K,p > 0,
I(r) < K(1+ |z|P), 2 € R™ (2.3)

We will give the following results that are either standard or slight variations of the well-
know results of FSDE (see [[]) and BDSDE (see [I9])

Lemma 2.1 Suppose that b € C(F,[0,T] x IR*; IR) N LO(F, [0, T]; W">=(R?; IR%)),

o € O(F,[0,T] x IR%; RN LO(F, [0, T); W'>(R%; IR™)), with a common Lipschitz constant
K > 0. Suppose also that b(t,0) € L*(F,[0,T]; IRY) and o(t,0) € L*(F, [0, T]; IR™?). Let X be
the unique solution of the following forward SDE

t t
Xs=u +/ b(r, X,) dr +/ o(r, X,) dW,. (2.4)

Then for any p > 2, there exists a constant C' > 0 depending only on p,T and K, such that

B(X|;n) < C {mp + 1 [ (00 +1o(5, 0 ds} (25)

Lemma 2.2 Assume f € C(F,[0,T] x IR x IR*; IR) N L°(F, [0, T]; W"*(IR x R% IR)), with a
uniform Lipschitz constant K > 0, such that f(s,0,0) € L*(F,[0,T]) and g € C(F,[0,T]x IR x
IRY IRY) N LO°(F, [0, T]; Wh*(IR x R% IR")) with a common uniform Lipschitz constant K > 0
with respect the first variable and 0 < o < 1 a Lipschitz constant witch respect the second one
such that g(s,0,0) € L*(F,[0,T]). For any £ € L*(Fo; IR), let (Y, Z) be the adapted solution to
the BDSDE:

Y, = Y. Z Y,.) dB, — Z, . .
g é—i—/of('r, s r)dr—i—/og(r, ) dB, /o . L dW, (2.6)
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Then there exists a constant C' > 0 depending only on T' and the Lipschitz constants K, a of f
and g, such that

B[ zas < cm{ie+ [ 160,00 +los.0.00 ds . (27)

Moreover, for all p > 2, there exists a constant C, > 0, such that
T
(Y [g7) < CplE{|£|p +/ [1/(5,0,0)[" + |g(s,0,0)["] dS} (2.8)
0

To continue we give the basic facts of the malliavin calculus, especially those related to BDSDE
(see Pardoux-Peng [19]). To begin with, let S be the space of all random variables of the form

T T T T
5 =F (/ SpldVVta "a/ QpndWsa/ ,lvz)lsta 7/ ’QZ)deS)
0 0 0 0

where F' € CX(IR™™P), oy, ..., 0, € L*([0,T],R?) and 4y, ..., € L*([0,T],IRY). We call a
mapping D : S — L([0,T] x Q) the malliavin derivative operator with respect to Wif for each
ceSandtel0,T],

" OF
)

T T T T
Dtg = Z i (/ (‘OldVVt, --a/ QpndWsa/ ,lvz)ldBSa 7/ ¢deS) wz(t)
e i 0 0 0 0

Next, we define a norm on S by
T
€2, = TBIEP + I [ D€Pdr e € S,
0

and denote ID"? to be the completion of S in L*(Q2) under |.|; 2. We show (see, Nualart [[4])
that D is a densely defined, closed linear operator from ID"? to L2(2 x [0, T]; IR) with domain
D'

Now we shall apply the previous anticipative calculus to the following coupled forward
backward SDEs

Xt =+ [Lb(r, X3)dr + [Lo(r, X2 dW,;
Y0 = UXG") + fo £, XE9 Y5 Z07)dr + [ g(r, X2#, Y0 )dB, (2.9)
—[rzte AW, 0<s<t,

Here the superscription “* indicates the dependence of the solution on the initial date (¢,z),

and it will be omitted when the context is clear. Let us consider following variational equation
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of 2.9 that is very important in this paper.
((ViXo=ei+ [l 0:b(r, X,)V:iX,dr + 30, [ 0,07 (r, X,)Vi X, | dWY,

VY, = 0,1(X0)ViXo + [ [0:f(r,0(r)ViX, + 0, f(r,O(r))V;Y, 210
2.10
+0.f(r,0(r)), ViZ)ldr + [J10:9(r, O(r))ViX, + 0,9(r, O(r))V,Y,

\ +<8Zg(74’ @(T)), Vin>]dB7" - fos ViZ, l dWra

where ¢; = (0, ..., i, ...,0)T is the i-th coordinate vector of IR%; ¢7(.) is the j-th column of the
matrix o(.) and O(r) = (X,, Y}, Z,).

We remark that (VX, VY, VZ) € L*(F; C([0, T]; R™%)) x C([0, T); IRY) x L*([0, T]; R™%); the
d x d—matrix-valued process VX satisfies a linear SDE and VX; = I so that V[X,]™! exists
for s € [t,T],IP — a.s.

The following lemma concerns the Malliavin-derivatives of the solution (X,Y,7) to (2.9). The
proof can be found in Pardoux-Peng [[J].

Lemma 2.3 Assume that (A1) holds; and suppose that f € CP'([0,T] x IR**),
g € CP¥*([0,T] x R™; RY). Then (X,Y,Z) € L*([0,T]; ID"*(IR**™")), and there exists a
version of (DsX,., D,Y,, DsZ,) that satisfies

DX, = VXT(VXS)fla(S,XS)l{SST},
DY, = VY, (VX,) to(s, Xs) 1<, 0<s,r<t; (2.11)
DSZT = VZT(VXS)fld(S,XS)]_{SST},

To end this section let us give the important properties of the anticipative integrals (see [[4]).

Lemma 2.4 Suppose that F' € ID"*. Then

(1) (Integration by parts formula): for any w € Dom(8) such that Fu € L*([0,T] x Q; IRY), one
has Fu € Dom(d), and it holds that

T T T
/ (Fug, dWy) = §(Fu) = F/ (ug, dWry) —/ D, Fuydt;
0 0 0
(17) (Clark-Hausman-Ocone formula):

F = IE(F) + / ' IE{D,F/F,}dW,.



3 Relations to Stochastic PDE Revisited

In this section we prove the relation ([.4) between the forward backward doubly SDE (B.§) and
the quasi-linear SPDE ([[.J), under the condition that the coefficients are only continuously
differentiable. Indeed, since Buckdahn and Ma [B, H] provide that, if f and [ are only Lipschitz
continuous, the quantity u (¢, x) = Yf’x is a stochastic viscosity solution of the quasi-linear SPDE
(L.3), the second relation in ([.4) becomes questionable. Our objective is to fill this gap in the
literature and to extend the results of Ma and Zhang [[[3] given in the case of the probabilistic
interpretation of PDEs via the BSDEs.

Theorem 3.1 Assume (A1), (A3) and suppose that f € Co'([0,T] x IR® x IR x IR?) and | € C}(IR?).
Let (X Y5® Z5%) be the adapted solution to the FBDSDE (B.3), and define u(t,z) = Y,"" the
stochastic viscosity of SPDE ([L.F). Then,

(1) Oyu(t,x) ewists for all (t,x) € [0,T] x IR®; and for each (t,x) and i=1,...,d, the following
representation holds:

Opyu(t, x) = lE{axl(XS’x)ViXo + /t[axf(ﬂ O (r)ViX, + 9, f (r,07(r)) V.Y,
0
+0.f(r, 0" (1)) ViZ,]dr | F[} (3.1)

where O (r) = (XL*, Y5 Z8%) and (VX,VY,VZ) are respectively the solution to equation
(B9) and it variational equation (B-I0);

(i1) Opu(t,x) is continuous on [0,T] x IR%;

(i) Z" = Oyu(s, X1")o(s, X1"),V s € [0,t], IP— a.s.

Proof. For the simple presentation we take d = 1. the higher dimensional case can be treated in
the same way without substantial difficulty. We use the simpler notations I, (fz, fy, f2), (92, 9y, 92)
for the partial derivatives of [, f and g.

The proof is inspired by the approach of Ma and Zhang [[[J] (see Theorem 3.1). Nevertheless,
there exists important difference due in the fact that the solution of the SPDE is not deter-
ministic but a random field; more precisely u(¢, x) is a conditional expectation with respect the
filtration FB.

(i) Let (¢t,x) € [0,T] x IR be fixed. For h # 0, we define:

Xt,erh _ Xt,:z: Yt,:z:Jrh _ Yt,z Zt,:z:Jrh _ Zt,z
Xh — S s . Yh _ s s . Zh — S S
VX, h VY h Vs h

By the roughly computation of BDSDEs ( see Ma and Zhang [[J] for BSDE case) we show that

s € [0,1].

E{|AY"57 = E{|[VY" = VY[32} — 0 as h — 0. (3.2)

8



1
Moreover since, u(t,z) = Y;"' and u(t,z + h) = V;""", we have VY}* = E[u(t, z) —u(t,x + h)l.
Then, in view of (B:J) we obtain

Oyu(t,z) = hhi{lo %[u(t, x) —u(t,x+h) = hlii)no vy
= VY. (3.3)

On the other hand ™!, Y™ YY" and AV are all FZ ® F;‘;— measurable. In particular
Yo Y VY and AY are all FP @ F}Y — measurable so is d,u(t, z). But since W is a
Brownian motion on (€2, F,IP) applying the Blumenthal 0 — 1 law (see, e.g, [[1]) we conclude
that d,u is independent of (or a constant with respect to) wy € Q5. Therefore, we can identify
the random field 0,u as one that is defined on Q; x [0, 7] x IR%, and is F-measurable for each
t € [0, T]. Finally, taking the conditional expectation on the both sides of (R.10) at s =t we
claim that the representation (B.J]) hold. Indeed by the proof of Theorem 3.1 in [BJ], we have

IE/ [0:9(r, 05 (r))V X, + 0,9(r, ©*(r))VY, + 0,9(r, 0"*(r))VZ,JdB, = 0
0

]E/ VZ, | dW, = 0
0

which finish the prove of (7)

We now prove (ii). Let us remark that J,u is not deterministic as in the paper of Ma and
Zhang [[3] but a random field. Since this difference, the prove of (ii) is a slight modification.
It is subdivided in two step. Firstly we get continuity w.r.t time variable. Indeed, for fixed
x € IR, the process with parameter z {A;(z), 0 <t < T} define by

M) = BUXIIVX, + /0 0, f(r, 09 (1)V X, + 8, £ (r, 04 (1)) VY,
1. f(r, 0 (r))V Z,] dr. (3.4)

is uniformly integrable. Therefore, applying Theorem VI — 47 and Remark VI — 50 (f) of
Dellacherie-Meyer []] we see that d,u(t,z) is the FP—optional projection of A;(x), for all
t € [0,T]. Thus it has cadlag paths. To show that those paths are actually continuous, we note
that the filtration F7 is Brownian, whence quasi-left-continuous. Thus every F—stopping
time 7 > t is accessible. That is, there exists a sequence of FP-stopping times {73, & > 0} such
that 7, < 7,Vk, IP— a.s., and that 7, T 7, as kK — oo. Note that

ou(z,p) — Opu(z,7) = IE {ATk (x)/fi} —E {AT(:c)/]:f}
= E{A, (z) - A (2)/FF
+(E {A.(2)/FE} —E{A.(2)FF}). (3.5)
Letting k — oo we see that IE {A,(z)/F2} — E{A.(2)FP} — 0, thanks to the quasi-left
continuity of {}—tB}ogth‘ Moreover, we claim that IE {A,, (2) — A-(z)/F5} — 0. Indeed in

9



view of (B.4), standard computation and conditions of [, f and g it follows easily that
IBJA,, (z) — A(2)]? < Clrg — 72 (3.6)

Thus O,u(T—,x) = d,u(r, x), P—a.s. Since J,u(.,x) is cadlag and 7 is arbitrary, we conclude
that d,u(.,x) is in fact continuous on [0, 7], almost surely which finish the first step. In the
second step we study continuity w.r.t spacial variable. We fixe t € [0, T| and consider the family
random variables {J,u(t,z), x € IR}. By using the same argument as previous we get

E|0,u(t, 1) — Opu(t, z2)|* < Clzy — 1) (3.7)

Thus the mapping = +— J,u(t,z) is continuous. Finally by the two step we conclude that
dpu(.,.) is continuous on [0, T] x IR and finished the prove of (ii).

It remains to prove (i4i). For a continuous function ¢, let us consider {¢}.. a family of C'%>
functions that converges to ¢ uniformly. Since b, o, [, f are all uniformly Lipschitz continuous,
we may assume that the first order partial derivatives of b°, ¢, [®, f¢ are all uniformly bounded,
by the corresponding Lipschitz constants of b, o, [, f uniformly in € > 0. Now we consider the
family of FBDSDEs parameterized by ¢ > 0:

X0 =g+ [T0(r, X0%)dr + [Lo%(r, XE®) | dWy;
(3.8)
Y= B(XG") + fo £ Xp2 Y0, Z00)dr + [ g(r, X0, Y12, Z0%)dB, — [§ 2% | dW,

and denote it solution by (X*(¢),Y**(g), Z4%(¢)). We define u®(t,z) = Y;"*(¢). Applying
Theorem 3.2 of [[9] it follow that u® is the classical solution of stochastic PDE

du(t,x) = [Lou(t, ) + fo(t, z,us(t, z), (Vuso®)(t, x))] dt
+g(t,z,us(t,z)) dBy, (t,z) € (0,T) x RY, (3.9)

us(0,x) = (), r € R

For any {z°} C IR" such that 2* — z as ¢ — 0, define
(X=,Y%,Z5) = (X5 (g), Y1 (g), Z4%" (¢)). Then it is well know according the work of Pardoux
and Peng [[9] that

Yi=u(s, X?); Z:=0,u’(s,X5)0%(s,X5), Vsel0,t], IP—a.s. (3.10)
Now by Lemma 2.1 and Lemma 2.2, for all p > 2 it hold that

T
IE{|X€_X|;;§+|YE_Y|;§+/ |Z§—ZS|2ds} 0 (3.11)
0

as € — 0. Moreover let us recall (VX VY VZ¢) the unique solution of the variational
equation of (B.§). Using again Lemma 2.1 and Lemma 2.2 we get

T
E {|VX5 — VX[32 4+ |VYE — VY35 + / VZ: - VZ8|2ds} 0, (3.12)
0

10



as € — 0. Thus, using the dominated convergence theorem one derives that

t
lim IE {l;(Xg)VXg +/ VXS + fVYf +f§VZ;?]dr1A}
0

e—0
t
= IE {lx(Xo)VXo + / [fa:VXr + nyK + fZVZT]dT]_A}
0

for any A € FP. Then
O, uf(t,2%) — dyu(t,z), as e =0 P —as. V(tuz).
Consequently, possibly along a subsequence, we get

ZZ =lim ou(s, XJ)o(s, X®) = Ju(s, Xs)o(s, Xs), dsx dIP — a.e.

e—0

Since for IP —a.e. w, 0,u(.,.) and X are both continuous, the above equalities actually holds
for all s € [0,¢], IP-a.s., proving (¢i¢) and end the proof. m

The following corollary is the direct consequence of the Theorem B.]. The convention on

the generic constant C' > 0 still true.

Corollary 3.2 Assume that the same conditions as in Theorem B.J] hold, and let (X,Y,Z) be
the solution of FBDSDE (B.9). Then, there exists a constant C > 0 depending only on K, T
and a positive LP(Q2, FP, IP;)— process T, (p > 1), such that

|0,u(t,2)] < CTy, ¥ (t,z) €0,T) x IR*, IP— a.s. (3.13)
Consequently, one has
|Zs| < CT,(1+1|X,]), Vse[0,t], IP—a.s. (3.14)
Furthermore, ¥ p > 1, there exists a constant C,, > 0, depending on K, T, and p such that

E{|X|g7+ YT +1217} < Cp(1+ |a]). (3.15)

Proof. Let us assume that p > 2. The case for 1 < p < 2 then follows easily from the
Holder inequality. By the representation (B.1]) and the condition on [ and f it follows that

t
|0u(t, z)| < CIE (|VX0| +/ [[VX,| + |VY,| + IVZSHds/]-"tB) .
0

t
Let us denote I', = IE (|VX0\ +/ VX + VY| + \VZSHds/ftB). Then using Lemma 2.1
0

and Lemma 2.2 we obtain

T
BIpP < B(VX( + VY5 + [ V2P <.
0
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In view of (iii) of Theorem B.]] it follows that
|Z| < CTs(1+ |X4]), Vsel[0,T], TP —a.s.

Applying again Lemma 2.1, Lemma 2.2 and holder’s inequality for p > 2 we get (B-15). =

The following last theorem in this section reduces the conditions on [ and f to (A2) and
(A4). Let us remark that this assumptions is much weaker than that one of Theorem B.1] in
which the functions [ and f are assumed to be continuously differentiable in all spatial variables
with uniformly bounded partial derivatives.

Theorem 3.3 Assume (A1) — (A4), and let (X,Y, Z) be the solution to the FBDSDE (P9).
Then for all p > 0, there exists a constant C, > 0 such that

IE{|X|SZ’% + Yo7 + ess sup |Zs|p} < Gp(1 A+ [z]7). (3.16)
0

<s<T

Proof. In the light of the corollary B.I, we need only consider p > 2. By Lemma 2.1 and
Lemma 2.2 it follows that for any p > 0 there exists Cj, > 0 such that

E{IX]o7 + Yo7} < Co(1 + [2?). (3.17)

Next using the same argument as in the proof of part (iii) of Theorem 3.1 we consider two
sequences of smooth functions {f°}. and {/°}. such that

=0 | tay,2)

lim{ sup |fo(t,x,y,2) — f(t,x,y,2)| +sup |I°(x) — l(:c)|} =0

and that the first order derivatives of f’s and [*’s in (x, y, z) are uniformly bounded, uniformly
in ¢t and . Let (X¢,Y*®, Z%) be the unique solution of the corresponding FBDSDEs. Thus apply
Corollary B.] it follows that for any p > 2 there exists a constant C}, > 0, independent of e,
such that

E (12°5%) < Co(1+ [2f”). (3.18)

T
Furthermore, we know that IE |Z: — Zs|2ds — 0 as € — 0. Thus, possibly along a sequence

0
say (en)n>1 we have lim,, o Z°" = Z ds x dIP— a.s. Applying Fatou’s lemma to (BI§) we
obtain

IE {ess sup |Zs\p} < Cp(1+ |zfP)

0<s<T

which end the proof. =
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4 The Representation Theorem

Now let us give the second main result of the paper. The following theorem can be regarded
as an extension of the nonlinear Feynman-Kac formula obtained by Pardoux-Peng [[J. It
gives a probabilistic representation of the gradient w.r.t the space variable of the viscosity
solution, whenever it exists, to a quasi-linear parabolic stochastic PDE. The main feature of
our representation lies in the fact that it does not depend on the partial derivatives of the
functions f and [ as in (B-]]). Such representation give the argument for us to study the path
regularity of the process Z in the BDSDE with non-smooth coefficients. To Begin let denote
the following processes that will play an important role in the sequel.

T

M = / s[o—*l(T, X)VX, )| aw,

and

1
N? = (MHTIVX, ™, 0<r<s<t.

"os—r

Let us recall that

s p
E|M:* < C,E (/ \UI(T,XT)VXT\QdT) (4.1)

< Cp(s = r)IE (|[VX,|22) < Cp(s — )P,

— S,T

where C}, > 0 is a generic constant.
Before we give our main result let us introduce this two notations F* = {ff ® ]:X[i, 0<s< t},

G'= {]:sB ® }“g};, 0<s< t} and give the following lemma that is slight modification version
of Lemma 4.1 in Ma and Zhang [[3].

Lemma 4.1 For any fired t € [0,T] and any H € L= (F*,[0,T]; IR) we have

(i) E| [, SHMdr| < +oo

(1) for IP.a.e., w € Q), the mapping s — fos :err(w)M;’(w)dT(w) is Holder-([po—2]/[po(po+
2)]) continuous on [0, ]

S

(iii) for IP.a.e. ,w € U, the mapping s — IE{ ] =H,MIdr/G!}(w) is continuous on [0,1]

Proof. First, for any 0 < 7 < t we denote

f; ﬁHrMﬁdr, 0<7<s

A = (4.2)
0, if s=r.

13



To simplify notation, when 7 = 0 we denote A§ = A,. Further, let ¢ > 0 be such that
pio + io = 1, and define § = 2«?%0 and o = 1 — 3. It is readily seen that § > qio and o < %
Consider the random variable

M* = sup M (4.3)
osti<tr<t (t2 — 11)®
According (f£3) and Theorem 2.1 of Revuz-Yor [21]], we have IE[M*]* < +oc.
By Holder’s inequality one has
E|A7] < C(s — 7)Y 2| H | M
< ClHl oM 120 < <. (4.4)
Setting 7 = 0 in (f.4) we proved (7).
To prove (i7) let 7 = 0 and observe that, for 0 < s; < 59 <'t,
S92 1 S1 1
Ay — A, = / H, M*2dr — / H,M:2dr
51 So — T 0 So —T
s 1 .
+ — HTMrld’I“ = Fl -+ PQ -+ Pg, (45)
0 S1—7T SS9 —T
where T';’s are defined in an obvious way. Comparing to ([..2) and in view of ([L.4)),
Ty < C(sy — 51) Y| H|p M, (4.6)
Further, by definition ([.3) we see that
Ta| < C(sy — s1) 7| H o M, (4.7)
Finally it not difficult to prove
[Ta| < Csp = s0) M| H |y M. (4.8)
Combining (£.q) — (E.§) we obtain that
|A82 - A81| < C(SQ - 51)(1/q0)_6||H”p0M*' (49)

We should note that by (f.4) with 7 = 0 we see that (f.9) holds true even when s; = 0. This,

together with the fact qio - 0= poIZ;(;SQ)’ proves (i).

The proof of (iii) is the same as this one of Ma and Zhang [[J] (see Lemma 4.1 (iii)). =

Theorem 4.2 Assume that the assumptions (A1) - (A4) hold, and let (X, Y, Z) be the adapted
solution to FBDSDE (.9). Then

14



(1) the following identity holds IP— almost surely:
Z, = ZE{Z(XO)NS +/ flr, X, Y,, Zr)Nfdr/]{f} o(s, Xs). (4.10)
0

(73) There exist a version of Z such that for IP—a.e.w € ), the mapping s — Zs(w) is contin-
UOUS;

(731) If in addition the functions f and | satisfy assumptions of Theorem 3.1, then for all
(t,x) € [0,T] x IR it holds that

Opu(t,z) = ]E{Z(XO)Né —|—/tf(s,Xr,Y},Zr)Nfdr/.7-"f} (4.11)
0

Proof. Again we shall consider only the case d = 1. We assume first that [ € C}(IR) and
f € CPH[0,T] x R¥). Using the nonlinear Feynman-Kac formula of Pardoux and Peng [[9] we
obtain that for 0 < s <,

u(s, X,) =Y, = IE{Z(Xo)+/Osf(r,Xr,K,Zr)dr/f§}. (4.12)

According the step (i) in the proof of Theorem 4.1 in Ma and Zhang [[3] we get

dyu(s, X,) = IE {Z(XO)Ng + /O f(r, @(r))Ngdr/f;} .

In particular, setting s =t we obtain ([L.I1]), this proves (ii7).

We now consider the general case. First we fix s € [t,T]. For ¢ = [, f, let ¢ € C*®,e > 0,
be the mollifiers of ¢, and let (Y¢, Z%) be the solution of the BDSDE in (2.9) with coefficients
(¢, f%,g). Then for each £ > 0, as the previous we get

Ze = IE{F(XO)N5+/ ff(r,X,Yf,Zs)N,?dr/fg}a(s,XS). (4.13)
0

Passing to limit as e goes to zero in (.13), we get (.10) IP— a.s., for each fixed s € [0, ¢t].

However in order to prove part (i) we still need to show that (f.I0) actually holds for all
s € [0,t], IP— a.s. But this will follow from part (i), i.e., the process Z has the a continuous
version. Thus it remain to prove only (ii) For instance let us remark that according some
adaptation version of Pardoux and Peng work (see the proof of proposition 1.2) one can prove
that

Zy = IE{Z(XO)NS+/Sf(T,X,Y, Z)Nfdr/gz}a(s,Xs).
0
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Hence it follows by Lemma 4.1 that mapping

T
" { | sexy Z)Nfdr/gz}

is a.s. continuous on [0, ¢]. Next, since [(.) is uniformly Lipschitz, in view of proposition 1.23 of
Nualart [[[4] , there exists £ € L?(2), such applying integration by part formula (Lemma 2.5)
again we have

IE {I(Xo)N5/GL} = éIE{Z(Xo)/Sa‘l(r,Xr)VerWr/gz}(VXS)‘l

— éIE{/OS[Drl(XT)]Ul(T, XT)Verr/fi} (Vx,)™

= B {§VXO/Q§} (VX))

Thus using again Lemma 4.1 the mapping s — IE {{(Xo)Ng/G!} is also continuous on [0, .
Consequently, the right side of (LI0) is a.s. continuous on [0, ¢], and hence ([.I0) holds for all
s €[0,t], P— a.s., proving (ii), whence the theorem. m

Remark 4.3 A direct consequence of Theorem 4.1 that might be useful in application is the
following improvement of Theorem 3.3: assume that (A1) and (A2) hold, then for all p > 0,
there exists a constant C, > 0 depending only on T, K and p such that

E{XE7+ YR +1ZE7) < Co(1+ |2 (4.14)

Indeed, since by Theorem 4.1, Z has a continuous version, thus (B-16]) becomes (E19)

5 Discrete function case

Let us recall that we have proved in Theorem 4.1 that the process Z in the solution to the
FBDSDE (R.1)) has continuous paths, under the condition that the coefficients f and [ are
only uniformly Lipschitz continuous. While such a result is already an improvement of that of
Pardoux and Peng [[[9], it still within the paradigm of the standard FBDSDE in the literature,
to wit, the terminal condition of the BDSDE is of the form [(X7) (see also [[J]). In this section
we consider the class of BDSDEs whose terminal conditions are path dependent. More precisely,
we assume that the terminal condition of the BDSDE is the form £ = I(X;,, Xy, ..., X4, ), where
0=ty <t <.. <t,="tisany partition of [0, ¢]. We shall prove a new representation theorem
for the process Z, and will extend the path regularity result to such a case.

Theorem 5.4 Assume that (A1) — (A3) hold; and in (A3), | : R — IR. Letm:0 =1ty <
1 < ... < t, =t be a given partition of [0,t], and let (X,Y, Z) be the unique adapted solution
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to the following FBDSDE:
t t
X, =z —|—/ b(r, X, )dr —|—/ o(r, X,.)dW,,
}/; = Z(Xt())tha"')th) +/ f(?“, XT‘,}/;,ZT)CZT (515)
0

—|—/ g('r’,Xr,K,,ZT)dBT—/ Z.dW,, s €[0,t].
0 0

Then on each interval (t;_1,t;),i = 1,....,n, the following identity holds:

7, = ]E{l(XtO,th,...,th)Ntil
—i—/ f(T,Xr,K,Z,,)NTSWi1dr|f§}a(s,Xs). s € (ti_1,t;) (5.16)
0

Further, there exists a version of process Z that enjoys the following properties:

(1) the mapping s — Z is a.s. continuous on each interval (t;_1,t;), i =1,......n;

(1) limits Zt; = limgyy, Zs and Zt:r = limg4, Zs exist;

(13i) ¥p > 0, there exists a constant C, > 0 depending only on T, K and p such that
EIAZ, P < Cp(1+ |z|P) < 0. (5.17)

Consequently, the process Z has both cadlag and caglad version with discontinuities to, ..., t,
and jump sizes satisfying (b.11)

Proof. Recall again the argument of the proof of Theorem 4.1, we shall treat only the case
when d = 1. and also assume first that f, [ € C}. We remark also that our demarche is nearly
identic as the one of Ma and Zhang. For this reason will give the important line. The reader
can see detail in [[J]. We firsty proved equality (B.1G); For instance let us fix arbitrary index i.
By virtue of the Malliavin operator, Theorem 2.4 and the uniqueness of the adapted solution

to BDSDE, we obtain
Z, = ) _0iID.X, + / [fo(r) DX, + f,(r)DY, + f.(r)D,Z,]dr
j>i 0

+/ [gx(r)Der +gy(T)D5Y;’ +gz(T)DsZr]dBr _/ DsZrdWr

0 0

— {Z 0;IV Xy, +/ [fo (VX + f,(r)V'Y, + £.(r)V' Z,)dr
i 0

n / (VX 4 0, () VYs + g () V' 2, dB, — / vizrdwr}wxsrla(s,xg
0 0

= V“@(VXs)ilO'(S,Xs), tiog < s <t (518)
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Taking the conditional expectation IE{.|F!} on two sides of (5.1§) we then get

Z, = IE {Z 0;IVXy, + /s[fz(r)ver + f,(r)VLY, + fz(r)Vin]dr\fg} (VX,) " o(s, X,).
i 0

(5.19)

The rest of the proof is similar in the BSDE case. Now we will prrove (i) — (¢ii) to end the proof
af this Theorem. For instance let us note that (i) is obvious, in light of Theorem 4.2 and thanks
to representation (b.16). Property (i7) is a small variation of Lemma 4.1, with 0 here replaced
by t;_1, for each i. We shall only check (éiz). For this way, we define AZ,, = Z;,; — Z;,_. From
(B-1§) it not difficult to check that

Ly = VZY;% [VXti]ilo-@i’Xti) Ly = viJrlY;fi [VXti]ilo-@iv Xti)
Denoting o’ = —(V'*Y, — V'Y,), i = 1,....,n, we have
AZti = (ViJrl}/; - VZ}/S)O'(tZ, th) = —OéiiO'(ti, th) (520)

Further, since (V'Y, V'Z) denotes the adapted solution of the following BDSDE

VY, = Zaleth + /OT[fx(T)VXT + f,("V'Y, + £.(r)V Z,]dr

j>i

+ / [9:(r)V X, + g,(r)V'Y, + ¢.(r)V'Z,]dB, — / V' Z.dW,, T € [ti_1,t],
0 0

if we denote (i, = —(V™'Z, — V'Z,), then we have

S

a, = WW+/s[fy(7“)04i+fz(’f’)5i]d7“+/ 9y (r)ey. + g(r)B;]d B,
0 0
—/ BLdW,, s €0,t]. (5.21)
0

So (af, 3%) is the adapted solution to the linear BDSDE (F:21]). It follows by Lemma 2.2 that
Vp > 0 there exists a Cj, > 0 such that IE{|a} [’} < C,. On the other hand the same estimate
holds for o(s, X,) because of assumption (A1) and Theorem 3.3; for [VX]~! since it is solution
of a appropriated SDE. It readily seen that (5.17) follows from (B.20) which prove (ii7).
Finally, we note that when f and [ are only Lipschitz, (b.16) still holds, modulo a standard
approximation the same as that in Theorem 4.2. Thus properties (i) and (ii) are obvious. To
prove (i77) we should observe that the standard approximation yield that AZ; — AZ,, a.s. So
if (5.17) holds for AZ;, then letting ¢ — 0, (B.I7) remains true for AZ,,, according the Fatou’s
lemma; that end the proof. m
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