

Procedure of identification of a constitutive law for homogeneous deformation of bulk metallic glasses

Marc Bletry, P. Guyot, J.J. Blandin, J.L. Soubeyroux

▶ To cite this version:

Marc Bletry, P. Guyot, J.J. Blandin, J.L. Soubeyroux. Procedure of identification of a constitutive law for homogeneous deformation of bulk metallic glasses. European Congress and Exhibition on Advanced Materials and Processes Euromat 2007, Sep 2007, Nuremberg, Germany. hal-00196804

HAL Id: hal-00196804 https://hal.science/hal-00196804v1

Submitted on 31 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Procedure of Identification of a Constitutive Law for Homogeneous Deformation of Bulk Metallic Glasses

M. Blétry^{†,a}, J.-J. Blandin^b, P. Guyot^b, J.-L. Soubeyroux^c

 $\dot{\varepsilon}_{0,c}$ and a_x/k_r can be determined from compression tests,

using experimental $(\dot{\varepsilon}, \sigma)$ couples from two plateaus (figure

1) forming a system of (slightly nonlinear) equations (eq.

4). It is impossible to determine V and/or $c_{f,eq}$ with this

procedure (see [BGBS06],[BBG⁺]), but the dependency of

1.0E-13

Figure 3: Dependence of a_x/k_r and $\dot{\varepsilon}_{0,c}$ with $c_{f,eq}$ for a glass of

composition G1 obtained from two experimental $(\dot{\varepsilon}, \sigma)$ couples at

683 K (see [BGBS06]): all these values of $c_{f,eq}$, a_x/k_r and $\dot{\varepsilon}_{0,c}$ lead

to the same rheology.

 $c_{f,eq}$

1.0E-13

1.0E-15

1.0E-12

 $\dot{\varepsilon}_{0,c}$ and a_x/k_r with them can be calculated (fig. 3).

1.0E+11

1.0E+10 -

1.0E+09

1.0E+08

1.0E-14

 $\dot{\mathcal{E}}_{0,c}$

^aCentre des Matériaux, Mines de Paris/Paristech, France ^b SIMAP-INPG, Grenoble, France ^c CRETA-CNRS, Grenoble

Introduction

We propose a method to identify the parameters of a constitutive law based on the free volume model as proposed by Spaepen [Spa77] and taking into account the variation of the concentration of free volume with deformation, following the lines drawn by de Hey et al. [DHSVdB98].

Experiments

Compression tests

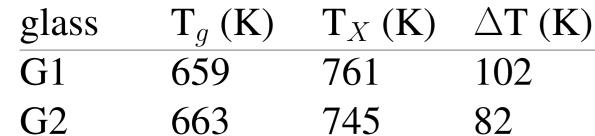
BMGs of composition $Zr_{52.5}Al_{10}Cu_{22}Ti_{2.5}Ni_{13}$ (G1) and Zr_{52.5}Al₁₀Cu₂₇Ti_{2.5}Ni₈ (G2) were produced. Characteristic temperatures of both glasses are:

glass	$T_g(K)$	$T_X(K)$	$\Delta T (K)$
G1	659	761	102
G2	663	745	82

Compression tests at 683 K (strain-rate jumps and

Modeling transient phenomena

Elaboration and characterization



Model

Most simple model to describe a whole stress strain curve:

$$\begin{cases} \dot{\varepsilon}_T = \frac{\dot{\sigma}}{E} + c_f \dot{\varepsilon}_{0,c} \sinh\left(\frac{\sigma V}{2\sqrt{3}kT}\right) \\ \dot{c}_f = a_x \dot{\varepsilon}_p c_f \ln^2 c_f - k_r c_f (c_f - c_{f,eq}) \end{cases}$$
(5)

 $\dot{\varepsilon}_T$: total strain rate, $\dot{\sigma}/E$: elastic contribution. How can we determine the various parameters (i.e. a_x , k_r , V and $c_{f,eq}$)? Steady state analysis => how to get a_x/k_r and $\dot{\varepsilon}_{0,c}$ with two plateaus. Then: parametric study of (5) with $\dot{\varepsilon}_{0,c}$ known and constraint over a_x/k_r , .

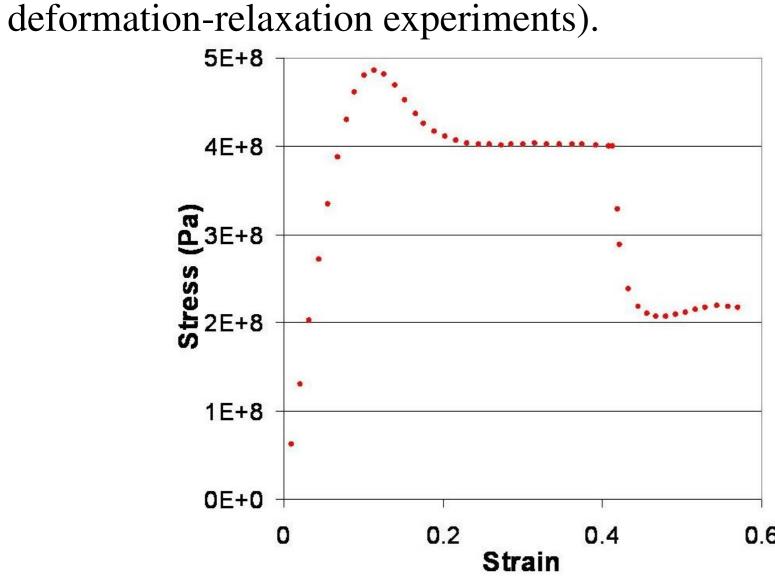


Figure 1: Strain-rate jump test at 683 K (from 2.5×10^{-3} .s⁻¹ to $5 \times 10^{-5} \text{.s}^{-1}$) on G2.

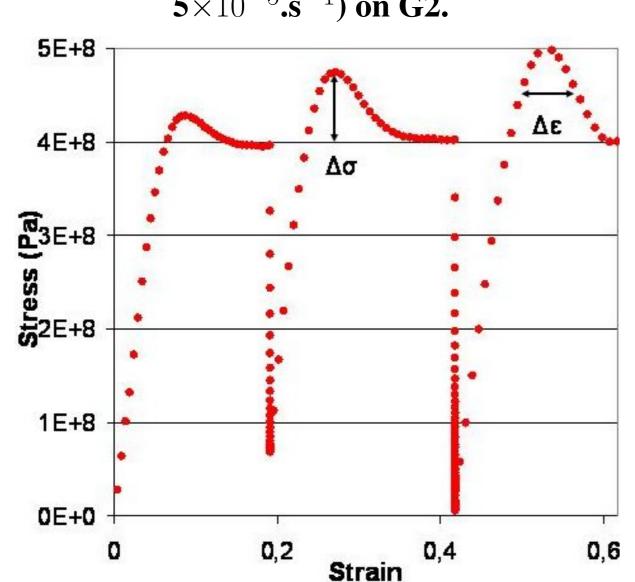


Figure 2: Deformation relaxation experiments at 683 K ($\dot{\varepsilon}$ = 2.5×10⁻³.s⁻¹) 1st relaxation: 57 s, 2nd: 1110 s, on glass G2. $\Delta \sigma$ and $\Delta \varepsilon$ are the overshoots amplitudes.

Parametric study

Young modulus E It is necessary to use $E \approx 10$ GPa (measured value at this temperature: ≈ 77 GPa), probably because of anelastic phenomena.

Kinetic parameters - a_x and k_r Fig. 4 shows that a_x and k_r control the overshoots amplitude: increasing a_x (and k_r : their ratio is set) => faster variation of c_f , => smaller overshoots and undershoots.

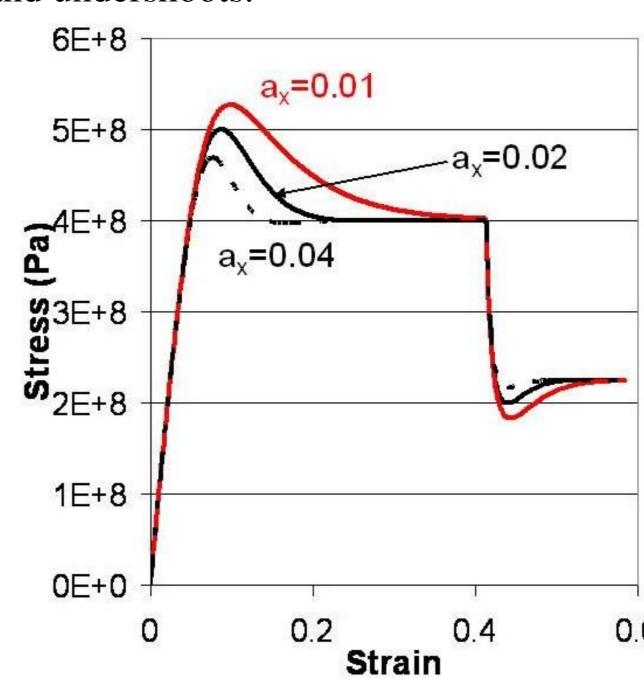


Figure 4: Parametric study of kinetic coefficients a_x and k_r , modeling the experiment presented figure 1.

For V and $c_{f,eq}$ given, it is possible to optimize a_x and k_r .

Activation volume - V To determine V the procedure is:

- \bullet various activation volumes V: steady state analysis => value of a_x/k_r and $\dot{\varepsilon}_{0,c}$
- varying a_x and $k_r =>$ good value of $\Delta \sigma$
- good activation volume = the one with the good $\Delta \varepsilon$

Figure 5 shows an application of this procedure.

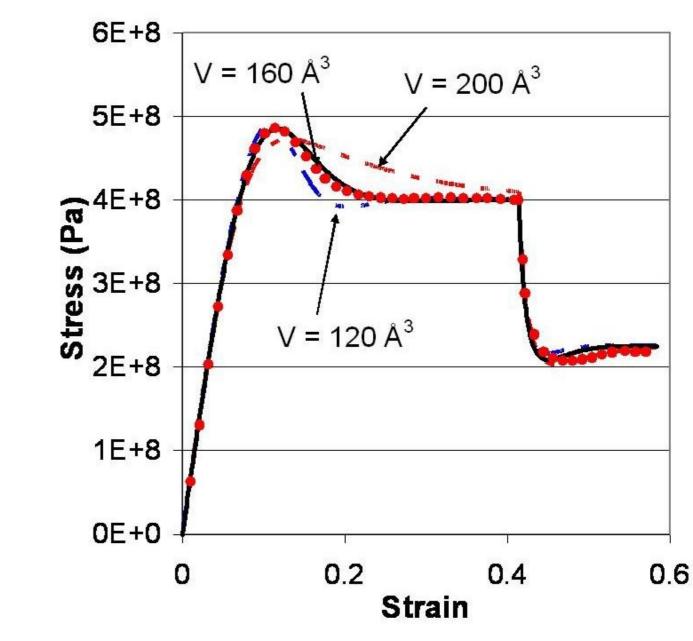


Figure 5: Parametric study of the activation volume (dots: experience of fig. 1). Each modeled curve uses the values of a_x and k_r that fits $\Delta \sigma$. Parameters of the black curve are given in the table below.

$$\frac{c_{f,eq}}{10^{-12}}$$
 E(GPa) V(Å³) $\dot{\varepsilon}_{0,c}$ a_x k_r (s⁻¹) $c_{0,c}$ 10 160 2.8 ×10⁸ 0.02 2.3 ×10¹⁰

Equilibrium flow defect concentration - $c_{f,eq}$ It is impossible to determine $c_{f,eq}$, but the dependency of a_x and k_r with $c_{f,eq}$ that fits the same $\sigma(\varepsilon)$ curve is shown in figure 6. V does *not* vary with $c_{f,eq}$.

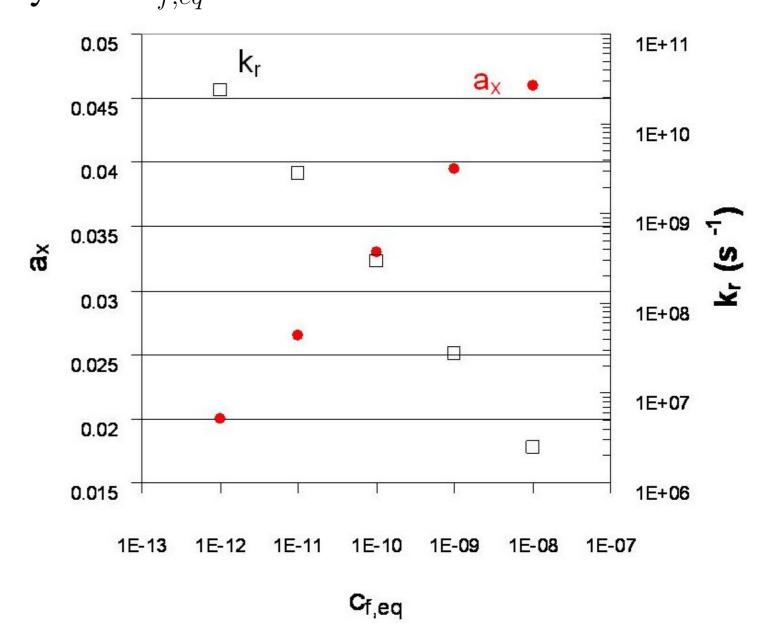


Figure 6: Dependency of a_x and k_r with $c_{f,eq}$ to get the same $\sigma(\epsilon)$ curve.

Deformation relaxation test

Model predicts rather accurately the dependency of $\Delta \sigma$ with relaxation time:

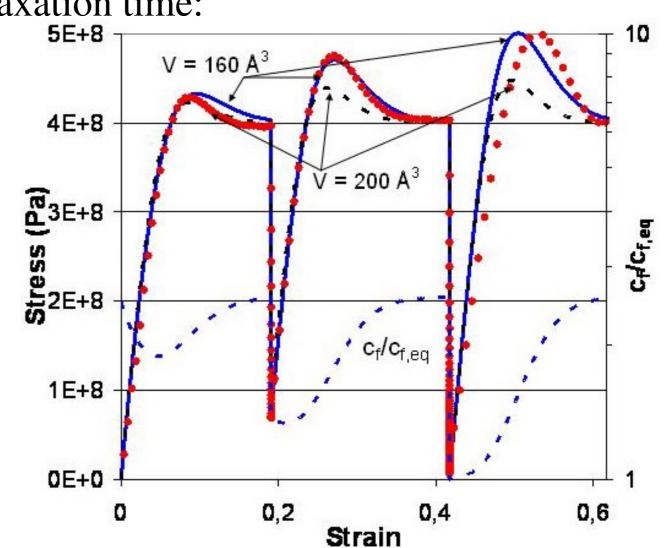


Figure 7: Comparison between model and experiment (deformation/relaxation test). $c_{f,i} = 2 \times c_{f,eq}$ and predicted variation of the relative flow defect concentration $(c_f/c_{f,eq})$

References

[BBG⁺] M. Bletry, Y. Brechet, P. Guyot, J.J. Blandin, and J.L. Soubeyroux. Transient regimes during high-temperature deformation of a bulk metallic glass: A free volume approach. to be published in Acta Mate-

[BGBS06] M. Bletry, P. Guyot, J.J. Blandin, and J.L. Soubeyroux. Free volume model: high temperature deformation of a zr-based bulk metallic glass. Acta Materialia, 54:1257–1263, 2006.

[DHSVdB98] P. De Hey, J. Sietsma, and A. Van den Beukel. Structural disordering in amorphous Pd₄₀Ni₄₀P₂₀ induced by high temperature deformation. Acta Materialia, 46:5873-5882, 1998.

F. Spaepen. A microscopic mechanism for steady state inhomogeneous [Spa77] flow in metallic glasses. Acta Metallurgica, 25:407, 1977.

Modeling the steady state

For uniaxial tests plastic strain-rate is (cf. [Spa77]):

$$\dot{\varepsilon}_p = c_f \dot{\varepsilon}_{0,c} \sinh\left(\frac{\sigma V}{2\sqrt{3}kT}\right) \tag{1}$$

 c_f : flow defect concentration, $\dot{\varepsilon}_{0,c}$: diffusion-like thermallyactivated process, V: activation volume. Variation of c_f is (cf. [DHSVdB98]):

$$\dot{c}_f = a_x \dot{\varepsilon}_p c_f \ln^2 c_f - k_r c_f (c_f - c_{f,eq}) \tag{2}$$

 a_x : free volume creation coefficient, k_r structural relaxation coefficient, $c_{f,eq}$ equilibrium flow defect concentration. At constant strain-rate, it comes [DHSVdB98]:

$$c_f^* = c_{f,eq} + \frac{a_x}{k_r} \dot{\varepsilon}_p \ln^2 c_f^* \tag{3}$$

Combining equations (1) and (3) we get:

$$\frac{a_x}{k_r} = \frac{\frac{\varepsilon}{\dot{\varepsilon}_{0,c} \sinh(\sigma V/2\sqrt{3}kT)} - c_{f,eq}}{\dot{\epsilon}_p \ln^2 \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0,c} \sinh(\sigma V/2\sqrt{3}kT)}\right)} \tag{4}$$