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We consider one-dimensional directed trap models and suppose that the trapping times are heavy-tailed. We obtain the inverse of a stable subordinator as scaling limit and prove an aging phenomenon expressed in terms of the generalized arcsine law. These results confirm the universality of this phenomenon described by Ben Arous and Černý for a large class of graphs.

Introduction

What is usually called aging is a dynamical out-of-equilibrium physical phenomenon observed in disordered systems like spin-glasses at low temperature. It is defined by the existence of a limit of a given two-time (usually denoted by t ω and t ω +t) correlation function of the system as both times diverge keeping a fixed ratio between them. The limit should be a non-trivial function of the ratio. It has been extensively studied in the physics literature, see [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems. Spin-glasses and Random Fields[END_REF] and therein references.

The trap model is a model of random walk that was first proposed by Bouchaud and Dean [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF][START_REF] Bouchaud | Aging on Parisi's tree[END_REF] as a toy model for studying this aging phenomenon. In the mathematics litterature, much attention has recently been given to the trap model, and many aging result were derived from it. The trap model on Z is treated in [START_REF] Fontes | Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension[END_REF] and [START_REF] Ben Arous | Bouchaud's model exhibits two aging regimes in dimension one[END_REF], on Z 2 in [START_REF] Ben Arous | Aging for Bouchaud's model in dimension two[END_REF], on Z d (d ≥ 3) in [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF] and on the hypercube in [START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF]. A comprehensive approach to obtaining aging results for the trap model in various settings was later developed in [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF]. The striking fact is that these aging results are identical for Z d , d ≥ 2 and the large complete graph, or the REM. In other terms, the mean-field results are valid from infinite dimension down to dimension 2.

The one-dimensional trap model has some specific features that distinguish it from all other cases. The most useful feature is that we can identify its scaling limit as an interesting one-dimensional singular diffusion in random environment, see [START_REF] Fontes | Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension[END_REF]. This process differs considerably from the scaling limit for d ≥ 2, namely the fractional kinetics process, i.e. the time change of a d-dimensional Brownian motion by the inverse of an independent α-stable subordinator, see [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF]. In fact, the universality of the aging phenomenon is a question about the transient part of relaxation to equilibrium and not necessarily related to equilibrium questions.

Here, we give an answer to a question of Ben Arous and Černý [START_REF] Ben Arous | Dynamics of trap models, Ecole d' Éte de Physique des Houches[END_REF] by studying the influence of a drift in the one-dimensional trap model. We identify the scaling limit of the so-called directed trap model with the inverse of an α-stable subordinator and prove an aging result expressed in terms of the generalized arcsine law. These results confirm the universality of the phenomenon described by Ben Arous and Černý [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF]. Furthermore, this extends some results of Monthus [START_REF] Monthus | Non-linear response of the trap model in the aging regime: exact results in the strong disorder limit[END_REF], who studies the influence of a bias in the high disorder limit (i.e. when α tends to zero with our notations, see (2.2)) using renormalization arguments. Note that the ideas of the proof developed in this paper are deduced from a strong comparison with one-dimensional random walks in random environment in the sub-ballistic regime. Indeed, analogous results are obtained for this asymptotically equivalent model in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] (using [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF]) and [START_REF] Enriquez | Aging and quenched localization for onedimensional random walks in random environment in the sub-ballistic regime[END_REF].

The rest of the paper is organized as follows. The main results are stated in Section 2. In Section 3, we present some elementary results about the environment, the embedded random walk as well as preliminary estimates, which will be frequently used throughout the paper. Section 4 and Section 5 are respectively devoted to the proof of the scaling limit and to the proof of the aging result.

Notations and main results

Let us first fix 0 < ε ≤ 1/2. Then, the directed trap model is the nearest-neighbour continuous-time Markov process X = (X t ) t≥0 with state space Z, given by X 0 = 0 and with jump rates c(x, y) :=

1 2 + ε τ -1 x if y = x + 1, 1 2 -ε τ -1 x if y = x -1, (2.1)
and zero otherwise, where τ = (τ x ) x∈Z is a family of positive i.i.d. heavy-tailed random variables. More precisely, we suppose that there exists α ∈ (0, 1) such that lim u→∞

u α P(τ x ≥ u) = 1. (2.2)
In particular, this implies E [τ x ] = +∞. Sometimes τ is called random environment of traps. The Markov process X t spends at site x an exponentially distributed time of mean τ x , and then jumps to the right with probability p ε := ( 1 2 + ε) and to the left with probability q ε := ( 1 2 -ε). Therefore, X is a time change of a discrete-time biased random walk on Z. More precisely, we define the clock process and the embedded random walk associated with X as follows.

Definition 1. Let S(0) := 0 and let S(k) be the time of the k-th jump of X, for k ∈ N * . For s ∈ R + , we define S(s) := S(⌊s⌋) and call S the clock process. Define the embedded discrete-time random walk (Y n ) n≥0 by Y n := X t for S(n) ≤ t < S(n + 1). Then obviously, (Y n ) n≥0 is a biased random walk on Z.

Observe that (Y

n ) n≥0 satisfies P(Y n+1 = Y n + 1) = 1 2 + ε = 1 -P(Y n+1 = Y n -1)
, for all n ≥ 0. Therefore, (Y n ) n≥0 is transient to +∞ and the law of large numbers implies that, P-almost surely,

Y n n -→ v ε := 2ε > 0, n → ∞. (2.3)
Furthermore, it follows from the definition of X that the clock process can be written

S(k) = k-1 i=0 τ Y i e i , k ≥ 1, (2.4)
where (e i ) i≥0 is a family of i.i.d. mean-one exponentially distributed random variables. We always suppose that the e i 's are defined in this way. Then, the process (X t ) t≥0 satisfies

X t = Y S -1 (t) , ∀ t ∈ R + , (2.5)
where the right-continuous inverse of an increasing function φ is defined by φ -1 (t) := inf{u ≥ 0 : φ(u) > t}. Now, let us fix T > 0 and denote by D([0, T ]) the space of càdlàg functions from [0, T ] to R. Moreover, let X (N ) be the sequence of elements of D([0, T ]) defined by (2.6)

X (N ) t := X tN N α , 0 ≤ t ≤ T.
Then, the scaling limit result can be stated as follows.

Theorem 1. The distribution of the process (X

(N ) t ; 0 ≤ t ≤ T ) converges weakly to the distribution of (v # ε V -1 α (t); 0 ≤ t ≤ T ) on D([0, T ]
) equipped with the uniform topology, where (V α (t); t ≥ 0) is an α-stable subordinator satisfying E[e -λVα(t) ] = e -tλ α , and

v # ε := sin(απ) απ v α ε = sin(απ) απ (2ε) α .
Although this result can be compared with the limit in [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF], we do not obtain the fractional kinetics process. This difference can be explained by recalling that the fractional kinetics process is the time change of a Brownian motion by the inverse of an independent α-stable subordinator while our embedded random walk satisfies the law of large numbers with positive speed, see (2.3). Furthermore, observe that the case ε = 1/2 is trivial; indeed Y is deterministic, v ε = 1 and the clock process, which can be written S(k) = k-1 i=0 τ i e i , is just a sum of i.i.d. heavy-tailed random variables. Now let us state the second main result concerning the aging phenomenon.

Theorem 2. For all h > 1, we have

(2.7) lim t→∞ P(X th = X t ) = sin(απ) π 1/h 0 y α-1 (1 -y) -α dy.
Remark 1. Note that, in [START_REF] Bertin | Linear and non linear response in the aging regime of the 1D trap model[END_REF], Bertin and Bouchaud study the average position of the random walk at time t ω + t given that a small bias h is applied at time t ω . They found several scaling regime depending on the relative value of t, t ω and h.

In the following, C denotes a constant large enough, whose value can change from line to line.

Preliminary estimates

In this section, we list some properties of the environment τ and of the embedded random walk Y as well as preliminary results.

3.1. The environment. Let us define the critical depth for the first n traps of the environment by

(3.1) g(n) := n 1/α (log n) 2 1-α .
Then, we can introduce the notion of deep traps as follows:

δ 1 = δ 1 (n) := inf{x ≥ 0 : τ x ≥ g(n)}, (3.2) δ j = δ j (n) := inf{x > δ j-1 : τ x ≥ g(n)}, j ≥ 2. (3.3)
The number of such deep traps before site n will be denoted by θ n and defined by (3.4) θ n := sup{j ≥ 0 :

δ j ≤ n},
where δ 0 := 0. Now, let us define

(3.5) ϕ(n) := P(τ 1 ≥ g(n)),
and observe that (2.2) implies ϕ(n) ∼ g(n) -α , n → ∞. We introduce now the following series of events, which will occur with high probability, when n goes to infinity:

E 1 (n) := nϕ(n) 1 - 1 log n ≤ θ n ≤ nϕ(n) 1 + 1 log n , (3.6) E 2 (n) := δ 1 ∧ min 1≤j≤θn-1 (δ j+1 -δ j ) ≥ ρ(n) , (3.7) E 3 (n) := max -ν(n)≤x≤0 τ x < g(n) , (3.8) 
where ρ(n) and ν(n) are given, for some 0 < κ < 1/3 and 0 < γ < 1, by

ρ(n) := n κ , (3.9) ν(n) := ⌊(log n) 1+γ ⌋. (3.10)
In words, E 1 (n) requires that the number of deep traps is not too large, E 2 (n) requires that the distance between two deep traps is large enough and E 3 (n) ensures that the time spent by X on Z -is negligible.

Lemma 1. Let E(n) := E 1 (n) ∩ E 2 (n) ∩ E 3 (n), then we have (3.11) lim n→∞ P(E(n)) = 1.
Proof. Note that the number of traps deeper than g(n) in the first n traps is a binomial random variable with parameter (n, ϕ(n)). Then, recalling (2.2), the proof of Lemma 1 is easy and left to the reader.

Since we want to consider disjoint intervals of size 2ν(n) around the δ j 's, we introduce now a subsequence of the deep traps defined above (see (3.2)-(3.3)). These so-called * -deep traps are defined as follows:

δ * 1 = δ * 1 (n) := inf{x ≥ ν(n) : τ x ≥ g(n)}, (3.12) δ * j = δ * j (n) := inf{x > δ * j-1 + 2ν(n) : τ x ≥ g(n)}, j ≥ 2. (3.13)
The number of such * -deep traps before site n will be denoted by θ * n and defined by (3.14)

θ * n := sup{j ≥ 0 : δ * j ≤ n}. For any ν ∈ N * and any x ∈ Z, let us denote by B ν (x) the interval [x -ν, x + ν]. Ob- serve that the intervals (B ν(n) (δ * j )) 1≤j≤θ *
n will be made of independent and identically distributed portions of environment τ (up to some translation).

The following lemma tells us that the * -deep traps coincide with the deep traps with an overwhelming probability when n goes to infinity.

Lemma 2. If E * (n) := {θ n = θ * n }, then we have (3.15) lim n→∞ P(E * (n)) = 1.
Proof. Recall first that the * -deep traps constitute a subsequence of the deep traps. Furthermore, we have E 2 (n) ⊂ E * (n) for all large n. Therefore, Lemma 1 implies Lemma 2. 

ζ n := inf{k ≥ 0 : Y k = n}, n ∈ N.
Since Y is transient to +∞, we have ζ n < ∞, for all n ≥ 0 almost surely. To control the behavior of Y , let us state the following result.

Lemma 3. Let A(n) := {min 0≤i<j≤ζn (Y j -Y i ) > -ν(n)}, then we have (3.17) lim n→∞ P(A(n)) = 1.
Observe that, on A(n), each time X (or Y ) hits a site x, it will necessarily exit B ν(n) (x) on the right.

Proof. Let us fix c > v -1 ε .
Then, observe that the law of large numbers implies that

P(ζ n ≤ cn) → 1, n → ∞. Therefore, it is sufficient to prove that P(min 0≤i<j≤cn (Y j - Y i ) ≤ -ν(n)) → 0, n → ∞. Let us write P min 0≤i<j≤cn (Y j -Y i ) ≤ -ν(n) ≤ C n 2 max 0≤j≤cn P(Y j ≤ -ν(n)). (3.18)
Now, for all x and every t ≤ 0, an application of Chebycheff's inequality yields

P(Y j /j ≤ x) = E[1 {Y j -jx≤0} ] ≤ E[e t(Y j -jx) ] = e -jtx E[e tY 1 ] j = e -j{tx-Λ(t)} , (3.19) 
where Λ(t) := log E[e tY 1 ] denotes the logarithmic moment generating function associated with the law of Y 1 . By taking the infimum over t ≤ 0 in (3.19), we get

P(Y j /j ≤ x) ≤ e -jI(x) , (3.20) 
where I(x) := sup t≤0 {tx -Λ(t)}. Note that (3.20) corresponds to the upper bound in the LDP (large deviation principle) for an i.i.d. sequence (see Cramer's theorem in R, [START_REF] Dembo | Large deviations techniques and applications[END_REF] [START_REF] Dembo | Large deviations techniques and applications[END_REF]), which means that I is the convex rate function associated with Y. Now, assembling (3.18) and (3.20) yields

page 27). Since E[Y 1 ] = v ε > 0, we have I(x) = sup t∈R {tx -Λ(t)} for x ≤ v ε (see (2.2.7) in
P min 0≤i<j≤cn (Y j -Y i ) ≤ -ν(n) ≤ C n 2 max 0≤j≤cn e -jI( -ν(n) j ) . (3.21)
Then, Lemma 3 will be a consequence of

(3.22) sup x≤0 I(x) x ≤ log r ε < 0,
where r ε := q ε /p ε < 1. To prove (3.22), observe that an easy computation yields Λ(log r ε ) = 0. Therefore, by definition I(x) ≥ x log r ε for all x ≤ 0, which gives (3.22).

Finally, assembling (3.21) and (3.22) implies that P(min 0≤i<j≤cn (Y j -Y i ) ≤ -ν(n)) ≤ Cn 2 e ν(n) log rε which tends to 0 when n tends to infinity (recall that ν(n) is defined in (3.10) and satisfies ν(n) = ⌊(log n) 1+γ ⌋ for some 0 < γ < 1).

Between deep traps.

Here, we prove that the time spent between deep traps is negligible.

Lemma 4. Let us define I(n) := ζn i=0 τ Y i e i 1 {τ Y i <g(n)} < n 1/α
log n . Then, we have (3.23)

P (I(n)) → 1, n → ∞.
Proof. Observe first that, on A(n), we have inf i≤ζn Y i ≥ -ν(n) and that Lemma 3 implies

P (I(n) c ) = P (I(n) c ∩ A(n)) + o(1)
. Therefore, using Markov inequality, we only have to prove that

(3.24) E ζn i=0 τ Y i e i 1 {Y i ≥-ν(n)} 1 {τ Y i <g(n)} = o n 1/α log n , n → ∞. After reaching x ∈ [-ν(n), n] (if x is reached)
, the process Y visits x a geometrically distributed number of times before hitting n. The parameter of this geometrical random variable is equal to q ε + p ε ψ(x, n), where ψ(x, n) denotes the probability that Y starting at x + 1 hits x before n. An easy computation yields that 

(3.25) ψ(x, n) = r ε 1 -r n-x-1 ε 1 -r n-x ε , with r ε = q ε /p ε <
τ Y i e i 1 {Y i ≥-ν(n)} 1 {τ Y i <g(n)} ≤ n x=-ν(n) τ x (1 + G(x, n))1 {τx<g(n)} . Since x → G(x, n) is decreasing and G(-ν(n), n) → (1 -v ε )/v ε ,
; τ 0 < g(n)] = Cn E [τ 0 ; 1 < τ 0 < g(n)] + O(n). Now, let us fix 0 < ρ < 1 and introduce ω = ω(n) := inf{j ≥ 0 : ρ ≤ ρ j g(n) < 1}. Then, we get E [τ 0 ; 1 < τ 0 < g(n)] ≤ g(n) ω-1 j=0 ρ j P(τ 0 > ρ j+1 g(n)) (3.27) ≤ Cg(n) 1-α ω-1 j=0 ρ -αj ≤ Cg(n) 1-α ,
where we used the fact that (2.2) yields that there exists 0 < C < ∞ such that P(τ x ≥ u) ≤ Cu -α , for all u > 0. Therefore, recalling (3.24), the fact that ng(n) 1-α is a o(n 1/α / log n) concludes the proof of Lemma 4.

3.4.

Occupation time of a deep trap. Since ζ y < ∞ for all y ∈ N, we can properly define for x ∈ N,

T x = T x (n) := ζ x+ν(n) 0 τ Y i e i 1 {Y i =x} , (3.28) T x = T x (n) := ζ x+ν(n) 0 τ Y i e i 1 {Y i ∈B ν(n) (x)} . (3.29)
Moreover, let us introduce P x and E x the probability and the expectation associated with the process starting at site x. We have the following estimate for the Laplace transforms of T x and T x .

Lemma 5. For all x ∈ N and all λ > 0, we have

(3.30) E x 1 -e -λnTx |τ x ≥ g(n) ∼ P(τ x ≥ g(n)) -1 n απ sin(απ) v -α ε λ α , n → ∞,
where λ n := λ/n 1/α . Moreover, the same result holds with T x replaced by T x .

Proof. Let us first write

(3.31) E x (1 -e -λnTx )1 {τx≥g(n)} = E E x τ [1 -e -λnTx ]1 {τx≥g(n)} .
Starting at site x, the process Y visits x a geometrically distributed number of times before reaching x+ν(n). An easy computation yields that the mean of this geometrical variable, denoted by

G(x, x + ν(n)) satisfies 1 + G(x, x + ν(n)) → v -1
ε , when n → ∞. Therefore, recalling that each visit takes an exponential time of mean τ x , we obtain

(3.32) E x τ [e -λnTx ] = 1 1 + λ n v -1 ε τ x + o(n -1/α ), n → ∞.
Now, using an integration by part, we get that E x (1 -e -λnTx )1 {τx≥g(n)} is equal to

(3.33) - λ n v -1 ε z 1 + λ n v -1 ε z P(τ x ≥ z) ∞ g(n) + ∞ g(n) λ n v -1 ε (1 + λ n v -1 ε z) 2 P(τ x ≥ z) dz + o(n -1/α ). The first term is lower than Cλ n g(n) 1-α = Cλ α n (λ n g(n)) 1-α = o(n -1
), since α < 1. For the second term, using (2.2), we can estimate P(τ x ≥ z) by (1 -η)z -α ≤ P(τ x ≥ z) ≤ (1 + η)z -α , for any η, when n is sufficiently large (recall that g(n) → ∞, when n → ∞). Hence, we are lead to compute the integral

(3.34) ∞ g(n) λ n v -1 ε (1 + λ n v -1 ε z) 2 z -α dz = (λ n v -1 ε ) α 1 λnv -1 ε g(n) 1+λnv -1 ε g(n) y -α (1 -y) α dy, (making the change of variables y = λ n v -1 ε z/(1 + λ n v -1 ε z)).
For α < 1 this integral converges, when n → ∞, to Γ(α + 1)Γ(-α + 1) = πα sin(πα) , which concludes the proof of (3.30).

To prove that the result is true with T x in place of T x , observe first that

P(τ x ≥ g(n); max y∈B ν(n) (x)\{x} τ y ≥ g(n)) = o(n -1 ), when n → ∞, which implies (3.35) E x (1 -e -λnT x )1 {τx≥g(n)} = E x (1 -e -λnT x )1 E 4 (n) + o(n -1 ), where E 4 (n) := {max y∈B ν(n) (x)\{x} τ y < g(n) ≤ τ x }.
Then, let us introduce Tx :=

ζ x+ν(n) 0 τ Y i e i 1 {Y i ∈B ν(n) (x)\{x}} = T x -T x and write (3.36) E x (e -λnTx -e -λnT x )1 E 4 (n) ≤ λ n E x Tx 1 E 4 (n) ,
where we used the fact that 1 -e -x ≤ x, for any x ∈ R. Using the same arguments as in the proof of Lemma 4, we can prove that (3.37)

E x τ Tx 1 E 4 (n) ≤ 1 {τx≥g(n)} y∈B ν(n) (x)\{x} τ y (1 + G(y, x + ν(n))1 {τy <g(n)} .
Using the fact that the previous sum depends only on sites y in B ν(n) (x) which are different from x, together with the same arguments as in the proof of Lemma 4, we get

E x Tx 1 E 4 (n) ≤ Cν(n)g(n) 1-α P(τ x ≥ g(n)) ≤ Cν(n)g(n) 1-2α
. Therefore, we obtain that the left-hand term in (3.36) is a o(n -1 ), which together with (3.35) concludes the proof of Lemma 5.

Proof of Theorem 1

Let us first define H x := inf{t ≥ 0 : X t = x}, for any x ∈ N. Now, fix T > 0, and let H (N ) t be the sequence of elements of D([0, T ]) defined by (4.1)

H (N ) t := H ⌊tN ⌋ N 1/α , 0 ≤ t ≤ T.
Proposition 1. The distribution of the process (H

(N ) t ; 0 ≤ t ≤ T ) converges weakly to the distribution of (v # ε ) -1/α V α (t); 0 ≤ t ≤ T ) on D([0, T ]
) equipped with the Skorokhod M 1 -topology, where (V α (t); t ≥ 0) is is an α-stable subordinator satisfying E[e -λVα(t) ] = e -tλ α .

The so called Skorokhod M 1 -topology is not so common in the literature. Therefore, we refer to [START_REF] Whitt | Stochastic-process limits[END_REF] for detailed account on M 1 -topology.

Proof. Let 0 = u 0 < u 1 < • • • < u K ≤ T and β i > 0 for i ∈ {1, . . . , K}. We will check the convergence of the finite-dimensional distributions of H by proving the convergence of E[exp{-K i=1 β i (H

(N ) u i -H (N ) u i-1 )}].
Observe first that for any u ∈ Z we have P(max y∈B ν(T N) (u) τ y > g(T N)) = o(1), when N → ∞. Then, this remark applied at u ′ := ⌊u K-1 N⌋ -ν(T N) with Lemma 4 yield (4.2)

P ζ ⌊u K N⌋ i=0 τ Y i e i 1 {Y i ∈B ν(T N) (u ′ )} < CN 1/α (log N) -1 → 1, N → ∞,
which means that the time spent by X in B ν(T N ) (u ′ ) is negligible. Recalling that on A(T N) (whose probability tends to one by Lemma 3) the process never backtracks more than ν(T N), we deduce from (4.2) that (4.3)

P H ⌊u K-1 N ⌋ -H u ′ < CN 1/α (log N) -1 → 1, N → ∞.
Hence, defining

H ′ := β K-1 N -1 α (H u ′ -H ⌊u K-2 N ⌋ ) we get E e -K i=1 β i (H (N) u i -H (N) u i-1 ) = E 1 A(T N ) e -K-2 i=1 β i (H (N) u i -H (N) u i-1 )-H ′ e -β K (H (N) u K -H (N) u K-1 ) + o(1) = E E τ e -K-2 i=1 β i (H (N) u i -H (N) u i-1 )-H ′ E ⌊u K-1 N ⌋ τ,|u ′ e -β K H (N) u K + o(1), (4.4)
where E x τ,|y denotes the law of the process in the environment τ, starting at x and reflected at site y. The last equality is a consequence of the strong Markov property applied at time H ⌊u K-1 N ⌋ together with the fact that on A(T N) the process never backtracks more than ν(T N). Now, observe that the two quenched expectations in (4.4) depend on two disjoint portions of the environment: (-∞; u ′ ) ∩ Z and [u ′ , ⌊u K N⌋) ∩ Z. Hence, since the τ x 's are i.i.d., these two quenched expectations are independent random variables and we obtain

E e -K i=1 β i (H (N) u i -H (N) u i-1 ) = E e -K-2 i=1 β i (H (N) u i -H (N) u i-1 )-H ′ E E ⌊u K-1 N ⌋ τ,|u ′ e -β K H (N) u K + o(1).
Using again (4.3) and Lemma 3 we have

E e -K i=1 β i (H (N) u i -H (N) u i-1 ) = E e -K-1 i=1 β i (H (N) u i -H (N) u i-1 ) E ⌊u K-1 N ⌋ e -β K H (N) u K + o(1).
By the shift invariance of the environment, it is sufficient to prove that

(4.5) E e -β K N -1/α H N ′ -→ exp - απ sin(απ) v -α ε β α K (u K -u K-1 ) , N → ∞,
where

N ′ := ⌊u K N⌋-⌊u K-1 N⌋ ∼ (u K -u K-1
)N, when N → ∞. Indeed, iterating this procedure K -2 times will give the convergence of the finite-dimensional distributions.

Let us prove (4.5). Recalling Lemma 1, Lemma 3 and Lemma 4, we obtain

E e -β K N -1/α H N ′ = E 1 E(N ′ )∩A(N ′ )∩I(N ′ ) e -β K N -1/α H N ′ + o(1) = E e -β K N -1/α θ N ′ i=1 T δ i (N ′ ) + o(1) = E 1 E * (N ′ ) e -β K N -1/α θ * N ′ i=1 T δ * i (N ′ ) + o(1), (4.6)
where T x is defined in (3.28). Furthermore, since on E * (N ′ ) ∩ A(N ′ ) the process never backtracks before δ * i -ν(N ′ ) after hitting δ * i for 1 ≤ i ≤ θ * N ′ , we get, by applying successively the strong Markov property at the stopping times

H δ θ * N ′ , . . . , H δ * 1 , E e -β K N -1/α H N ′ = E 1 E * (N ′ )∩A(N ′ ) θ * N ′ j=1 E δ * i τ,|δ * i -ν e -β K N -1/α T δ * i + o(1) ≤ E θ N ′ j=1 E δ * i τ,|δ * i -ν e -β K N -1/α T δ * i + o(1), (4.7) where θ N ′ := N ′ ϕ(N ′ ) 1 -1 log N ′ .
Then, observing that the quenched expectations (E 

δ * i τ,|δ * i -ν [e -β K N -1/α T δ * i ], 1 ≤ j ≤ θ N ′ ) are i.i.
E e -β K N -1/α H N ′ ≤ E E δ * 1 τ,|δ * 1 -ν e -β K N -1/α T δ * 1 θ N ′ + o(1). (4.8)
Since an easy computation yields that P(δ

* 1 = δ 1 ) = P(max 0≤y≤ν(N ′ ) τ y ≥ g(N ′ )) = o((N ′ ϕ(N ′ )) -1 ) and P(H -ν(N ′ ) < H ν(N ′ ) ) = o((N ′ ϕ(N ′ )) -1 ) when N ′ → ∞ (or equiv- alently when N → ∞), we get E e -β K N -1/α H N ′ ≤ E x e -β K N -1/α Tx |τ x ≥ g(N ′ ) θ N ′ + o(1). (4.9)
Now, using Lemma 5, this yields lim sup

N →∞ E e -β K N -1/α H N ′ ≤ exp - απ sin(απ) v -α ε β α K (u K -u K-1 ) . (4.10)
Moreover, we can similarly obtain the same lower bound, which implies (4.5) and concludes the proof of the convergence of the finite-dimensional distributions.

For the tightness, the arguments are exactly the same as in [START_REF] Ben Arous | Universality of the REM for dynamics of meanfield spin glasses[END_REF]. We refer to section 5 of [START_REF] Ben Arous | Universality of the REM for dynamics of meanfield spin glasses[END_REF] for a detailed discussion. 

X (N ) t := sup 0≤s≤t X (N ) s , t ≥ 0,
which corresponds to the generalized inverse of the increasing process H (N ) . Let D ↑ denote the subset of D([0, T ]) consisting of unbounded increasing functions. By corollary 13.6.4 of [START_REF] Whitt | Stochastic-process limits[END_REF] the inverse map from (D ↑ , M 1 ) to (D ↑ , U) is continuous at strictly increasing functions. Since the α-stable subordinator V α (which appears in the limit of H (N ) in (D ↑ , M 1 )) is almost surely strictly increasing (indeed, its Lévy measure, denoted by Π α , satisfies Π α ((0, ∞)) = ∞), the distribution of X (N ) converges to the

distribution of v # ε V -1 α
weakly on (D ↑ , U) and the limit is almost surely continuous. Now, Theorem 1 will be a consequence of (4.12)

P sup |X (N ) t -X (N ) t |; 0 ≤ t ≤ T > γ -→ 0, N → ∞,
for any γ > 0. To prove (4.12), recall first that Proposition 1 implies that P(H N α log N > T N) → 1, when N → ∞, such that we only have to prove (4.13)

P sup{|X t -X t |; 0 ≤ t ≤ H ⌊N α log N ⌋ } > γN α -→ 0, N → ∞.
Furthermore, observe that

(4.14) sup{|X t -X t |; 0 ≤ t ≤ H ⌊N α log N ⌋ } = max{|Y k -Y k |; 0 ≤ k ≤ ζ ⌊N α log N ⌋ },
by definition and that on A(⌊N α log N⌋) (whose probability tends to 1 when N goes to infinity), this last quantity is less than ν(⌊N α log N⌋) = o(N α ), when N → ∞. This yields (4.13) and concludes the proof of Theorem 1.

Proof of Theorem 2

To bound the number of traps the random walk can cross before time t let us consider (5.1) n t := ⌊t α log log t⌋, and observe that Theorem 1 implies that P(X t ≥ n t ) → 0, t → ∞. Moreover, since we need more concentration properties for the random walk in the neighborhood of the δ j 's, we introduce

(5.2) ν = ν(n t ) := ⌊C ′ log log n t ⌋,
for some C ′ large enough which will be chosen later. For convenience of notations we will use ν, ν and δ j in place of ν(n t ), ν(n t ) and δ j (n t ) throughout this section.

Then, we define the sequence of random times (T * j ) j≥1 as follows: conditioning on τ, (T * j ) j≥1 is defined as an independent sequence of random variables with the law of H δ * j +ν in the environment τ starting at site δ * j and reflected at δ * j -ν. Hence, under the annealed law P, the T * j 's are are i.i.d. since the intervals B ν (δ * j ) are made of independent and identically distributed portions of environment τ (by definition). Then, we give an analogous result to the extension of Dynkin's theorem proved in [START_REF] Enriquez | Aging and quenched localization for onedimensional random walks in random environment in the sub-ballistic regime[END_REF] (see Proposition 1 in [START_REF] Enriquez | Aging and quenched localization for onedimensional random walks in random environment in the sub-ballistic regime[END_REF]).

Proposition 2. For any t > 0, let ℓ * t := sup{j ≥ 0 :

T * 1 + • • • + T * j ≤ t}. Then, for all 0 ≤ x 1 < x 2 ≤ 1, we have (5.3) lim t→∞ P(t(1 -x 2 ) ≤ T * 1 + • • • + T * ℓ * t ≤ t(1 -x 1 )) = sin(απ) π x 2 x 1 (1 -x) α-1 x -α dx.
For all 0 ≤ x 1 < x 2 , we have

(5.4) lim t→∞ P(t(1 + x 1 ) ≤ T * 1 + • • • + T * ℓ * t +1 ≤ t(1 + x 2 )) = sin(απ) π x 2 x 1 dx x α (1 + x) .
Before proving this result, let us first recall Lemma 5 and make the following observation, which is the main ingredient in the proof of Proposition 2.

Remark 2. If we consider

T * (x) = T * (x, n t ) := ζ x+ν(n t ) 0 τ Y i e i 1 {Y i ∈[x-ν(nt), x+ν(nt)]} ,
x ∈ Z, (5.5) then the same arguments as in the proof of Lemma 5 yield, for all λ > 0,

(5.6) E x 1 -e -λ T * (x) t |τ x ≥ g(n t ) ∼ P(τ x ≥ g(n t )) -1 t α απ sin(απ) v -α ε λ α , t → ∞.
Proof. Observe first that an easy computation yields that P x (H x-ν < ∞) = O(r ν ε ), when t → ∞ (where we recall that r ε = q ε /p ε < 1). Moreover, we have r ν(nt) ε = o((t α ϕ(n t )) -1 ). Therefore, Remark 2 yields

(5.7) E 1 -e -λ T * 1 t ∼ P(τ x ≥ g(n t )) -1 t α απ sin(απ) v -α ε λ α , t → ∞.
Then, the arguments are exactly the same as in the proof of Proposition 1 in [START_REF] Enriquez | Aging and quenched localization for onedimensional random walks in random environment in the sub-ballistic regime[END_REF].

Observe that this result would exactly be Dynkin's theorem (see Feller, vol. II, [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], p.

472) if the sequence (T * j ) j≥1 was an independent sequence of random variables in the domain of attraction of a stable law of index α. Here, this sequence depends implicitly on the time t, since the * -deep traps are defined from the critical depth g(n t ).

Recalling Lemma 4, we will now prove that the results of Proposition 2 are still true if we consider, in addition, the inter-arrival times between deep traps. Before, let us define the notion of inter-arrival times between x and y, for any x, y ≥ 0, by: (5.8) H(x, y) := inf{t ≥ 0 : X Hx+t = y}.

Proposition 3. For any t > 0, let ℓ t := sup{j ≥ 0 : H δ j ≤ t}. Then, we have (5.9)

lim t→∞ P(H δ ℓ t ≤ t < H δ ℓ t +ν ) = 1.
For all 0 ≤ x 1 < x 2 ≤ 1, we have

(5.10) lim t→∞ P(t(1 -x 2 ) ≤ H δ ℓ t ≤ t(1 -x 1 )) = sin(απ) π x 2 x 1 (1 -x) α-1 x -α dx.
For all 0 ≤ x 1 < x 2 , we have

(5.11) lim t→∞ P(t(1 + x 1 ) ≤ H δ ℓ t +1 ≤ t(1 + x 2 )) = sin(απ) π x 2 x 1 dx x α (1 + x) .
Proof. We first need to prove that after hitting δ j + ν, the particle does not backtrack more than ν. We detail this result with the following lemma.

Lemma 6. Let us define B(n t ) := A(n t ) ∩ θn t j=1 {H(δ j + ν, δ j + ν) < H(δ j + ν, δ j )}. Then, we have (5.12) lim t→∞ P (B(n t )) = 1.

Proof. Since Lemma 3 says that P (A(n t )) tends to one, we only have to prove that (5.13) lim t→∞ P θn t j=1 {H(δ j + ν, δ j + ν) > H(δ j + ν, δ j )} = 0.

Recalling that on E(n t ) ∩ E * (n t ), whose probability tends to 1 when t tends to infinity (by Lemma 1 and Lemma 2), the number θ nt of deep traps (i.e. deeper than g(n t )) is bounded by C(log n t ) 2α 1-α , it is sufficient to prove that

(5.14) lim t→∞    1≤j≤C(log nt) 2α 1-α P H(δ j + ν, δ j + ν) > H(δ j + ν, δ j )    = 0.
Now, the strong Markov property applied at H(δ j + ν) implies that the probability term in (5.14) is bounded by P(ζ -ν < ∞), which does not depend on j. Therefore, (5.14) will be a consequence of (5.15)

P(ζ -ν < ∞) = o((log n t ) -2α 1-α ), t → ∞.
Recalling that we have P(ζ -ν < ∞) ≤ Cr ν ε (where r ε = q ε /p ε < 1), we conclude the proof of Lemma 6 by choosing C ′ larger than -2α/(1 -α) log r ε (recall that ν = ν(n t ) = ⌊C ′ log log n t ⌋).

Let us introduce C(n t ) := {X t ≤ n t }, whose probability tends to one (recall Theorem 1). Now, to prove Proposition 3, observe that on E * (n t ) ∩ A(n t ), the random times (H(δ j , δ j +ν)) 1≤j≤θ * n t have the same law as the random times (T * j ) 1≤j≤θ * n t defined previously. If we define lt := sup{j ≥ 0 : H(δ 1 , δ 1 + ν) + • • • + H(δ j , δ j + ν) ≤ t}, then, using Proposition 2, Lemma 2 and Lemma 3, we get that the result of Proposition 2 is true with (H(δ j , δ j + ν)) 1≤j≤θ * n t and lt in place of (T * j ) 1≤j≤θ 

P( lt = ℓ t -1 ; H δ ℓ t ≤ t < H δ ℓ t +ν ) ≥ lim inf t→∞ P(I(n t ) ; B(n t ) ; C(n t ) ; |t -(H(δ 1 , δ 1 + ν) + • • • + H(δ lt , δ lt + ν))| ≥ ξt),
for all ξ > 0. Thus, using Lemma 4, Lemma 6, Proposition 2 (for lt and (H(δ j , δ j + ν)) 1≤j≤θ * n t ) and letting ξ tends to 0, we get that (5. [START_REF] Enriquez | Aging and quenched localization for onedimensional random walks in random environment in the sub-ballistic regime[END_REF])

lim t→∞ P( lt = ℓ t -1 ; H δ ℓ t ≤ t < H δ ℓ t +ν ) = 1.
We conclude the proof by the same type of arguments.

To complete the proof of Theorem 2, we will prove the following localization result, which means that the particle is in the last visited deep trap with an overwhelming probability.

Proposition 4. We have (5.17 Proof. Now, for any deep trap δ j , let us denote by µ j the invariant measure associated with the trap model on [δ j -ν, δ j + ν] reflected at sites δ j -ν and δ j +ν and normalized such that µ j (δ j ) = 1. Clearly, µ j is the reversible measure given by

µ j (x) = r δ-x ε τ x τ δ j , x ∈ (δ j -ν; δ j + ν) ∩ Z. (5.18)
Since the process is reflected at sites δ j -ν and δ j + ν, we have µ j (δ j -ν) ≤ τ δ j -ν /τ δ j and µ j (δ j -ν) ≤ r ν ε τ δ j +ν /τ δ j . Moreover, since µ j is an invariant measure and since µ j (δ j ) = 1, we have, for any x ∈ [δ j -ν, δ j + ν] and all s ≥ 0, (5.19) P δ j τ,|δ j -ν,δ j +ν| (X s = x) ≤ µ j (x). Furthermore, let us introduce the event (5.20)

D(n t ) := θn t j=1 max x∈Bν (δ j )\{δ j } τ x < (log n t ) β , with β > 1 α ( 2α 1-α + 1 + γ).
Observe that the probability of D(n t ) tends to one, when t tends to infinity. Indeed, since the number of deep traps is less than C(log n t ) 2α 1-α , and recalling that the number of sites contained in the B ν (δ j )'s is less than 2ν (with ν = ν(n t ) = ⌊(log n t ) 1+γ ⌋), this fact is just a consequence of (2.2). Recalling (5.18), observe that on D(n t ) we have (5.21) sup

x∈[δ j -ν,δ j +ν]\{δ j } µ j (x) ≤ Cr ν ε (log n t ) β+ In order to estimate the second probability term in (5.23), let us introduce the event F (n t ) := B(n t ) ∩ C(n t ) ∩ D(n t ) ∩ E(n t ) ∩ E * (n t ) ∩ I(n t ) ∩ H δ ℓ t ≤ t < H δ ℓ t +ν .

Observe that the preliminary results obtained in Section 3 together with Theorem 1, Proposition 3 and Lemma 6 imply that P(F (n t )) → 1, when t → ∞. Then, we have that lim sup t→∞ P(X t = δ ℓt ; ℓ t = ℓ t(1+ξ) ) is less than lim sup t→∞ P(F (n t ) ; X t = δ ℓt ; ℓ t = ℓ t(1+ξ) ) (5.25)

≤ lim sup t→∞ E 1 F (nt) θn t j=1
1 {Xt =δ ℓ t ; ℓt=ℓ t(1+ξ) =j} .

But on the event F (n t ) ∩ {ℓ t = ℓ t(1+ξ) = j} we know that for all s ∈ [H δ j , t] the walk X s is in the interval [δ j -ν, δ j + ν] . Indeed, on the event B(n t )∩C(n t )∩I(n t ) we know that once the position δ j + ν is reached then within a time n 1/α t / log n t = o(t), when t → ∞, the position δ j+1 is reached, which would contradict the fact that ℓ t(1+ξ) = j. Hence, we obtain, for all j ∈ N, P F (n t ) ; j ≤ θ nt ; X t = δ ℓt ; ℓ t = ℓ t(1+ξ) = j (5.26) ≤ E 1 {j≤θn t } 1 D(nt)∩E(nt) sup s∈[0,t] P δ j τ,|δ j -ν,δ j +ν| (X s = δ j ) ≤ Cn , where we used (5.22) on the event D(n t ). Considering now that, on the event E(n t ), the number θ nt of deep traps is smaller than C(log n t ) 2α 1-α we get that lim sup t→∞ P(X t = δ ℓt ; ℓ t = ℓ t(1+ξ) ) = 0. (5.27) Then, assembling (5.23), (5.24), (5.27) and letting ξ tends to 0 in (5.24) concludes the proof of Proposition 4.

Proof of Theorem 2. let us fix h > 1 and introduce the event G(t, h) := {X t = δ ℓt } ∩ {X th = δ ℓ th }, (5.28) whose probability tends to 1, when t tends to infinity (it is a consequence of Proposition 4). Then, we easily have {X th = X t } ∩ G(t, h) = {ℓ th = ℓ t } ∩ G(t, h). Therefore, since Proposition 3 implies that lim t→∞ P(ℓ th = ℓ t ) exists, we obtain lim t→∞ P(X th = X t ) = lim 

3. 2 .

 2 The embedded random walk. Let us first introduce the hitting time ζ n of site n for the embedded random walk Y defined by(3.16) 

  d. random variables by construction of O. ZINDY the * -deep traps and shift invariance of the environment, we obtain

Proof of Theorem 1 .

 1 We use (D([0, T ]), M 1 ) (resp. (D([0, T ]), U)) to denote the space D([0, T ]) equipped with the M 1 (resp. uniform) topology. Let us introduce (4.11)

  ) lim t→∞ P(X t = δ ℓt ) = 1.

1 ( 1 -

 11 t→∞ P(ℓ th = ℓ t ) = lim t→∞ P(T ℓt+1 ≥ th) y) -κ dy, which concludes the proof of Theorem 2.

  ≤ j ≤ θ nt . Hence, combining(5.19) and (5.21), we obtain on D(n t )(5.22)P δ j τ,|δ j -ν,δ j +ν| (X s = δ j ) ≤ CnNow, we fix 0 < ξ < 1. Then, let us write that lim inf t→∞ P(X t = δ ℓt ) is larger than lim inf t→∞ P(X t = δ ℓt ; ℓ t = ℓ (1+ξ)t ) = δ ℓt ; ℓ t = ℓ (1+ξ)t ).

	for any 1 -1 2α t	,			∀ s ≥ 0.
	(5.23)	≥ lim inf					
	Considering the first probability term in (5.23), we get using Proposition 3 that it is
	equal to							
	(5.24)	lim inf t→∞	P(H δ ℓ t +1 > (1 + ξ)t) =	sin(απ) π	ξ	∞	dx x α (1 + x)	.
						2 1-α n -1 α t	≤ Cn -1 2α t	,

t→∞ P(ℓ t = ℓ (1+ξ)t ) -lim sup t→∞ P(X t
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