
HAL Id: hal-00196328
https://hal.science/hal-00196328

Submitted on 31 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morphological diversity and sparsity in blind source
separation

J. Bobin, Yassir Moudden, Jalal M. Fadili, Jean-Luc Starck

To cite this version:
J. Bobin, Yassir Moudden, Jalal M. Fadili, Jean-Luc Starck. Morphological diversity and sparsity
in blind source separation. 7th International Conference on Independent Component Analysis and
Signal Separation ICA’07, 2007, London, United Kingdom. pp.349-356, �10.1007/978-3-540-74494-
8_44�. �hal-00196328�

https://hal.science/hal-00196328
https://hal.archives-ouvertes.fr


Morphological diversity and sparsity in blind
source separation

J.Bobin1, Y.Moudden1, J.Fadili2 and J-L.Starck1

1 jerome.bobin@cea.fr, ymoudden@cea.fr, jstarck@cea.fr -
CEA-DAPNIA/SEDI, Service d’Astrophysique,

CEA/Saclay, 91191 Gif sur Yvette, France
2 jalal.fadili@greyc.ensicaen.fr - GREYC CNRS UMR 6072, Image Processing

Group, ENSICAEN 14050, Caen Cedex, France

Abstract. This paper describes a new blind source separation method
for instantaneous linear mixtures. This new method coined GMCA (Gen-
eralized Morphological Component Analysis) relies on morphological di-
versity. It provides new insights on the use of sparsity for blind source
separation in a noisy environment. GMCA takes advantage of the sparse
representation of structured data in large overcomplete signal dictionar-
ies to separate sources based on their morphology. In this paper, we
define morphological diversity and focus on its ability to be a helpful
source of diversity between the signals we wish to separate. We intro-
duce the blind GMCA algorithm and we show that it leads to good re-
sults in the overdetermined blind source separation problem from noisy
mixtures. Both theoretical and algorithmic comparisons between mor-
phological diversity and independence-based separation techniques are
given. The effectiveness of the proposed scheme is confirmed in several
numerical experiments.

Introduction

Hereafter, we address the classical blind source separation problem. The m × t
data matrix X is the concatenation of m mixtures {xi}i=1,··· ,m each of which
being the instantaneous linear combination of n sources {si}i=1,··· ,n stored in
the n× t matrix S:

X = AS + N (1)

where A is the mixing matrix and N models noise or model imperfections. In
this setting, the aim of blind source separation (BSS) techniques is to estimate
both the sources S and the mixing matrix A. BSS is clearly an ill-posed in-
verse problem which requires additional prior information in order to be solved.
Previous work addressing BSS issues clearly emphasized on the need for di-
versity between the sources to be separated. From a statistical point of view,
ICA-like source separation methods use statistical independence (more precisely
mutual information) as a kind of “diversity measure” to distinguish between the
sources. In [1], the authors proved that maximizing any measure of independence
is equivalent to minimizing mutual information. ICA algorithms are then devised



according to particular approximations of mutual information.
Recently, sparsity has raised interest in a wide range of applications. Briefly,
a signal is said to be sparse in representation Φ if most of the entries of α
such that x = αΦ are almost zero and only a few have significant amplitudes.
Sparsity-based BSS methods have recently been devised. In [2], a BSS algorithm
is described in which it is taken advantage of sparsity to enhance the diversity
between independent sources. Several studies (see [3] and references therein)
have explored the extreme sparse case as they considered sources with strictly
disjoint (and thus orthogonal) supports. In Section 1, we define a particular
sparsity-based diversity measure coined morphological diversity. We propose a
new effective BSS algorithm coined GMCA which separates the mixed sources
based on their morphological diversity. In Section 2, numerical experiments are
given showing how GMCA performs well to separate sources from noisy mix-
tures.

1 The GMCA framework

Notations and definitions

Let x be a 1×t signal and Φ a signal dictionary. For the sake of simplicity, we will
first assume that Φ is orthonormal. In this case, x has a unique representation α
in Φ such that x = αΦ readily obtained as α = xΦT . The support S0,Φ (x) of x

in Φ is defined as S0,Φ (x) =
{

t
∣∣∣∣∣α[t]| > 0

}
where α[t] is the t-th entry of α. Let

us also define the δ-support of x in Φ as : Sδ,Φ (x) =
{

t
∣∣∣∣∣α[t]| > δ‖x‖∞

}
. We

then say that two sources s1 and s2 are δ-disjoint in Φ if Sδ,Φ(s1)∩Sδ,Φ(s2) = ∅.
Sources with strictly disjoint supports in Φ are obviously δ-disjoint with δ = 0.

1.1 Generalized Morphological Component Analysis

Sparse coding : Let us first assume that the mixing matrix A is known. In the
GMCA framework, the data are modelled as a linear combination of several
sources as in Equation 1. Furthermore, the sources {si}i=1,··· ,n are assumed
to be the linear combination of so-called morphological components (see [4]) :
si =

∑D
k=1 ϕik. By definition, those morphological components are assumed to be

sparse in different orthonormal bases {Φk}k=1,··· ,D. Based on these assumptions,
the GMCA algorithm endeavors to estimate the sources via the estimation of
those morphological components :

{ϕik} = Arg min
{ϕik}

‖X−AS‖2
2 + 2λ

n∑
i=1

D∑
k=1

‖ϕikΦT
k ‖`1 (2)

In [5], we proposed solving this optimization problem by estimating iteratively
and alternately each multichannel morphological component {ϕik} via a “block-
coordinate”-like algorithm (see [6]). The product AS is then split into n × D



terms. Introducing the data residual Xik = X −
∑

{j,l}6={i,k} aiϕjl, where ai is
the i-th column of A, the morphological components are estimated one at a time
according to : ϕik = Arg minϕik

‖Xik − aiϕik‖2
2 + 2λ‖ϕikΦT

k ‖`1 .
This equation has an exact solution known as soft-thresholding (see [7]). This
sparse decomposition is closely linked to a sparse coding stage as already exposed
in [8].

Dictionary learning : In the previous paragraph, we assumed that the mixing
matrix was known and we showed that estimating the morphological components
(and thus the sources) boils down to a sparse coding step. We consider now
that the morphological components are fixed and we want to learn the mixing
mixing matrix A. This dictionary learning issue has already been addressed by
extensive work for a wide range of applications. Refer to [8] and references therein
for more on that question. Following the same estimation scheme we introduced
previously, we propose to estimate each column of A assuming the morphological
components are fixed as follows: ai = Argminai ‖X −

∑
j 6=i ajsj − aisi‖2

2. This
update clearly leads to a least-squares estimate of the columns of A : ai =(
X−

∑
j 6=i ajsj

)
sT

i /‖si‖2
2.

1.2 The GMCA algorithm for blind source separation :

Owing to the “block-coordinate”-like structure of our optimization scheme, for
a fixed threshold λ, the blind GMCA algorithm estimates alternately the dif-
ferent parameters in the model i.e. the columns of A and the morphological
components. The blind GMCA algorithm is as follows.

1. Set the number of iterations Imax and threshold λ(0)

2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance),

For i = 1, · · · , n
For k = 1, · · · , D
• Compute the residual term r

(h)
ik assuming the current estimates of ϕ{pq}6={ik},

ϕ̃
(h−1)

{pq}6={ik} are fixed:

r
(h)
ik = ãi(h−1)T “

X−
P

{p,q}6={i,k} ãp(h−1)
ϕ̃

(h−1)

{pq}

”
• Estimate the current coefficients of ϕ̃

(h)
ik by Thresholding with threshold λ(h):

α̃
(h)
ik = ∆λ(h)

“
r
(h)
ik ΦT

k

”
• Get the new estimate of ϕik by reconstructing from the selected coefficients α̃

(h)
ik

:
ϕ̃

(h)
ik = α̃

(h)
ik Φk

Update ai assuming ap 6=k(h)
and the morphological components ϕ̃

(h)
pq are fixed :

ãi(h)
= 1

‖s̃
(h)
i ‖22

“
X−

Pn
p 6=i ãp(h−1)

s̃
(h)
p

”
s̃
(h)T

i where s̃
(h)
i =

PD
k=1 ϕ̃

(h)
ik

– Decrease the thresholds λ(h) following a given strategy



Note that the value of λ fixes a certain sparsity level in the sparse coding stage.
When λ is “high”, the sparse coding step will select the most “significant” fea-
tures in the data which are very likely to belong to the true morphological
components. As already introduced in [5] and [7], the threshold λ decreases to-
wards λ(min)

progressively incorporating new features. The purpose of such a
thresholding scheme is twofold : i) it provides numerical stability to the algo-
rithm, ii) it gives robusteness to noise as the morphological components {ϕik}
are first estimated from their most significant coefficients in {Φk}. The sparse
coding step is quite similar to a thresholding-based “denoising”. Handling noisy
mixtures then boils down to fixing the final threshold λmin. Typically, in the
white Gaussian noise case, λmin = 3σ where σ is the noise standard deviation.

1.3 A fast GMCA algorithm :

When Φ is orthogonal : Note that the above GMCA algorithm is a multichannel
extension of MCA (Morphological Component Analysis - see [9, 4]) which has
been devised in the single channel case. In [4], we showed that MCA is likely
to solve the `0 decomposition (and thus the `1 decomposition when the two
problems are equivalent - see [10] and references therein) of sparse signals in the
overcomplete dictionary Φ = [Φ1, · · · ,ΦD]. Nevertheless, in the multichannel
case, this sparse coding step requires the use of D transforms for each of the n
sources leading to a prohibitive computational cost. Interestingly, if we restrict
ourselves to the case where Φ is orthonormal, the problem in Equation 2 becomes
simpler:

ΘS = Arg min
ΘS

‖ΘX −AΘS‖2
2 + 2λ

n∑
i=1

‖ΘS‖`1 (3)

where ΘS = SΦT . The sources and the mixing matrix can be estimated in the
sparse domain Φ which drastically reduces the computational burden. Assuming
that A is nearly orthonormal3 leads to a very simple sparse coding step:

ΘS = ∆λ

(
A†ΘX

)
(4)

where ∆λ (.) is the soft-thresholding operator with threshold λ and A† is the
pseudo-inverse of A. In that setting, estimating A leads straightforwardly to a
simple least-squares estimate :

A = ΘXΘS
T

(
ΘSΘS

T
)−1

(5)

Interestingly, we show in [5] that alternating the updates in Equation 4 and
Equation 5 provides a fixed-point algorithm the convergence condition of which
is the following: ΘS∆λ (ΘS)T =

(
∆λ (ΘS) ∆λ (ΘS)T

)
In [5], we give heuristics supporting the good convergence of our algorithm.

In the same paper, we also show that the same fast blind GMCA algorithm can
be used with non-orthonormal Φ.
3 In practice, even if this assumption is very stringent and seldom true, the algorithm

performs well.



1.4 Morphological diversity

At the beginning of this section we introduced a particular sparsity-based di-
versity measure to distinguish the sources. A classical sparsity-based diversity
measure (see [3]) leads to separate sources with strictly disjoint supports in a
sparsifying representation Φ. Nevertheless, most natural signals seldom have
strictly disjoint supports in most practical dictionaries Φ (e.g. discrete cosine,
wavelets, bandlets ... etc.). In [7], we slightly relaxed this assumption by consid-
ering sources with disjoint supports in an overcomplete signal dictionary made
of a union of orthonormal bases Φ = [Φ1

T ,Φ2
T ]T . In this paper, we introduce

a new sparsity-based diversity measure which relaxes the strict disjoint support
assumption.

The genesis - a deterministic diversity measure : In the next section, we switch
from the deterministic point of view we adopted in the above, and examine
the concept of morphological diversity from the statistical side. In the former
viewpoint, separable sources are such that there exists a sparse representation Φ
in which these signals have δ-disjoint supports. Heuristically, given sources e.g.
images which are “visually” and in that sense morphologically different, there
exists a dictionary Φ and a value of δ for which these sources are sparse and have
δ-disjoint supports. In that setting, the way Φ is chosen specifies which signals
are distinguishable. In practice, in image processing, taking Φ to be the union
of the curvelet frame [11] and the local discrete cosine representation leads to
good separation results for a wide range of images.

From a probabilistic viewpoint : The minimization problem in Equation 2 can
also be interpreted as Maximum A Posteriori estimator of the morphological
components assuming : 1) the coefficients of the morphological components are
generated independently from the same Laplacian law with zero mean and pre-
cision λ , 2) the entries of the mixing matrix are uniformly distributed, 3) the
additive noise follows a Gaussian distribution with zero mean and identity co-
variance matrix. Then what is the meaning of morphological diversity in a sta-
tistical framework? The point is that sources generated independently from the
same iid sparse stochastic process are very likely to have δ-disjoint supports
for some value of δ. For instance, let us assume that the sources s1 and s2

are independently generated from the same Laplacian probability density in the
sparse Φ-domain. Indeed, each entry of the coefficient vector αi=1,2 is drawn
according to : Pα(αi[k]) = µ

2 exp (−µ|αi[k]|). We would like to assess the proba-
bility for such sources to have δ-disjoint supports. Define the proposition Hτ =
“|α1[t?]| = ‖α1‖∞ > τ, |α2[t?]| = ‖α2‖∞ > τ and ∀t 6= t?, |αi=1,2[t]| ≤ τ”.
Hτ states that s1 and s2 have strictly τ -joint supports; otherwise, if Hτ is false
then s1 and s2 have at least τ -disjoint supports. We define P|α|>τ = Pα(|α| > τ)
and P|α|≤τ = Pα(|α| ≤ τ). As the entries of each vector αi=1,2 are indepen-
dently generated from the same probability density function Pα, then P (Hτ )
si such that : P (Hτ ) = T exp (−2µτ) (1 − exp (−µτ))2(T−1). As, in practice,
T = dN � 1, sources generated independently from the same sparse probabil-
ity density function are τ -disjoint. In other words, from a statistical viewpoint,



sparse independent sources are morphologically diverse with very high proba-
bility. In that sense a separation technique based on morphological diversity is
closely related to ICA in a statistical framework.

ICA and GMCA from an algorithmic viewpoint : The fast blind GMCA method
introduced in section 1.3 can be expressed as a fixed-point algorithm the con-
vergence condition of which asks that the matrix ΘS∆λ (ΘS)T be symmetric,
for all values of λ. Interestingly, as summarized in [12], this condition can be
related to the convergence condition of some ICA algorithms which require the
symmetry of matrix E {f(BX)BX} where B is a demixing matrix and f(.) is
the so-called score function. The thresholding operator ∆λ (.) in blind GMCA
is similar in its role to the score function of ICA algorithms. A specific and im-
portant feature of the thresholding ∆λ (.) is that it evolves as the threshold λ
decreases from one iteration to the next of the blind GMCA algorithm. In [5],
we give heuristics showing that this “evolving” score function is likely to avoid
local false mimima of the objective thus providing some numerical stability to
the algorithm. A clear difference lies in the estimation of A instead of a demixing
matrix B; this distinction is important as GMCA is also designed to handle data
in a noisy environment.

2 Results

The last paragraph emphasized on sparsity as the key for very efficient source
separation methods. In this section, we will compare several BSS techniques
with GMCA in an image separation context. We choose 3 different reference
BSS methods: i) JADE : the well-known ICA (Independent Component Analy-
sis) based on fourth-order statistics (see [13]), ii) Relative Newton Algorithm :
the separation technique we already mentioned. This seminal work (see [14])
paved the way for sparsity in Blind Source Separation. In the next experiments,
we used the Relative Newton Algorithm (RNA) on the data transformed by a
basic orthogonal bidimensional wavelet transform (2D-DWT), iii) EFICA : this
separation method improves the FastICA algorithm for sources following gener-
alized Gaussian distributions (which can be well-suited for some sparse signals).
EFICA was also applied after a 2D-DWT of the data where the assumptions
on the source distributions are appropriate. Figure 1 shows the original sources
(top pictures) and the 2 mixtures (bottom pictures). The original sources s1

and s2 have unit variance. The matrix A that mixes the sources is such that
x1 = 0.25s1 + 0.5s2 + n1 and x2 = −0.75s1 + 0.5s2 + n2 where n1 and n2 are
Gaussian noise vectors (with decorrelated samples) such that the SNR equals
10dB. The noise covariance matrix ΓN is diagonal. Figure 2 depicts the behav-
ior of the mixing matrix criterion ΩA = ‖In −PÃ†A‖1 (Ã is the estimate of
A) as the signal-to-noise ratio (SNR in dB) increases. When the mixing ma-
trix is perfectly estimated, ΩA = 0, otherwise ΩA > 0.. First, JADE does not
perform well; it points out the importance of choosing an appropriate diversity
measure to separate the sources. Thus, fourth-order statistics are not well suited



Fig. 1. Left pictures : the 256× 256 source images. Right pictures : two different
mixtures. Gaussian noise is added such that the SNR is equal to 10dB.
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Fig. 2. Evolution of the mixing matrix criterion ∆A as the noise variance varies: solid
line : GMCA, dashed line : JADE, (?) : EFICA, (+) : RNA. Abscissa : SNR in dB.
Ordinate : mixing matrix criterion value.

to the source images in these experiments. Secondly, RNA and EFICA behave
rather similarly. Finally, GMCA provides the best results giving mixing matrix
criterion values that are approximately 2 times lower than RNA and EFICA.
These results clearly show that i) sparsity enhances the distinguishability of the
sources, ii) morphological diversity is a well-performing diversity measure and
GMCA is well suited to account for that measure.

3 Conclusion

In this paper we introduced a new diversity measure to distinguish between
sources : the morphological diversity. It states that morphologically diverse sig-
nals should be separated in so-called sparse representations. The recent advances
in harmonic analysis and overcomplete representation theory make morpholog-
ical diversity a practical way to disentangle source processes from mixtures.
We proposed a new algorithm coined blind GMCA (Generalized Morphologi-
cal Component Analysis) to address the blind source separation problem based
on morphological diversity. Numerical experiments show that GMCA performs
notably well. Furthermore, GMCA is an effective algorithm designed to han-
dle noisy mixtures. Further work will focus on extending the algorithm to the
underdetermined blind source separation issue.
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