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Procedure of identification of a constitutive law for homogeneous deformation of bulk metallic glasses

Procedure of Identification of a Constitutive Law for Homogeneous

Deformation of Bulk Metallic Glasses We propose a method to identify the parameters of a constitutive law based on the free volume model as proposed by Spaepen [START_REF] Spaepen | A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[END_REF] and taking into account the variation of the concentration of free volume with deformation, following the lines drawn by de Hey et al. [START_REF] Hey | Structural disordering in amorphous Pd 40 Ni 40 P 20 induced by high temperature deformation[END_REF].

Experiments

Elaboration and characterization

BMGs of composition Zr 

Compression tests

Compression tests at 683 K (strain-rate jumps and deformation-relaxation experiments). 

Modeling the steady state

For uniaxial tests plastic strain-rate is (cf. [START_REF] Spaepen | A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[END_REF]):

εp = c f ε0,c sinh σV 2 √ 3kT (1) 
c f : flow defect concentration, ε0,c : diffusion-like thermallyactivated process, V : activation volume. Variation of c f is (cf. [START_REF] Hey | Structural disordering in amorphous Pd 40 Ni 40 P 20 induced by high temperature deformation[END_REF]):

ċf = a x εp c f ln 2 c f -k r c f (c f -c f,eq ) (2) 
a x : free volume creation coefficient, k r structural relaxation coefficient, c f,eq equilibrium flow defect concentration. At constant strain-rate, it comes [START_REF] Hey | Structural disordering in amorphous Pd 40 Ni 40 P 20 induced by high temperature deformation[END_REF]:

c * f = c f,eq + a x k r εp ln 2 c * f (3)
Combining equations ( 1) and (3) we get:

a x k r = ε ε0,c sinh(σV /2 √ 3kT ) -c f,eq ǫp ln 2 ε ε0,c sinh(σV /2 √ 3kT ) (4)
ε0,c and a x /k r can be determined from compression tests, using experimental ( ε, σ) couples from two plateaus (figure 1) forming a system of (slightly nonlinear) equations (eq. 4). It is impossible to determine V and/or c f,eq with this procedure (see [START_REF] Bletry | Free volume model: high temperature deformation of a zr-based bulk metallic glass[END_REF],[BBG + ]), but the dependency of ε0,c and a x /k r with them can be calculated (fig. 3). Most simple model to describe a whole stress strain curve:

εT = σ E + c f ε0,c sinh σV 2 √ 3kT ċf = a x εp c f ln 2 c f -k r c f (c f -c f,eq ) (5) 
εT : total strain rate, σ/E: elastic contribution. How can we determine the various parameters (i.e. a x , k r , V and c f,eq ) ? Steady state analysis => how to get a x /k r and ε0,c with two plateaus. Then : parametric study of (5) with ε0,c known and constraint over a x /k r , .

Parametric study

Young modulus E It is necessary to use E ≈ 10 GPa (measured value at this temperature: ≈ 77 GPa), probably because of anelastic phenomena.

Kinetic parameters -a x and k r Fig. 4 shows that a x and k r control the overshoots amplitude: increasing a x (and k r : their ratio is set) => faster variation of c f , => smaller overshoots and undershoots. For V and c f,eq given, it is possible to optimize a x and k r .

Activation volume -V To determine V the procedure is:

• various activation volumes V : steady state analysis => value of a x /k r and ε0,c

• varying a x and k r => good value of ∆σ

• good activation volume = the one with the good ∆ε

Figure 5 shows an application of this procedure. c f,eq E(GPa) V( Å3 ) ε0,c a x k r (s -1 ) 10 -12 10 160 2.8 ×10 8 0.02 2.3 ×10 10

Equilibrium flow defect concentration -c f,eq It is impossible to determine c f,eq , but the dependency of a x and k r with c f,eq that fits the same σ(ε) curve is shown in figure 6. V does not vary with c f,eq . 

Deformation relaxation test

Model predicts rather accurately the dependency of ∆σ with relaxation time: 

M

  . Blétry †,a , J.-J. Blandin b , P. Guyot b , J.-L. Soubeyroux c a Centre des Matériaux, Mines de Paris/Paristech, France b SIMAP-INPG, Grenoble, France c CRETA-CNRS, Grenoble 1 Introduction

Figure 1 :

 1 Figure 1: Strain-rate jump test at 683 K (from 2.5×10 -3 .s -1 to 5×10 -5 .s -1 ) on G2.

Figure 2 :

 2 Figure 2: Deformation relaxation experiments at 683 K ( ε = 2.5×10 -3 .s -1 ) 1 st relaxation: 57 s, 2 nd : 1110 s, on glass G2. ∆σ and ∆ε are the overshoots amplitudes.

Figure 3 :

 3 Figure 3: Dependence of a x /k r and ε0,c with c f,eq for a glass of composition G1 obtained from two experimental ( ε, σ) couples at 683 K (see [BGBS06]): all these values of c f,eq , a x /k r and ε0,c lead to the same rheology.

Figure 4 :

 4 Figure 4: Parametric study of kinetic coefficients a x and k r , modeling the experiment presented figure 1.

Figure 5 :

 5 Figure 5: Parametric study of the activation volume (dots: experience of fig. 1). Each modeled curve uses the values of a x and k r that fits ∆σ. Parameters of the black curve are given in the table below.

Figure 6 :

 6 Figure 6: Dependency of a x and k r with c f,eq to get the same σ(ǫ) curve.

Figure 7 :

 7 Figure 7: Comparison between model and experiment (deformation/relaxation test). c f,i = 2 × c f,eq and predicted variation of the relative flow defect concentration (c f /c f,eq )

  52.5 Al 10 Cu 22 Ti 2.5 Ni 13 (G1) and Zr 52.5 Al 10 Cu 27 Ti 2.5 Ni 8 (G2) were produced. Characteristic temperatures of both glasses are:

	glass	T g (K) T X (K) ∆T (K)
	G1	659	761	102
	G2	663	745	82