

Probing the internal structure of magnetic nanocomposites – thermo-sensitive gels and lamellar films – respectively by small angle neutron scattering and neutron reflectivity

Siham Douadi-Masrouki, Bruno Frka-Petesic, Delphine El Kharrat, Olivier Sandre, Maud Save, Bernadette Charleux, Valérie Cabuil

▶ To cite this version:

Siham Douadi-Masrouki, Bruno Frka-Petesic, Delphine El Kharrat, Olivier Sandre, Maud Save, et al.. Probing the internal structure of magnetic nanocomposites – thermo-sensitive gels and lamellar films – respectively by small angle neutron scattering and neutron reflectivity. The 5th International Symposium on Bioscience and Nanotechnology, Dec 2007, Kawagoe, Japan. hal-00196454

HAL Id: hal-00196454 https://hal.science/hal-00196454

Submitted on 30 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

mesoscopic scale.

Probing the internal structure of magnetic nanocomposites thermo-sensitive gels and lamellar films – respectively by small angle neutron scattering and neutron reflectivity

Siham Douadi-Masrouki¹, Delphine El kharrat¹, Olivier Sandre¹, Maud Save², Bernadette Charleux² and Valérie Cabuil¹ ¹LI2C UMR7612, ²LCP UMR76120, Centre National de la Recherche Scientifique / Université Pierre et Marie Curie - 4 place Jussieu case 51 75252 Paris Cedex 5 France

Magnetic nanoparticles (NPs) as building blocks

1) Synthesis

polymer matrices: I) a gel matrix exhibiting a swelling transition triggered by temperature;

We study nanocomposites consisting of the same

iron oxide γ -Fe₂O₃ nanoparticles embedded in

II) a lamellar matrix based on the selfassembly of a symmetrical diblock copolymer. We use both neutron scattering & reflectivy techniques to probe the local structure at the

II) Evidencing the lamellar structure of copolymer films doped or not with magnetic NPs

By Atomic Force Microscopy

poly(n-butyImethacrylate)-b-poly(styrene)

- > Atom Transfer Radical Polymerization (ATRP)
- > High molecular weight : Mn = 112 000 g/mol
- > Low polydispersity: $Ip \approx 1.4$
- > Symmetrical Dibloc Copolymer: $x=425 \approx y=490$

<u>Multi-layers</u> \rightarrow interferences (over-oscillations)

1.00E+00 -		r -		
	- X	1	1	 P(n-BMA)425 -b-PS490
		I.	I.	- ()
	1	1	1	~
	1	1	I.	—— fit
$1.00 \pm 0.1 \pm -$	U			

Nanoscope III (Digital Instrument), Tapping mode

 $P(nBMA)_{425}-b-PS_{490}$ Film deposited on silicon <u>e = 60.3 +/- 2.8 nm</u> (ellipsometric thickness)

 $P(nBMA)_{405}$ -b- PS_{460} Film deposited on silicon e = 78.8 +/- 3.6 nm

Pico SPM LE (Molecular Imaging) Images by E. Lepleux (Scientec, Palaiseau, France)

Preparation of thin lamellar film samples: Solutions of P(nBMA) - bue PS in toluene are "spincoated" on smooth substrates (mica or silicone). After deposition, films are annealed at 150°C under vacuum for at least 48h. Their thickness is measured by ellipsometry

> Tapping mode AFM enables to image 2 types of defects at the surface of the films - "islands" and "holes" - typical of the lamellar order.

> The lamellar period should be measured from the height difference L_2 - L_1 but the AFM tip is too large to reach the second bilayer.

> The lamellar period is 28 nm for an analogous PS-b-P(nBMA) of Mw=82,000 as measured by Xrays reflectivity. [2]

substrate

Bi-layer thickness \approx 39 nm for the pure P(nBMA)₄₂₅-b-PS₄₉₀] copolymer

Film	Layer number and thickness (nm)				Total th	rough	
Φ_{NPs}	L ₁	L ₂	L ₃	L _{average}	RN	Ellipsometry	-ness
0.05%	32.2	48.0	21.5	37.2	111.7	108.1	1.4
0.10%	32.8	48.0	33.3	38.0	114.0	109.4	3.5
0.15%	32.8	48.7	30.0	37.2	111.5	106.6	0.4

[P(nBMA)₄₂₅-b-PS₄₉₀]=20 g/L doped with γ -Fe₂O₃@PS1 at increasing volume fractions Φ_{NPs}

⇒ The insertion of increasing amount of magnetic nanoparticles leaves both the total thickness and the average period unchanged.

⇒ The nanoparticles are confined inside internal inter-penetrated layers.

⇒ The total thickness of the film and its roughness are proportional to the deposited materials amount.

C	γ-Fe ₂ O ₃ @PS	Layer number and thickness (nm)						Total thickness	
g/L	,	L ₁	L ₂	L ₃	L ₄	L ₅	L _{moy}	nm	roughness
20	γ-Fe ₂ O ₃ @PS3	31.2	45.3	41.5	-	-	39.3	117.9	±1.6
30	γ-Fe ₂ O ₃ @PS1	34.0	46.1	49.0	54.5	-	45.9	183.6	±4.9
40	γ-Fe ₂ O ₃ @PS1	47.3	45.9	47.0	44.4	45.7	46.1	230.3	±17.4

Films doped at constant volume fraction Φ_{NPs} = 0.025 vol% and increasing deposited materials amount