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SCALING LIMIT AND AGING FOR DIRECTED TRAP MODELS

OLIVIER ZINDY

Abstract. We consider one-dimensional directed trap models and suppose that the
trapping times are heavy-tailed. We obtain the inverse of a stable subordinator as
scaling limit and prove an aging phenomenon expressed in terms of the generalized
arcsine law. These results confirm the status of universality described by Ben Arous
and Černý for a large class of graphs.

1. Introduction

What is usually called aging is a dynamical out-of-equilibrium physical phenomenon
observed in disordered systems like spin-glasses at low temperature, defined by the
existence of a limit of a given two-time (usually denoted by tω and tω + t) correlation
function of the system as both times diverge keeping a fixed ratio between them; the
limit should be a non-trivial function of the ratio. It has been extensively studied in
the physics literature, see [11] and therein references.

The trap model is a model of random walk that was first proposed by Bouchaud and
Dean [10, 12] as a toy model for studying this aging phenomenon. In the mathematics
litterature, much attention has recently been given to the trap model, and many aging
result were derived from it, on Z in [16] and [4], on Z

2 in [8], on Z
d (d ≥ 3) in [6], or

on the hypercube in [2, 3]. A comprehensive approach to obtaining aging results for
the trap model in various settings was later developed in [7]. The striking fact is that
these aging results are identical for Z

d, d ≥ 2 and the large complete graph, or the
REM. In other terms, the mean-field results are valid from infinite dimension down
to dimension 2.

The one-dimensional trap model has some specific features that distinguish it from
all other cases. The most useful feature is that we can identify its scaling limit as
an interesting one-dimensional singular diffusion in random environment, see [16],
while the scaling limit for d ≥ 2 is the fractional kinetics process, that is the time
change of a d-dimensional Brownian motion by the inverse of an independent α-stable
subordinator, see [6]. In fact, the universality of the aging phenomenon is a question
about the transient part of relaxation to equilibrium and not necessarily related to
equilibrium questions.

Here, we give an answer to a question of Ben Arous and Černý [5] by studying
the influence of a drift in the one-dimensional trap model. We identify the scaling
limit of the so-called directed trap model with the inverse of an α-stable subordinator
and prove an aging result expressed in terms of the generalized arcsine law, so that it
confirms the status of universality described by Ben Arous and Černý [7]. Moreover,
this extends some results of Monthus [17], who studies the influence of a bias in the
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2 O. ZINDY

high disorder limit (i.e. when α tends to zero with our notations, see (2.2)) using
renormalization arguments. Note that the ideas of the proof developed in this paper
are deduced from a strong comparison with one-dimensional random walks in random
environment in the sub-ballistic regime. Indeed, analogous results are obtained for
this asymptotically equivalent model in [13] and [14].

The rest of the paper is organized as follows. The main results are stated in Section
2. In Section 3, we present some elementary result about the environment, the em-
bedded random walk as well as preliminary estimates, which will be frequently used
throughout the paper. Section 4 and Section 5 are respectively devoted to the proof
of the scaling limit and to the proof of the aging result.

2. Notations and main results

Let us first fix 0 < ε ≤ 1/2. Then, the directed trap model is the nearest-neighbour
continuous-time Markov process X = (Xt)t≥0 given by X0 = 0 and with jump rates

c(x, y) :=

{ (

1
2

+ ε
)

τ−1
x if y = x+ 1,

(

1
2
− ε

)

τ−1
x if y = x− 1,

(2.1)

and zero otherwise, where τ = (τx)x∈Z is a family of positive i.i.d. heavy-tailed random
variables. More precisely, we suppose that there exists α ∈ (0, 1) such that

lim
u→∞

uα
P(τx ≥ u) = 1.(2.2)

In particular, this implies E [τx] = +∞. Sometimes τ is called random environment
of traps. The Markov process Xt spends at site x an exponentially distributed time
of mean τx, and then jumps to the right with probability p = pε := (1

2
+ ε) and to the

left with probability q = qε := (1
2
− ε). Therefore, X is a time change of a discrete-

time biased random walk on Z. More precisely, we define the clock process and the
embedded random walk associated with X as follows.

Definition 1. Let S(0) := 0 and let S(k) be the time of the k-th jump of X, for

k ∈ N
∗. For s ∈ R+, we define S(s) := S(⌊s⌋) and call S the clock process. Define the

embedded discrete-time random walk (Yn)n≥0 by Yn := Xt for S(n) ≤ t < S(n + 1).
Then obviously, (Yn)n≥0 is a biased random walk on Z.

Observe that (Yn)n≥0 satisfies P (Yn+1 = Yn + 1) = 1
2

+ ε = 1 − P (Yn+1 = Yn − 1),
for all n ≥ 0. Therefore, (Yn)n≥0 is transient to +∞ and the law of large numbers
implies that, P-almost surely,

Yn

n
−→ vε := 2ε > 0, n→ ∞.(2.3)

Furthermore, it follows from the definition of X that the clock process can be written

S(k) =
k−1
∑

i=0

τYi
ei, k ≥ 1,(2.4)

where (ei)i≥0 is a family of i.i.d. mean-one exponentially distributed random variables.
We always suppose that the ei’s are defined in this way. Then, the process (Xt)t≥0

satisfies

Xt = YS−1(t), ∀ t ∈ R+,(2.5)
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where the right-continuous inverse of an increasing function φ is defined by φ−1(t) :=
inf{u ≥ 0 : φ(u) > t}.

Now, let us fix T > 0 and denote by D([0, T ]) the space of càdlàg functions from

[0, T ] to R. Moreover, let X
(N)
t be the sequence of elements of D([0, T ]) defined by

(2.6) X
(N)
t :=

XtN

Nα
, 0 ≤ t ≤ T.

Then, the scaling limit result can be stated as follows.

Theorem 1. The distribution of the process (X
(N)
t ; 0 ≤ t ≤ T ) converges weakly

to the distribution of (v#
ε V

−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the uni-

form topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator and v#
ε :=

sin(απ)
απ

vα
ε = sin(απ)

απ
(2ε)α.

Although this result can be compared with the limit in [6], we do not obtain the
fractional kinetics process. This difference can be explained by recalling that the
fractional kinetics process is the time change of a Brownian motion by the inverse of
an independent α-stable subordinator while our embedded random walk satisfies the
law of large numbers with positive speed, see (2.3). Furthermore, observe that the
case ε = 1/2 is trivial; indeed Y is deterministic, vε = 1 and the clock process, which

can be written S(k) =
∑k−1

i=0 τiei, is just a sum of i.i.d. heavy-tailed random variables.
Now let us state the second main result, concerning the aging phenomenon.

Theorem 2. For all h > 1, we have

(2.7) lim
t→∞

P(Xth = Xt) =
sin(απ)

π

∫ 1/h

0

yα−1(1 − y)−α dy.

Remark 1. As in [8], we think that it is possible to prove a sub-aging result for the

correlation function given by P(Xs = Xtω ; ∀ tω ≤ s ≤ tω + t). Note that, in [9], Bertin

and Bouchaud study the average position of the random walk at time tω + t given that

a small bias h is applied at time tω. They found several scaling regime depending on

the relative value of t, tω and h.

In the following, C denotes a constant large enough, whose value can change from
line to line.

3. Preliminary estimates

In this section, we list some properties of the environment τ and of the embedded
walk Y as well as preliminary results.

3.1. The environment. Let us define the critical depth for the first n traps of the
environment by

(3.1) g(n) :=
n1/α

(log n)
2

1−α

.

Then, we can introduce the notion of deep traps as follows:

δ1 = δ1(n) := inf{x ≥ 0 : τx ≥ g(n)},(3.2)

δj = δj(n) := inf{x > δj−1 : τx ≥ g(n)}, j ≥ 2.(3.3)
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The number of such deep traps before site n will be denoted by θn and defined by

(3.4) θn := sup{j ≥ 0 : δj ≤ n},

where δ0 := 0. Now, let us define ϕ(n) := P(τ1 ≥ g(n)). We introduce the following
series of events, which will occur with high probability, when n goes to infinity:

E1(n) :=

{

nϕ(n)
(

1 −
1

log n

)

≤ θn ≤ nϕ(n)
(

1 +
1

log n

)

}

,(3.5)

E2(n) :=

{

δ1 ∧ min
1≤j≤θn−1

(δj+1 − δj) ≥ ρ(n)

}

,(3.6)

E3(n) :=

{

max
−ν(n)≤x≤0

τx < g(n)

}

,(3.7)

where ρ(n) := nκ with 0 < κ < 1/3 and ν(n) := ⌊(log n)1+γ⌋ with 0 < γ < 1.

In words, E1(n) requires that the number of deep traps is not too large, E2(n) requires
that the distance between two deep traps is large enough and E3(n) will ensure that
the time spent by X on Z− is negligible.

Lemma 1. Let E(n) := E1(n) ∩ E2(n) ∩ E3(n), then we have

(3.8) lim
n→∞

P(E(n)) = 1.

Proof. Note that the number of traps higher than g(n) in the first n traps is a binomial
with parameter (n, ϕ(n)). Then, recalling (2.2), the proof of Lemma 1 is easy and left
to the reader. �

Since we want to consider intervals of size 2ν(n) around the δj ’s that are disjoint,
we introduce now a subsequence of the deep traps defined above. These ∗-deep traps

are defined as follows:

δ∗1 = δ∗1(n) := inf{x ≥ ν(n) : τx ≥ g(n)},(3.9)

δ∗j = δ∗j (n) := inf{x > δ∗j−1 + 2ν(n) : τx ≥ g(n)}, j ≥ 2.(3.10)

The number of such ∗-deep traps before site n will be denoted by θ∗n and defined by

(3.11) θ∗n := sup{j ≥ 0 : δ∗j ≤ n}.

For any ν ∈ N
∗ and any x ∈ Z, let us denote by Bν(x) the interval [x− ν, x+ ν]. Ob-

serve that the intervals (Bν(n)(δ
∗
j ))1≤j≤θ∗n will be made of independent and identically

distributed portions of environment τ (up to some translation).

The following lemma tells us that the ∗-deep traps coincide with the sequence of
deep traps with an overwhelming probability when n goes to infinity.

Lemma 2. If E∗(n) := {θn = θ∗n}, then we have

(3.12) lim
n→∞

P(E∗(n)) = 1.

Proof. Recall first that the ∗-deep traps constitute a subsequence of the deep traps.
Furthermore, we have E2(n) ⊂ E∗(n). Therefore, Lemma 1 implies Lemma 2. �
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3.2. The embedded random walk. Let us first introduce ζn := inf{k ≥ 0 : Yk =
n}, the hitting time of site n ∈ N for the embedded random walk Y. Observe that since
Y is transient, we have ζn <∞, for all n almost surely. To control the behavior of Y ,
we consider the following fact, which is a classical result for biased random walks.

Fact 1. Let A(n) := {min1≤i<j≤ζn(Yj − Yi) > −ν(n)}, then we have

(3.13) lim
n→∞

P(A(n)) = 1.

Observe that, on A(n), each time X (or Y ) hits a site x, it will necessarily exit
Bν(n)(x) on the right.

3.3. Between deep traps. Here, we prove that the time spent between deep trap is
negligible.

Lemma 3. Let us define I(n) :=
{

∑ζn

i=0 τYi
ei1{τYi

<g(n)} <
n1/α

log n

}

. Then, we have

(3.14) P (I(n)) → 1, n→ ∞.

Proof. Observe first that, on A(n), we have infi≤ζn Yi ≥ −ν(n) and that Fact 1 implies
P (I(n)c) = P (I(n)c ∩ A(n))+o(1). Therefore, using Markov inequality, we only have
to prove that

(3.15) E

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

= o
( n1/α

log n

)

, n→ ∞.

After reaching x ∈ [−ν(n), n] (if x is reached), the process Y visits x a geometrically
distributed number of times before hitting n. The parameter of this geometrical vari-
able is equal to q + p ψ(x, n), where ψ(x, n) denotes the probability that Y starting
at x+ 1 hits x before n. An easy computation yields that

(3.16) ψ(x, n) = r
1 − rn−x−1

1 − rn−x
,

where r = rε := qε/pε < 1. We will denote by G(x, n) the mean of this geometrical
random variable. Moreover, let us use respectively Pτ (·) and Eτ [·] to denote the
conditional probability and the conditional expectation with respect to τ. Recalling
that each visit takes an exponential time of mean τx, we obtain

(3.17) Eτ

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

≤
n

∑

x=−ν(n)

τx(1 +G(x, n))1{τx<g(n)}.

Since x 7→ G(x, n) is decreasing and G(−ν(n), n) → (1 − vε)/vε, when n → ∞, we
get that the expectation in (3.17) is, for all large n, less than CnE [τ0 ; τ0 < g(n)] =
CnE [τ0 ; 1 < τ0 < g(n)]+O(n). Now, let us fix 0 < ρ < 1 and introduce ω = ω(n) :=
inf{j ≥ 0 : ρ ≤ ρjg(n) < 1}. Then, we get

E [τ0 ; 1 < τ0 < g(n)] ≤ g(n)

ω−1
∑

j=0

ρj
P(τ0 > ρj+1g(n))(3.18)

≤ Cg(n)1−α
ω−1
∑

j=0

ρ−αj ≤ Cg(n)1−α,
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where we used the fact that (2.2) yields that there exists 0 < C < ∞ such that
P(τx ≥ u) ≤ Cu−α, for all u > 0. Therefore, recalling (3.17), the fact that ng(n)1−α is
a o(n1/α/ logn) concludes the proof of Lemma 3. �

3.4. Occupation time of a deep trap. Since ζy <∞ for all y ∈ N, we can properly
define for x ∈ N,

Tx = Tx(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi=x},(3.19)

T x = T x(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi∈Bν(n)(x)}.(3.20)

Moreover, let us introduce P
x and E

x the probability and the expectation associated
with the process starting at site x. For convenience of notations, we write λn := λ/n1/α

for any λ > 0. Then we have the following estimate for the Laplace transforms of Tx

and T x.

Lemma 4. For all x ∈ N and all λ > 0, we have

(3.21) E
x
[

1 − e−λnTx |τx ≥ g(n)
]

∼
P(τx ≥ g(n))−1

n

απ

sin(απ)
v−α

ε λα, n→ ∞,

and the same result holds with Tx replaced by T x.

Proof. Let us first write

(3.22) E
x
[

(1 − e−λnTx)1{τx≥g(n)}

]

= E

[

E
x
τ [1 − e−λnTx ]1{τx≥g(n)}

]

.

Starting at site x, the process Y visits x a geometrically distributed number of times
before reaching x+ν(n). An easy computation yields that the mean of this geometrical
variable, denoted by G(x, x+ ν(n)) satisfies 1 +G(x, x+ ν(n)) → v−1

ε , when n→ ∞.
Therefore, recalling that each visit takes an exponential time of mean τx, we obtain

(3.23) E
x
τ [e

−λnTx ] =
1

1 + λnv−1
ε τx

+ o(n−1/α), n→ ∞.

Now, using an integration by part, we get that E
x
[

(1− e−λnTx)1{τx≥g(n)}

]

is equal to

(3.24)
[

−
λnv

−1
ε z

1 + λnv−1
ε z

P(τx ≥ z)
]∞

g(n)
+

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

P(τx ≥ z) dz + o(n−1/α).

The first term is lower than Cλng(n)1−α = Cλα
n(λng(n))1−α = o(n−1), since α < 1.

For the second term, using (2.2), we can estimate P(τx ≥ z) by (1 − η)z−α ≤ P(τx ≥
z) ≤ (1 + η)z−α, for any η, when n is sufficiently large (recall that g(n) → ∞, when
n→ ∞). Hence, we are lead to compute the integral

(3.25)

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

z−α dz = (λnv
−1
ε )α

∫ 1

λnv−1
ε g(n)

1+λnv−1
ε g(n)

y−α(1 − y)α dy,

(making the change of variables y = λnv
−1
ε z/(1 + λnv

−1
ε z)). For α < 1 this integral

converges, when n → ∞, to Γ(α + 1)Γ(−α + 1) = πα
sin(πα)

, which concludes the proof

of (3.21).
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To prove that the result is true with T x in place of Tx, observe first that P(τx ≥
g(n); maxy∈Bν(n)(x)\{x} τy ≥ g(n)) = o(n−1), when n→ ∞, which implies

(3.26) E
x
[

(1 − e−λnT x)1{τx≥g(n)}

]

= E
x
[

(1 − e−λnTx)1E4(n)

]

+ o(n−1),

where E4(n) := {τx ≥ g(n)} ∩ {maxy∈Bν(n)(x)\{x} τy < g(n)}. Then, let us introduce

T̃x :=
∑ζx+ν(n)

0 τYi
ei1{Yi∈Bν(n)(x)\{x}} = T x − Tx and write

(3.27) E
x
[

(e−λnTx − e−λnT x)1E4(n)

]

≤ λnE
x
[

T̃x1E4(n)

]

,

where we used the fact that 1− e−x ≤ x, for any x ≥ 0. Using the same arguments as
in the proof of Lemma 3, we can prove that

(3.28) E
x
τ

[

T̃x1E4(n)

]

≤ 1{τx≥g(n)}

∑

y∈Bν(n)(x)\{x}

τy(1 +G(y, x+ ν(n))1{τy<g(n)}.

Using the fact that the previous sum depends only on site y in Bν(n)(x) which are
different from x, together with the same arguments as in the proof of Lemma 3, we get

E
x
[

T̃x1E4(n)

]

≤ Cν(n)g(n)1−α
P(τx ≥ g(n)) ≤ Cν(n)g(n)1−2α. Therefore, we obtain

that the left-hand term in (3.27) is a o(n−1), which together with (3.26) concludes the
proof of Lemma 4. �

Remark 2. For any t > 0, let us first introduce nt := tκ log log t and ν(nt) :=
C ′ log log nt. We consider

T ∗(x) = T ∗(x, nt) :=

ζx+ν(nt)
∑

0

τYi
ei1{Yi∈[x−ν(nt), x+ν(nt)]}, x ∈ Z.(3.29)

Then, observe that the same arguments as in the proof of Lemma 4 yield that, for all

λ > 0, we have

(3.30) E
x
[

1 − e−λ T∗(x)
t |τx ≥ g(nt)

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞.

4. Proof of Theorem 1

Let us first define Hx := inf{t ≥ 0 : Xt = x}, for any x ∈ N. Now, fix T > 0, and

let H
(N)
t be the sequence of elements of D([0, T ]) defined by

(4.1) H
(N)
t :=

H⌊tN⌋

N1/α
, 0 ≤ t ≤ T.

Proposition 1. The distribution of the process (H
(N)
t ; 0 ≤ t ≤ T ) converges weakly

to the distribution of (v#
ε )−1/α Vα(t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the M1-

Skorokhod topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator.

Proof. Let 0 = u0 < u1 < · · · < uK ≤ T and βi > 0 for i ∈ {1, . . . , K}. We will
check the convergence of the finite-dimensional distributions of H by proving the

convergence of E[exp{−
∑K

i=1 βi(H
(N)
ui −H

(N)
ui−1)}].
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Observe first that since for any x ∈ Z, we have P(maxy∈Bν(TN)(x) τy > g(TN)) =

o(1), when N → ∞, Lemma 3 yields

(4.2) P

(

ζ⌊uKN⌋
∑

i=0

τYi
ei1{Yi∈Bν(TN)(⌊uK−1N⌋)} < CN1/α(logN)−1

)

→ 1, N → ∞.

This implies that the time spent by X in Bν(TN)(⌊uK−1N⌋) is negligible. Recalling
that on A(TN), the process never backtracks more than ν(TN), this allows us to
decompose its trajectory in two main parts that are disjoint: the first between 0
and H⌊uK−1N⌋−ν(TN), the second between H⌊uK−1N⌋ and H⌊uKN⌋ (the time spent be-
tween H⌊uK−1N⌋−ν(TN) and H⌊uK−1N⌋ being negligible). More precisely, on A(TN) the
process between H⌊uK−1N⌋ and H⌊uKN⌋ as the same law as the same process start-
ing at site ⌊uK−1N⌋, reflected at ⌊uK−1N⌋ − ν(TN) and independent of (Xt; ≤ t ≤

H⌊uK−1N⌋−ν(TN)). Therefore, recalling Fact 1, the expectation E[exp{−
∑K

i=1 βi(H
(N)
ui −

H
(N)
ui−1)}] can be written

(4.3) E

[

exp
{

−

K−1
∑

i=1

βi(H
(N)
ui

−H(N)
ui−1

)
}

]

E
⌊uK−1N⌋

[

exp
{

−βKN
−1/αH⌊uKN⌋

}

]

+o(1).

Using the strong markov property at H⌊uK−1N⌋ and the shift invariance of the envi-
ronment, we just have to prove that

(4.4) E

[

e−βKN−1/αHN′

]

−→ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

, N → ∞,

where N ′ := ⌊uKN⌋−⌊uK−1N⌋ ∼ (uK−uK−1)N, when N → ∞. Indeed, iterating this
procedure K−2 times will give the convergence of the finite-dimensional distributions.

Recalling Lemma 1, Fact 1 and Lemma 3, we obtain

E

[

e−βKN−1/αHN′

]

= E

[

1E(N ′)∩A(N ′)∩I(N ′)e
−βKN−1/αHN′

]

+ o(1)

= E

[

e−βKN−1/α
∑θ

N′
i=1 Tδi(N

′)

]

+ o(1)

= E

[

1E∗(N ′)e
−βKN−1/α

∑
θ∗
N′

i=1 Tδ∗
i
(N′)

]

+ o(1).(4.5)

Furthermore, since on E∗(N ′)∩A(N ′) the process never backtracks before δ∗i − ν(N ′)
after hitting δ∗i for 1 ≤ i ≤ θ∗N ′ , we get, by applying the strong markov property at
the stopping times Hδθ∗

N′
, . . . , Hδ∗1

,

E

[

e−βKN−1/αHN′

]

= E

[

1E∗(N ′)∩A(N ′)

θ∗
N′

∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1)

≤ E

[ θN′
∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1),(4.6)

where θN ′ := N ′ϕ(N ′)
(

1 − 1
log N ′

)

and with E
x
τ,|y denoting the law of the process in

the environment τ, starting at x and reflected at site y. Then, applying the Markov
property (for the environment) successively at times δθN′−1 + ν(N ′), . . . , δ1 + ν(N ′),

and observing that the
(

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

] )

1≤j≤θN′

are i.i.d. random variables
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by definition, we obtain that

E

[

e−βKN−1/αHN′

]

≤ E

[

E
δ∗1
τ,|δ∗1−ν

[

e
−βKN−1/αTδ∗

1

]]θN′

+ o(1).(4.7)

Since an easy computations yields that P(δ∗1 6= δ1) = P(max0≤y≤ν(N ′) τy ≥ g(N ′)) =
o((N ′ϕ(N ′))−1) and P(H−ν(N ′) < Hν(N ′)) = o((N ′ϕ(N ′))−1) when N ′ → ∞ (or equiv-
alently when N → ∞), we get

E

[

e−βKN−1/αHN′

]

≤ E
x
[

e−βKN−1/αTx|τx ≥ g(N ′)
]θN′

+ o(1).(4.8)

Now, using Lemma 4, this yields

lim sup
N→∞

E

[

e−βKN−1/αHN′

]

≤ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

.(4.9)

Moreover, we can similarly obtain the same lower bound, which implies (4.4) and
concludes the proof of the convergence of the finite-dimensional distributions.

For the tightness, the arguments are exactly the same as in [1]. We refer to section
5 of [1] for a detailed discussion. �

Proof of Theorem 1. If we define X
(N)

t := sup0≤s≤tX
(N)
s for any t ≥ 0, then

Proposition 1 implies that the distribution of the process (X
(N)

t ; 0 ≤ t ≤ T ) converges
weakly to the distribution of (v#

ε V
−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the

uniform topology. Then, Theorem 1 will be a consequence of the fact that

(4.10) P

(

sup
{

|X
(N)
t −X

(N)

t |; 0 ≤ t ≤ T
}

> γ
)

−→ 0, N → ∞,

for any γ > 0. To prove (4.10), recall first that Proposition 1 implies that P(HNα log N >
TN) → 1, when N → ∞, such that we can consider sup{|Xt − X t|; 0 ≤ t ≤
H⌊Nα log N⌋}, which by definition is bounded by max{|Yk − Y k|; 0 ≤ k ≤ ζ⌊Nα log N⌋}.
Moreover, observe that on A(⌊Nα logN⌋), whose probability tends to 1 when N goes
to infinity, this quantity is less than ν(⌊Nα logN⌋) = o(Nα), when N → ∞. This
yields (4.10) and concludes the proof of Theorem 1. �

5. Proof of Theorem 2

To bound the number of traps the random walk can cross before time t let us
consider nt := tκ log log t and observe that Theorem 1 implies that P(Xt ≥ nt) → 0,
t → ∞. Moreover, since we need more concentration properties for the random walk
in the neighborhood of the δj ’s, we introduce ν = ν(nt) := C ′ log lognt, for some C ′

large enough which will be chosen later. For convenience of notations we will use ν,
ν and δj in place of ν(nt), ν(nt) and δj(nt) throughout this section.

Then, we define the sequence of random times (T ∗
j )j≥1 as follows: conditioning on

τ, (T ∗
j )j≥1 is defined as an independent sequence of random variables with the law of

Hδ∗j +ν in the environment τ starting at site δ∗j and reflected at δ∗j − ν. Hence, under

the annealed law P, the T ∗
j ’s are are i.i.d. since the Bν(δ

∗
j )’s are i.i.d. by definition.

Then, we give an analogous result to the extension of Dynkin’s theorem proved in [14]
(see Proposition 1 in [14]).
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Proposition 2. For any t > 0, let ℓ∗t := sup{j ≥ 0 : T ∗
1 + · · · + T ∗

j ≤ t}. Then, for

all 0 ≤ x1 < x2 ≤ 1, we have

(5.1) lim
t→∞

P(t(1 − x2) ≤ T ∗
1 + · · ·+ T ∗

ℓ∗t
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx.

For all 0 ≤ x1 < x2, we have

(5.2) lim
t→∞

P(t(1 + x1) ≤ T ∗
1 + · · · + T ∗

ℓ∗t +1 ≤ t(1 + x2)) =
sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
.

Proof. Observe first that an easy computation yields that P
x(Hx−ν < ∞) = O(rν

ε ),

when t → ∞ (where rε := qε/pε < 1). Moreover, we have r
ν(nt)
ε = o((tαϕ(nt))

−1).
Therefore, Remark 2 yields

(5.3) E

[

1 − e−λ
T∗
1
t

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞.

Then, the arguments are exactly the same as in the proof of Proposition 1 in [14].
Observe that this result would exactly be Dynkin’s theorem (see Feller, vol. II, [15], p.
472) if the sequence (T ∗

j )j≥1 was an independent sequence of random variables in the
domain of attraction of a stable law of index α. Here, this sequence depends implicitly
on the time t, since the ∗-deep traps are defined from the critical depth g(nt). �

Recalling Lemma 3, we will now prove that the results of Proposition 2 are still
true if we consider, in addition, the inter-arrival times between deep traps. Before,
let us define the notion of inter-arrival times for any 0 ≤ x < y:

(5.4) H(x, y) := inf{t ≥ 0 : XHx+t = y}.

Proposition 3. For any t > 0, let ℓt := sup{j ≥ 0 : Hδj
≤ t}. Then, we have

(5.5) lim
t→∞

P(Hδℓt
≤ t < Hδℓt

+ν) = 1.

For all 0 ≤ x1 < x2 ≤ 1, we have

(5.6) lim
t→∞

P(t(1 − x2) ≤ Hδℓt
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx.

For all 0 ≤ x1 < x2, we have

(5.7) lim
t→∞

P(t(1 + x1) ≤ Hδℓt+1
≤ t(1 + x2)) =

sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
.

Proof. We first need to prove that after hitting δj + ν, the particle does not backtrack
more than ν. We detail this result with the following lemma.

Lemma 5. Let us define B(nt) := A(nt) ∩
⋂θnt

j=1{H(δj + ν, δj + ν) < H(δj + ν, δj)}.
Then, we have

(5.8) lim
t→∞

P (B(nt)) = 1.

Proof. Observe first that Fact 1 says that P (A(nt)) tends to one. Recalling that on
E(nt)∩E∗(nt), whose probability tends to 1 when t tends to infinity (by Lemma 1 and
Lemma 2), the intervals Bν(δj)’s are i.i.d. and that the number of traps is bounded

by C(log nt)
2α

1−α , it is sufficient to prove that

(5.9) P(ζ−ν <∞) = o((lognt)
− 2α

1−α ), t→ ∞.



DIRECTED TRAP MODELS 11

Since we have P(ζ−ν <∞) ≤ Crν
ε , we obtain (5.9) and conclude the proof of Lemma

5 by choosing C ′ larger than −2α/(1 − α) log rε. �

Let us introduce C(nt) := {Xt ≤ nt}, whose probability tends to one (recall The-
orem 1). Now, to prove Proposition 3, observe that on E∗(nt) ∩ A(nt), the random
times (H(δj , δj +ν))1≤j≤θ∗nt

have the same law as the random times (T ∗
j )1≤j≤θ∗nt

defined

previously. If we define ℓ̃t := sup{j ≥ 0 : H(δ1, δ1 +ν)+ · · ·+H(δj, δj +ν) ≤ t}, then,
using Proposition 2, Lemma 2 and Fact 1, we get that the result of Proposition 2 is
true with (H(δj, δj + ν))1≤j≤θ∗nt

and ℓ̃t in place of (T ∗
j )1≤j≤θ∗nt

and ℓ∗t . Now, recalling

Lemma 3 and since n
1/α
t / lognt = o(t), when t→ ∞, we obtain that

lim inf
t→∞

P(ℓ̃t = ℓt − 1 ; Hδℓt
≤ t < Hδℓt

+ν)

≥ lim inf
t→∞

P(I(nt) ; B(nt) ; C(nt) ; |t− (H(δ1, δ1 + ν) + · · · +H(δℓ̃t
, δℓ̃t

+ ν))| ≥ ξt),

for all ξ > 0. Thus, using Lemma 3, Lemma 5, Proposition 2 (for ℓ̃t and (H(δj, δj +
ν))1≤j≤θ∗nt

) and letting ξ tends to 0, we get that

(5.10) lim
t→∞

P(ℓ̃t = ℓt − 1 ; Hδℓt
≤ t < Hδℓt

+ν) = 1.

We conclude the proof by the same type of arguments. �

To complete the proof of Theorem 2, we will prove the following localization result,
which means that the particle is, with an overwhelming probability, in the last visited
deep trap.

Proposition 4. We have

(5.11) lim
t→∞

P(Xt = δℓt) = 1.

Proof. Now, for any deep trap δj , let us denote by µj the invariant measure associated
with the random walk on [δj − ν, δj + ν] reflected at sites δj − ν and δj + ν and
normalized such that µj(δj) = 1. Clearly, µj is the reversible measure given, for any
δj − ν < x < δj + ν, by

µj(x) = rδ−x
ε

τx
τδj

.(5.12)

Since the random walk is reflected at sites δj − ν and δj + ν, we have µj(δj − ν) ≤
τδj−ν/τδj

and µj(δj − ν) ≤ rν
ε τδj+ν/τδj

. Moreover, since µj is an invariant measure and
since µj(δj) = 1, we have, for any x ∈ [δj − ν, δj + ν] and all s ≥ 0,

(5.13) P
δj

τ,|δj−ν,δj+ν|(Xs = x) ≤ µj(x).

Furthermore, let us introduce the event

(5.14) D(nt) :=

θnt
⋂

j=1

{

max
x∈Bν(δj)\{δj}

τx < (log nt)
β
}

with β > 1
α
( 2α

1−α
+ 1 + γ). Observe that the probability of D(nt) tends to one, when

t tends to infinity. Indeed, since the number of traps is less than C(log nt)
2α

1−α , and
recalling that the number of sites contained in the Bν(δj)’s is less than 2ν (with



12 O. ZINDY

ν = ν(nt) = (lognt)
1+γ), this fact is just a consequence of (2.2). Recalling (5.12),

observe that on D(nt), we have

(5.15) µj |[δj−ν,δj+ν]\{δj}
≤ Crν

ε (lognt)
β+ 2

1−α n
− 1

α
t ≤ Cn

− 1
2α

t ,

for any 1 ≤ j ≤ θnt . Hence, combining (5.13) and (5.15), we obtain on D(nt)

(5.16) P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj) ≤ Cn
− 1

2α
t , ∀ s ≥ 0.

Now, we fix 0 < ξ < 1. Then, let us write that lim inft→∞ P(Xt = δℓt) is larger than

lim inf
t→∞

P(Xt = δℓt ; ℓt = ℓ(1+ξ)t)(5.17)

≥ lim inf
t→∞

P(ℓt = ℓ(1+ξ)t) − lim sup
t→∞

P(Xt 6= δℓt ; ℓt = ℓ(1+ξ)t).

Considering the first term, we get using Proposition 3 that it is equal to

lim inf
t→∞

P(Hδℓt+1
> (1 + ξ)t) =

sin(απ)

π

∫ ∞

ξ

dx

xα(1 + x)
.(5.18)

In order to estimate the second term, let us introduce the event

F(nt) := B(nt) ∩ C(nt) ∩ D(nt) ∩ E(nt) ∩ E∗(nt) ∩ I(nt) ∩
{

Hδℓt
≤ t < Hδℓt

+ν

}

.

Observe that the preliminary results obtained in Section 3 together with Theorem 1,
Proposition 3 and Lemma 5 imply that P(F(nt)) → 1, when t → ∞. Then, we have
that lim supt→∞ P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) is less than

lim sup
t→∞

P(F(nt) ; Xt 6= δℓt ; ℓt = ℓt(1+ξ))(5.19)

≤ lim sup
t→∞

E

[

1F(nt)

θnt
∑

j=1

1{Xt 6=δℓt
; ℓt=ℓt(1+ξ)=j}

]

.

But on the event F(nt) ∩ {ℓt = ℓt(1+ξ) = j} we know that for all s ∈ [Hδj
, t] the walk

Xs is in the interval [δj − ν, δj + ν] . Indeed, on the event B(nt)∩C(nt)∩I(nt) we know

that once the position δj + ν is reached then within a time n
1/α
t / lognt = o(t), when

t → ∞, the position δj+1 is reached which would contradict the fact that ℓt(1+ξ) = j.
Hence, we obtain, for all j ∈ N,

P
(

F(nt) ; j ≤ θnt ; Xt 6= δℓt ; ℓt = ℓt(1+ξ) = j
)

(5.20)

≤ E

[

1{j≤θnt}
1D(nt)∩E(nt) sup

s∈[0,t]

P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj)
]

≤ Cn
− 1

2α
t ,

where we used (5.16) on the event D(nt). Considering now that, on the event E(nt),

the number θnt of deep traps is smaller than C(lognt)
2α

1−α we get that

lim sup
t→∞

P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) = 0.(5.21)

Then, assembling (5.17), (5.18), (5.21) and letting ξ tends to 0 in (5.18) concludes
the proof of Proposition 4. �

Proof of Theorem 2. let us fix h > 1 and introduce the event

G(t, h) := {Xt = δℓt} ∩ {Xth = δℓth
},(5.22)
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whose probability tends to 1, when t tends to infinity (it is a consequence of Proposi-
tion 4). Then, we easily have {Xth = Xt} ∩ G(t, h) = {ℓth = ℓt} ∩ G(t, h). Therefore,
since Proposition 3 implies that limt→∞ P(ℓth = ℓt) exists, we obtain

lim
t→∞

P(Xth = Xt) = lim
t→∞

P(ℓth = ℓt) = lim
t→∞

P(Tℓt+1 ≥ th)(5.23)

=
sin(απ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy,

which concludes the proof of Theorem 2. �
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