James Drummond 
email: drummond@lapp.in2p3.fr
  
Giovanni Feverati 
email: feverati@lapp.in2p3.fr
  
Luc Frappat 
email: frappat@lapp.in2p3.fr
  
Eric Ragoucy 
email: ragoucy@lapp.in2p3.fr
  
Eric Ragoucy Generalised Integrable Hubbard 
  
Hal 
  
  
  
Generalised integrable Hubbard models

come    

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢f f f f f f f f f f f f f f f f f f f f f f f f f f f f L PTh
Generalised integrable Hubbard models *

1 Introduction

The Hubbard model was introduced in order to study strongly correlated electrons [START_REF] Hubbard | Electron Correlations in Narrow Energy Bands II[END_REF][START_REF] Gutzwiller | Effect of Correlation on the Ferromagnetism of Transition Metals[END_REF] and, since then, it has been widely studied, essentially due to its connection with condensed matter physics. It has been used to describe the Mott metal-insulator transition [START_REF] Mott | Metal-Insulator Transition[END_REF][START_REF] Hubbard | Electron Correlations in Narrow Energy Bands III. An Improved Solution[END_REF], high T c superconductivity [START_REF] Anderson | The Resonating Valence Bond State in La 2 CuO 4 and Superconductivity[END_REF][START_REF] Affleck | Large-n limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors[END_REF], band magnetism [START_REF] Lieb | Two theorems on the Hubbard model[END_REF] and chemical properties of aromatic molecules [START_REF] Heilmann | Violation of noncrossing rule -Hubbard hamiltonian for benzene[END_REF]. The literature on the Hubbard model being rather large, we do not aim at being exhaustive and rather refer to the books [START_REF] Montorsi | The Hubbard Model[END_REF][START_REF] Eßler | The One-Dimensional Hubbard Model[END_REF] and references therein. Exact results have been mostly obtained in the case of the one-dimensional model, which enters the framework of our study. In particular, the 1D model eigenvalues have been obtained by means of the coordinate Bethe Ansatz in the celebrated paper by Lieb and Wu [START_REF] Lieb | Absence of Mott transition in an exact solution of the short-range one-band model in one dimension[END_REF].

One of the main motivations for the present study of the Hubbard model and its generalisations is the fact that it has recently appeared in the context of N = 4 super Yang-Mills theory. Indeed, it was noticed in [START_REF] Rej | Planar N=4 gauge theory and the Hubbard model[END_REF] that the Hubbard model at half-filling, when treated perturbatively in the coupling, reproduces the long-ranged integrable spin chain of [START_REF] Beisert | A novel long range spin chain and planar N=4 super Yang-Mills[END_REF] as an effective theory. It thus provides a localisation of the long-ranged spin chain model and gives a potential solution to the problem of describing interactions which are longer than the length of the spin chain. The Hamiltonian of this chain was conjectured in [START_REF] Beisert | A novel long range spin chain and planar N=4 super Yang-Mills[END_REF] to be an all-order description of the dilatation operator of N = 4 super Yang-Mills in the su(2) subsector. That is, the energies of the spin chain are conjectured to be the anomalous dimensions of the gauge theory operators in this subsector. In relation to this, an interesting approach to the Hubbard model is given in [START_REF] Feverati | Hubbard's adventures in N = 4 SYM-land? Some non-perturbative considerations on finite length operators[END_REF] that leads to the evaluation of energies for the antiferromagnetic state and allows one to control the order of the limits of large coupling and large length of the operators/large angular momentum.

There may be the possibility that some integrable extension of the Hubbard model could be put in relation to other subsectors of the N = 4 super Yang-Mills theory. Here we will discuss a general approach to constructing a number of supersymmetric Hubbard models. Each of these models can be treated perturbatively and thus gives rise to an integrable long-ranged spin chain as an effective theory.

Other supersymmetric generalisations of the Hubbard model have been constructed, see e.g. [START_REF] Eßler | New Exactly Solvable Model of Strongly Correlated Electrons Motivated by High-T c Superconductivity[END_REF][START_REF] Bracken | New Supersymmetric and Exactly Solvable Model of Correlated Electrons[END_REF]. These approaches mainly concern high T c superconductivity models and their relation with the t -J model. They essentially use the gl(1|2) or gl(2|2) superalgebras, which appear as the symmetry algebras of the Hamiltonian of the model. Our approach however is different and is based on the QISM framework. It ensures the integrability of the model and allows one to obtain local Hubbard-like Hamiltonians for general gl(N |M ) superalgebras. They can be interpreted in terms of 'electrons' after a Jordan-Wigner transformation.

In this review paper we revisit and slightly extend the results of [START_REF] Drummond | Super-Hubbard models and applications[END_REF], our goal here being not to reproduce the calculations but to focus on the main ideas of our approach.

The plan of the paper is as follows. Section 2 is devoted to sketch a number of facts for the ordinary Hubbard model. In section 3, we define universal XX models. We introduce the corresponding Hamiltonians and determine the symmetries of the model. In section 4, we summarise the construction of the associated Hubbard-like model, in the Shastry and Maassarani approach. From the transfer matrix we obtain the Hamiltonian; we also discuss the symmetries. In section 5 we perform a second order perturbative computation à la Klein and Seitz [START_REF] Klein | Perturbation expansion of the linear Hubbard model[END_REF]. Then, we define the Jordan-Wigner transformation, section 6, used in section 7 to give some examples where we write explicitly the Hamiltonians in the gl(2|2), gl(4) and gl(4|4) cases. We finish in section 8 with a study of two-particle interactions.

Hubbard model

The 1 dimensional Hubbard model introduced by [START_REF] Hubbard | Electron Correlations in Narrow Energy Bands II[END_REF][START_REF] Gutzwiller | Effect of Correlation on the Ferromagnetism of Transition Metals[END_REF] describes hopping electrons on a lattice, with an ultralocal repulsive potential that implements a screened Coulomb repulsion, with U > 0. The Hamiltonian is given by

H = -t L i=1 ρ=↑,↓ e iφ c † ρ,i c ρ,i+1 + e -iφ c † ρ,i+1 c ρ,i + U L i=1 1 -2n ↑,i 1 -2n ↓,i (2.1) 
We will always use periodic boundary conditions.

In N = 4-SYM theory this model was first observed in [START_REF] Rej | Planar N=4 gauge theory and the Hubbard model[END_REF], where a magnetic flux φ of Aharonov-Bohm type was included. In that paper, the potential term was written in a slightly different but equivalent form. The relation between couplings was identified and the system was taken at halffilling; for our needs we just observe that the ratio t/U corresponds to the coupling

g t U = g √ 2 .
(2.2)

We observe that the Hamiltonian is Hermitian if φ ∈ R. In the following we will work with this flux equal to zero. The underling algebraic structure leads us to superalgebras: on each site i the fermionic structure

{c ρ,i , c † ρ ′ ,j } = δ ρ,ρ ′ δ i,j {c ρ,i , c ρ ′ ,j } = {c † ρ,i , c † ρ ′ ,j } = 0 (2.3)
is a realisation of the super-Lie algebra gl(1|1) ⊕ gl(1|1). The full model algebra is obtained by Ltimes the tensor product of the one site structure. We can easily represent the fermionic structure by a graded tensor product of Pauli matrices, written here with the standard notation for basis matrices E αβ to emphasise the grading:

E 12;ρ,i = c ρ,i , E 21;ρ,i = c † ρ,i , E 22;ρ,i = n ρ,i = c † ρ,i c ρ,i , E 11;ρ,i = 1 -n ρ,i = c ρ,i c † ρ,i (2.4 
)

E 12 = 0 1 0 0 , E 21 = 0 0 1 0 , E 11 = 1 0 0 0 , E 22 = 0 0 0 1 .
When it occurs, the second pair of labels ρ, i indicates the spin polarisation ρ and the site i.

The matrices E 12 , E 21 are taken of fermionic character (they satisfy anticommutation relations whatever their spin and space labels are) and E 11 , E 22 are taken of bosonic character (they always enter commutation relations whatever their spin and space labels are). 

E x;ρ,i = 0 1 1 0 ρ,i , E y;ρ,i = 0 -i i 0 ρ,i (2.6) 
namely we see the appearance of a (graded) XX spin chain Hamiltonian3 (or better two XX spin chains, one for each polarisation) within the Hubbard model. It turns out that the breaking of (2.5) into the Hamiltonian of two XX models plus a potential will allow us to generalise this model to higher algebraic structures by maintaining its main property: integrability 4 .

A first hint of integrability of the Hubbard model came from the coordinate Bethe Ansatz solution obtained by Lieb and Wu [START_REF] Lieb | Absence of Mott transition in an exact solution of the short-range one-band model in one dimension[END_REF] but a full understanding of it by the existence of an infinite set of commuting charges came much later. A complete set of eigenstates was constructed in [19] using the SO(4) symmetry of the 1D Hubbard Hamiltonian. Within the framework of the quantum inverse scattering method, an R-matrix was first constructed by Shastry [START_REF] Shastry | Infinite conservation laws in the one-dimensional Hubbard model[END_REF][START_REF] Shastry | Decorated star triangle relations and exact integrability of the one-dimensional Hubbard model[END_REF] and Olmedilla et al. [START_REF] Olmedilla | Yang-Baxter Relations for Spin Models and Fermion Models[END_REF], by coupling (decorated) R-matrices of two independent XX models, through a term depending on the coupling constant U of the Hubbard potential. The proof of the Yang-Baxter relation for the R-matrix was given by Shiroishi and Wadati [START_REF] Shiroishi | Yang-Baxter equation for the R-matrix of the one-dimensional Hubbard model[END_REF]. With a standard construction, a transfer matrix can be constructed by taking the trace of a tensor product of R-matrices. The Yang-Baxter equation guarantees that the transfer matrix is the generating functional of an infinite set of commuting charges. One of these charges is the Hamiltonian (2.5) itself.

The construction of the R-matrix was then generalised in the gl(N ) case by Maassarani et al., first for the XX model [START_REF] Maassarani | The su(N ) XX model[END_REF] and then for the gl(N ) Hubbard model [START_REF] Maassarani | The su(N ) Hubbard model[END_REF][START_REF] Maassarani | Exact integrability of the su(n) Hubbard model[END_REF]. Within the QISM framework, the eigenvalues of the transfer matrix of the Hubbard model were found using the algebraic Bethe Ansatz together with certain analytic properties in [START_REF] Yue | Analytic Bethe ansatz for 1D Hubbard model and twisted coupled XY model[END_REF][START_REF] Ramos | Algebraic Bethe ansatz approach for the one-dimensional Hubbard model[END_REF][START_REF] Martins | The Quantum Inverse Scattering Method for Hubbard-like Models[END_REF].

Universal XX models

We generalize the construction given in [START_REF] Drummond | Super-Hubbard models and applications[END_REF][START_REF] Maassarani | The su(N ) XX model[END_REF][START_REF] Martins | The Quantum Inverse Scattering Method for Hubbard-like Models[END_REF] to the case of an arbitrary representation space V, possibly infinite dimensional. We will use the standard auxiliary space notation, i.e. to any operator A ∈ End(V), we associate the operator

A 1 = A ⊗ I and A 2 = I ⊗ A in End(V) ⊗ End(V).
More generally, when considering expressions in End(V) ⊗k , A j , j = 1, . . . , k will act trivially in all spaces End(V), but the j th one.

To deal with superalgebras, we will also need a Z 2 grading [.] on V, such that [v] = 0 will be associated to bosonic states v ∈ V and [v] = 1 to fermionic ones.

We will also assume the existence of a (super-)trace operator, defined on a subset of End(V) and obeying cyclicity. When V is finite dimensional, dim(V) = K, End(V) is a matrix algebra or super-algebra so that the trace operator is the usual trace or supertrace of K × K matrices. When V is infinite dimensional, the definition of a trace operator is more delicate and we will just assume that it exists and is cyclic, for the operators we use.

The construction of a universal XX model is mainly based on general properties of a given projector and a permutation. Our main projectors are chosen in End(V) as being

π : V → W , π = I -π : V → W with V = W ⊕ W (3.1)
In the tensor product of two vector spaces we take the (possibly graded) permutation

P 12 : V ⊗ V → V ⊗ V v 1 ⊗ v 2 → (-1) [v 1 ][v 2 ] v 2 ⊗ v 1 (3.2)
For example, in the superalgebra gl(N |M ) a possible choice is

π = j =N,N +M E jj , π = I -π = E N N + E N +M,N +M (3.3)

R-matrix

From the previous operators, one can construct an R-matrix acting on

V ⊗ V R 12 (λ) = Σ 12 P 12 + Σ 12 sin λ + (I ⊗ I -Σ 12 ) P 12 cos λ (3.4)
where Σ 12 is built on the projection operators:

Σ 12 = π 1 π 2 + π 1 π 2 (3.5)
It is easy to show that Σ 12 is also a projector in V ⊗ V:

(Σ 12 ) 2 = Σ 12 .
Let us introduce the operator C:

C = π -π . (3.6) 
It obeys C 2 = I and is related to the R-matrix through the equalities

Σ 12 = 1 2 (1 -C 1 C 2 ) and I ⊗ I -Σ 12 = 1 2 (1 + C 1 C 2 ) (3.7)
In [START_REF] Drummond | Super-Hubbard models and applications[END_REF] we gave proof of a number of useful properties of the R-matrix. Essentially the same proofs work also for the slightly more general formulation given here. The main properties are unitarity, regularity, and Yang-Baxter equation (YBE), that guarantees us that we have an integrable model

R 12 (λ 12 ) R 13 (λ 13 ) R 23 (λ 23 ) = R 23 (λ 23 ) R 13 (λ 13 ) R 12 (λ 12 )
where λ ij = λ iλ j .

(3.8)

Monodromy and transfer matrix

With a very standard construction, from the R-matrix one constructs the (L sites) monodromy matrix

L 0<1...L> (λ) = R 01 (λ) R 02 (λ) • • • R 0L (λ) (3.9)
where we tensor product one R-matrix for each site of the theory. It obeys the relation

R 00 ′ (λ -µ) L 0<1...L> (λ) L 0 ′ <1...L> (µ) = L 0 ′ <1...L> (µ) L 0<1...L> (λ) R 00 ′ (λ -µ) . (3.10)
where 0 and 0 ′ are two copies of the auxiliary space. This relation allows us to construct an (L sites) integrable XX spin chain through the transfer matrix

t 1...L (λ) = str 0 L 0<1...L> (λ) = str 0 R 01 (λ) R 02 (λ) • • • R 0L (λ) . (3.11)
where, if V has infinite dimension, we assume the existence of the supertrace for the previous operator. Indeed, the relation (3.10) implies that the transfer matrices for different values of the spectral parameter commute

[t 1...L (λ) , t 1...L (µ)] = 0 . (3.12)
Here the cyclicity of the supertrace has been used. Since the R-matrix is regular (namely it is a permutation in λ = 0), logarithmic derivatives in λ = 0 give local operators. We choose the first one as XX-Hamiltonian

H = t 1...L (0) -1 dt 1...L dλ (0) (3.13) = L j=1 H j,j+1 with H j,j+1 = P j,j+1 Σ j,j+1
where we have used periodic boundary conditions, i.e. identified the site L + 1 with the first site. After (3.12), we see that any expansion of the transfer matrix in the spectral parameters λ, µ generates a set of commuting operators. In particular they commute with the Hamiltonian (3.13), so are conserved charges. This formally proves that the system is integrable. Explicitly, the two sites Hamiltonian corresponding to the example (3.3) reads

H j,j+1 = i =N,N +M j=N,N +M (-1) [j] E ij ⊗ E ji + (-1) [i] E ji ⊗ E ij . (3.14)

Symmetries of the universal XX models

The choice of the fundamental projectors in (3.1) directly fixes the symmetries of the model.

One easily shows that an operator M ∈ End(W) ⊕ End( W) commutes with the projectors (3.1); then it commutes with the R-matrix in the following sense

(M 1 + M 2 ) R 12 (λ) = R 12 (λ) (M 1 + M 2 ) . (3.15) 
Commutation does not hold if the operator mixes the two subspaces.

As a consequence of (3.15), the transfer matrix also has a symmetry (super)algebra

S = End(W) ⊕ End( W) (3.16)
with generators given by M <1...L> = M 1 + M 2 + . . . + M L .

(3.17)

The same is true for any Hamiltonian H built from the transfer matrix so (3.17) commute with the Hamiltonian5 .

We can reverse this construction: we require a symmetry algebra S from which we construct the subspaces W and W. This uniquely fixes the fundamental projector π that immediately leads to obtain the XX model possessing S as symmetry.

The example (3.3) admits S = gl(N -1|M -1) ⊕ gl(1|1) as symmetry superalgebra whose generators M have the form

E jk , j, k = N, N + M for gl(N -1|M -1) E jk , j, k = N, N + M for gl(1|1). (3.18)
4 Universal Hubbard models

Starting with universal XX models, one can build universal Hubbard models, in the same way it has been done for usual and super Hubbard models [START_REF] Eßler | The One-Dimensional Hubbard Model[END_REF][START_REF] Drummond | Super-Hubbard models and applications[END_REF]. The logic will be to start from two possibly different universal XX models of section 3 and "glue" them with the generalisation of the construction given in section 2.

R-matrix

We start with the R-matrices of two universal XX models, R ↑ 12 (λ) and R ↓ 12 (λ), living in two different sets of spaces that we label by ↑ and ↓. Let us stress that the two XX models can be based on two different (graded) vector spaces V ↑ and V ↓ , with two different projectors π ↑ and π ↓ .

The Hubbard model is constructed from the coupling of these two XX models. Its R-matrix has two spectral parameters λ 1 , λ 2 and reads:

1 (4.1)
where λ 12 = λ 1λ 2 and λ ′ 12 = λ 1 + λ 2 . Moreover, h ′ 12 = h(λ 1 ) + h(λ 2 ) and the choice of the function h(λ) is fixed by the proof of the Yang-Baxter equation. Indeed, when the function h(λ) is given by sinh(2h) = U sin(2λ) for some free parameter U , the R-matrix (4.1) obeys YBE:

R 12 (λ 1 , λ 2 ) R 13 (λ 1 , λ 3 ) R 23 (λ 2 , λ 3 ) = R 23 (λ 2 , λ 3 ) R 13 (λ 1 , λ 3 ) R 12 (λ 1 , λ 2 ) . (4.2)
As remarked in [START_REF] Drummond | Super-Hubbard models and applications[END_REF] the proof relies only on some intermediate properties that are not affected by the choice of the fundamental projectors (3.1). The proof follows the steps of the original proof by Shiroishi [START_REF] Shiroishi | SO(4) symmetry of the transfer matrix for the onedimensional Hubbard model[END_REF], in the same way it has been done for algebras in [START_REF] Eßler | The One-Dimensional Hubbard Model[END_REF]. Moreover, it was already noticed in [START_REF] Eßler | The One-Dimensional Hubbard Model[END_REF] that one can couple two XX models based on different gl(M ) algebras: this naturally extends to general (graded) vector spaces V.

The given R-matrix is regular but non symmetric. It satisfies unitarity (we correct here an inconsequential typo that occurred in eq. 3.4 of [START_REF] Drummond | Super-Hubbard models and applications[END_REF]) in the form

R 12 (λ 1 , λ 2 ) R 21 (λ 2 , λ 1 ) = cos 4 (λ 12 ) - sin(λ 12 ) sin(λ ′ 12 ) tanh(h ′ 12 ) cos 2 (λ ′ 12 ) 2 I 1 ⊗ I 2 (4.3)
where

I i = I ↑ ⊗ I ↓ .

Monodromy and transfer matrix

We use the construction given in section 3.2 to obtain the Hamiltonian of the system, starting with the 'reduced' monodromy matrix

L 0<1...L> (λ) = R 01 (λ, µ) . . . R 0L (λ, µ) µ=0 . (4.4) 
Any other choice for µ is possible but, at least in view of obtaining a local Hamiltonian, they do not give new information. Provided the supertrace exists, the transfer matrix is given by t 1...L> (λ) = str 0 L 0<1...L> (λ)

Then, one gets [H, t(λ)] = 0 , ∀λ , for H = H(0) = t(0) -1 t ′ (0) (4.5)

The 'reduced' R-matrices that enter in (4.4) take a particularly simple factorised form

R 12 (λ, 0) = R ↑ 12 (λ) R ↓ 12 (λ) I ↑↓ 1 (h) (4.6) 
where

I ↑↓ 1 (h) = I ⊗ I + tanh( h 2 ) C ↑ 1 C ↓ 1 (4.7)
and we arrive at a Hubbard-like Hamiltonian

H = L j=1 H j,j+1 = L j=1 Σ ↑ j,j+1 P ↑ j,j+1 + Σ ↓ j,j+1 P ↓ j,j+1 + U C ↑ j C ↓ j (4.8)
where we have used periodic boundary conditions.

Symmetries

The transfer matrix of generalized Hubbard models admits as symmetry (super)algebra the direct sum of the symmetry algebras of the XX components

S = End(W ↑ ) ⊕ End( W ↑ ) ⊕ End(W ↓ ) ⊕ End( W ↓ ) . (4.9) 
To prove this symmetry, it is useful to remark that (3.15) can be now specialised to the cases up and down. Moreover, the up R-matrix commutes with the down generators and viceversa. We also check that

M C σ = C σ M , σ =↑, ↓ (4.10) 
where

M = M ↑ + M ↓ and M σ ∈ End(W σ ) ⊕ End( W σ ) . (4.11) Thus, one gets [R 12 (λ, 0) , M ↑ 1 + M ↑ 2 ] = 0 = [R 12 (λ, 0) , M ↓ 1 + M ↓ 2 ] (4.12)
that can be easily extended to hold for the monodromy and transfer matrices and for the Hamiltonian; the generators of the symmetry have the form

M ↑ = L j=1 M ↑ j and M ↓ = L j=1 M ↓ j (4.13)
The ordinary Hubbard case and all the cases where V σ is two dimensional are special because, in addition to the list of generators contained in (4.9), there are new generators given by

V ± = σ ± ↑ ⊗ σ ± ↓ , W ± = σ ± ↑ ⊗ σ ± ↓ . (4.14)
To be precise, V ± commutes with the Hamiltonian if L is even while W ± commutes in all cases. These additional generators do not commute with H if dim(V σ ) > 2; they are responsible for the SU (2) × SU (2) symmetry of the even Hubbard model.

Perturbative expansion of the Hubbard-like Hamiltonian

We expand the Hamiltonian (4.8) in the inverse coupling 1 U ; according to (2.2), this corresponds to the small coupling expansion of the gauge theory. Indeed, precisely that expansion has been used in [START_REF] Rej | Planar N=4 gauge theory and the Hubbard model[END_REF] to match the SU (2) dilatation operator with the effective Hamiltonian of the Hubbard model. The system was taken at half-filling to guarantee the required spin chain behaviour. With the form of the potential used in (2.1) the half-filled condition is enforced by the U → ∞ requirement itself.

We take the set of all Hamiltonian eigenstates whose leading energy term is -LU , for large positive U . These states are selected by the following projector

Π 0 = j π ↑ j -π ↓ j 2 = j π ↑ j -π ↓ j 2 = Π 2 0 . (5.1)
that projects on the subspace where, on each site, one and only one among π ↑ j , π ↓ j has nonzero action.

We follow the method introduced by Klein and Seitz [START_REF] Klein | Perturbation expansion of the linear Hubbard model[END_REF] to obtain an effective Hamiltonian for the corrections to the leading energy -LU :

H eff = 1 U H (2) eff + 1 U 3 H (4) eff + . . . (5.2)
For L > 2 the second order effective Hamiltonian is

H (2) eff = j H (2) 
eff j,j+1 = 2

j 1 + P ↑ j,j+1 P ↓ j,j+1 π ↑ j π ↓ j π ↑ j+1 π ↓ j+1 + π ↑ j π ↓ j π ↑ j+1 π ↓ j+1 (5.3)
For the ordinary Hubbard model this expression can be given in terms of Pauli matrices

H (2) eff = L i=1 (1 -σ i σ i+1 ) (5.4)
where the fermionic oscillators of (2.1) have disappeared and only spin degrees of freedom are left (σ = (σ x , σ y , σ z )).

The structure of the two-sites Hamiltonian H

(2) eff i,i+1 can be obtained explicitly. In matricial form, it has diagonal block structure, with blocks given by one of the two matrices

B -= 1 -1 -1 1 or B + = 1 1 1 1 , (5.5) 
all other entries being zero. The number of appearances of each block depends on the actual model under examination.

Jordan-Wigner transformation

Let us consider p sets of fermionic oscillators c (q) i , c

(q) † i (i = 1, . . . , L and q = 1, . . . , p) that satisfy the usual anticommutation relations

{c (q) i , c (q ′ ) † j } = δ ij δ qq ′ {c (q) i , c (q ′ ) j } = {c (q) † i , c (q ′ ) † j } = 0 (6.1)
One defines the following matrix (where n

(q) i = c (q) † i c (q) 
i is the usual number operator)

X (q) i = 1 -n (q) i c (q) i c (q) † i n (q) i (6.2)
The entries X (q)

i;αβ of this matrix have a natural gradation given by [α] + [β] where [1] = 1 and [2] = 0.

In the gl(2 p-1 |2 p-1 ) case, one defines at each site i the generators

X i;α 1 ...αp,α ′ 1 ...α ′ p = (-1) s X (1) i;α 1 α ′ 1 . . . X (p) i;αpα ′ p where s = p a=2 [α a ] a-1 b=1 [α b ] + [α ′ b ] (6.3) 
It is easy to verify the following properties:

X i;α 1 ...αp,α ′ 1 ...α ′ p † = X i;α ′ 1 ...α ′ p ,α 1 ...αp (6.4) 
X i;α 1 ...αp,α ′ 1 ...α ′ p X i;β 1 ...βp,β ′ 1 ...β ′ p = δ α ′ 1 β 1 . . . δ α ′ p βp X i;α 1 ...αp,β ′ 1 ...β ′ p (6.5) α 1 ,...,αp X i;α 1 ...αp,α 1 ...αp = 1 (6.6) X i;α 1 ...αp,α ′ 1 ...α ′ p X j;β 1 ...βp,β ′ 1 ...β ′ p = (-1) g X j;β 1 ...βp,β ′ 1 ...β ′ p X i;α 1 ...αp,α ′ 1 ...α ′ p (i = j) (6.7) 
where

g = p a=1 [α a ] + [α ′ a ] p b=1 [β b ] + [β ′ b ]
This means that the operators X i;α 1 ...αp,α ′ 1 ...α ′ p built out of fermionic oscillators are actually a realisation of the gl(2 p-1 |2 p-1 ) superalgebra. A generic case gl(N |M ) can be understood as contained in the smallest superalgebra for which N, M < 2 p-1 . The unwanted states can be consistently projected out.

Examples

It is possible to construct examples of both XX and Hubbard-like Hamiltonians. Clearly, the XX ones are "quasi-free models" because they do not contain external potentials and, if written with fermionic oscillators, they only contain hopping terms. In spite of this, they show curious "screening effects" namely particles that are allowed to move only if particles of other types are present (or absent, depending on the case). We will concentrate on universal Hubbard model examples.

The first example to cite is, of course, the original Hubbard model of section 2, that is described in this formalism as gl(1|1) ⊕ gl(1|1) with the choice

π ↑ = π ↓ = E 11 , π ↑ = π ↓ = E 22 .

gl(2|2) ⊕ gl(2|2) Hubbard Hamiltonian

This is a more complete example of the models under examination. It precisely implements two copies (up and down) of the example (3.3) with N = M = 2. The kinetic term of the Hamiltonian has a factorised form

H Hub = L i=1 σ=↑,↓ c † σ,i c σ,i+1 + c † σ,i+1 c σ,i c ′ † σ,i c ′ σ,i+1 + c ′ † σ,i+1 c ′ σ,i + 1 -n ′ σ,i -n ′ σ,i+1 + U (1 -2n ↑,i )(1 -2n ↓,i ) (7.1)
where the factor

N ′ σ,i,i+1 = c ′ † σ,i c ′ σ,i+1 + c ′ † σ,i+1 c ′ σ,i + 1 -n ′ σ,i -n ′ σ,i+1 (7.2) 
multiplies an ordinary Hubbard hopping term ; only unprimed particles enter into the potential. There are four types of fermionic particles, respectively generated by c † ↑,i , c † ↓,i , c ′ † ↑,i , c ′ † ↓,i so that they define a 16 dimensional vector space on each site. The corresponding numbers of particles are conserved.

The factor N ′ σ,i,i+1 works on a 4 × 4 space and its eigenvalues are ±1 with two-fold multiplicity. In particular this means that it cannot vanish, N ′ σ,i,i+1 = 0. Moreover, if no primed particles are present, N ′ σ,i,i+1 = 1 , ∀ σ, i. The same is true if the system is fully filled with primed particles in which case N ′ σ,i,i+1 = -1 therefore two of the sectors described by this Hamiltonian are equivalent to the ordinary Hubbard model. A Russian doll structure is appearing: if the projectors are well chosen, a larger model contains the small ones.

If there are primed particles only, the energy vanishes (but not momentum). If the potential is interpreted as a Coulomb repulsion, then unprimed particles only carry electric charge.

The compound objects formed by c † σ,i c ′ σ,i † are rigid: no other term in the Hamiltonian can destroy them. In this sense, we have four types of carriers, with the same charge but different behaviours: two are the elementary objects c † σ,i in two polarisations σ =↑ , ↓, two are the compound objects (in two polarisations).

The symmetry, according to (4.9), is gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1) ⊕ gl(1|1).

At second order in 1 U the following effective Hamiltonian appears

H (2) eff = - 1 U L i=1 ( 1 2 -2S z i S z i+1 ) -(S + i S - i+1 + S - i S + i+1 ) N ′ ↑,i,i+1 N ′ ↓,i,i+1 (7.3) 
that looks like a deformation of an XXX model. It has an enhancement of symmetry with respect to (7.1) in the sense that its symmetry is gl(2|2) ⊕ gl(2|2).

The two sites action of (7.3) is a 64 × 64 matrix that can be easily disentangled leading to both the blocks given in (5.5). In summary, it has eigenvalues 0 and 2, 0 with multiplicity 48, 2 with multiplicity 16.

gl(4) ⊕ gl(4) Hubbard Hamiltonian

We consider the model based on gl(4) ⊕ gl(4) and take the projectors according to the example (3.3) with N = 4 , M = 0, in two copies (up and down)

H Hub = L i=1 σ=↑,↓ c † σ,i c σ,i+1 c ′ † σ,i c ′ σ,i+1 + c † σ,i+1 c σ,i c ′ † σ,i+1 c ′ σ,i + + n ′ σ,i n ′ σ,i+1 (c † σ,i c σ,i+1 + c † σ,i+1 c σ,i ) + n σ,i n σ,i+1 (c ′ † σ,i c ′ σ,i+1 + c ′ † σ,i+1 c ′ σ,i ) + + U (1 -2n ↑,i n ′ ↑,i )(1 -2n ↓,i n ′ ↓,i ) . (7.4)
This model has the same vector space dimension of the gl(2|2) one (7.1), dim(V) = 16 but the elementary projectors are different and lead to slightly different interactions. That the two Hamiltonians are different is manifest if one examines the original form (4.8) with the basis matrices E αβ , before the Jordan-Wigner transformation.

Here there is complete symmetry between primed and non-primed particles; the effect of Coulomb repulsion only appears when both primed and unprimed particles are on the same site; if one of these types is alone, no Coulomb interaction is felt. Observe that if n ′ σ,i = 1 everywhere and for all polarisations (or else if n σ,i = 1), we re-obtain the gl(1|1) Hubbard model. The kinetic term also has a strange feature: a particle is allowed to move only if it is accompanied by a particle of the same polarisation (i.e. up with up) but opposite type (i.e. primed with unprimed).

gl(4|4) ⊕ gl(4|4) Hamiltonian

Following the example (3.3), the following Hubbard Hamiltonian is obtained

H gl(4|4) Hub = L i=1 σ=↑,↓ c † σ,i c σ,i+1 + c † σ,i+1 c σ,i + 1 -n σ,i -n σ,i+1 c ′ † σ,i c ′ σ,i+1 c ′′ † σ,i c ′′ σ,i+1 + c ′ † σ,i+1 c ′ σ,i c ′′ † σ,i+1 c ′′ σ,i -n ′ σ,i n ′ σ,i+1 (c ′′ † σ,i c ′′ σ,i+1 + c ′′ † σ,i+1 c ′′ σ,i ) -n ′′ σ,i n ′′ σ,i+1 (c ′ † σ,i c ′ σ,i+1 + c ′ † σ,i+1 c ′ σ,i ) + U (1 -2n ′ ↑,i n ′′ ↑,i )(1 -2n ′ ↓,i n ′′ ↓,i ) (7.5) 
Here there are six types of fermions, c † σ , c ′ † σ , c ′′ † σ so the local (one site) space of states is 64 × 64. One observes that this Hamiltonian exhibits a 'Russian doll' structure. Indeed, there are four sectors in the space of states where the gl(4|4) Hamiltonian reduces to the gl(2|2) one, that also reduces to the gl(1|1) one. For example, one sector is given by n ′′ ↑,i = n ′ ↓,i = 1 for 1 ≤ i ≤ L.

Two-particles interaction

We sketch here the preliminary effects that we observed studying two particles in interaction. It is convenient to consider a reference state as being a particle "vacuum" (pseudovacuum)

Ω = (e ↑ 1 ⊗ e ↓ 1 ) 1 ⊗ (e ↑ 1 ⊗ e ↓ 1 ) 2 ⊗ . . . (e ↑ 1 ⊗ e ↓ 1 ) L (8.1) 
where index under the tensor product symbol labels the lattice sites. All other states are considered excitations of this pseudovacuum. Then particles are distinguished by the type, according to the subspaces W, W:

a, b, . . . ∈ W ã, b, . . . ∈ W and an upper index ↑, ↓ will be added to distinguish polarisation 6 . Within the universal XX models, all particles satisfy the exclusion principle, namely they cannot appear on the same site. If two particles are both from W or both from W, they reflect each other; if they are one from W, one from W, they traverse each other by tunnel effect.

In the universal Hubbard models, the coupling activates a sort of electrostatic interaction felt by particles of opposite polarisation only. Indeed, the potential term in (4.8) squares to the identity (3.6) so on one site states it has eigenvalues ±U . Which sign occurs is dictated by the membership to W or W according to the rule: with U > 0, equal type particles a ↑ a ↓ or ã↑ ã↓ repel each other but different type particles a ↑ ã↓ or ã↑ a ↓ attract each other. Observe that the vacuum itself is in the repulsive case so actually the only "visible" effect is the attractive one.

Conclusions

We have constructed universal XX and Hubbard model Hamiltonians based on general properties of projectors and permutations. The underling algebraic structure could be an ordinary or graded algebra gl(N |M ) or possibly and infinite dimensional algebra. We have full control of the symmetries of the models and we have performed the perturbative calculation à la Klein and Seitz [START_REF] Klein | Perturbation expansion of the linear Hubbard model[END_REF] in the large coupling limit.

We have emphasised that the gradation makes the Jordan-Wigner transformation a local isomorphism. Therefore, the interpretation of the graded models in terms of 'electrons' is more natural.

We discussed some examples, with their phenomenology. There, it would be very nice to see if the major screening effects observed (7.1) and (7.4) in the Hamiltonians can be interpreted in some condensed matter context.

The next step in the study of our models is the determination of the spectrum and of the Bethe equations, as they were constructed for Hubbard or generalisation, using the algebraic Bethe ansatz [START_REF] Yue | Analytic Bethe ansatz for 1D Hubbard model and twisted coupled XY model[END_REF][START_REF] Ramos | Algebraic Bethe ansatz approach for the one-dimensional Hubbard model[END_REF][START_REF] Martins | The Quantum Inverse Scattering Method for Hubbard-like Models[END_REF][START_REF] Fan | Bethe ansatz for the SU(4) extension of the Hubbard Model[END_REF] and the coordinate Bethe Ansatz of Lieb-Wu [START_REF] Lieb | Absence of Mott transition in an exact solution of the short-range one-band model in one dimension[END_REF]. This is an heavy calculation which we postpone for further publication, but from the analytical Bethe ansatz approach, one can guess their form. In particular, as for spin chain models, one expects as many presentations of the Bethe equations as there are inequivalent Dynkin diagrams. All these presentations should lead to the same spectrum. For more informations, we refer to [START_REF] Arnaudon | General boundary conditions for the sl(N ) and super sl(M |N ) open spin chains[END_REF][START_REF] Ragoucy | Analytical Bethe Ansatz for closed and open gl(M |N ) super-spin chains in arbitrary representations and for any Dynkin diagram[END_REF] where similar calculations were performed in the case of XXX super spin chains.

Our models are graded by construction so they naturally contain bosonic as well fermionic degrees of freedom. We are working on examples with bosonic particles, that necessarily will be on infinite dimensional algebras.

Finally, the Bethe equations will allow us to keep in touch with super-symmetric gauge theories, where integrability appears precisely in relation to the Hubbard model.

  Laboratoire d'Annecy-le-Vieux de Physique Théorique website: http://lappweb.in2p3.fr/lapth-2005/ LAPTH-Conf-1222/07

At this point it should be clear that the difference between graded and non graded cases appears when boundary effects are observed; the thermodynamic limit usually ignores such terms, being sensitive to bulk contributions only.

The flux φ does not affect integrability properties.

In principle, this construction cannot exclude the existence of operators that commute with the Hamiltonian but not with the R-matrix. In that case, these additional symmetries would have the strange feature of not being symmetries of at least one conserved charge (by reconstructing the R-matrix from an expansion).

As already remarked, notice that particles of different polarisation or different type are not to be understood as conjugated: for example, a ↑ and a ↓ are different objects
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