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We consider the Suliciu model which is a relaxation approximation of the p-system. In the case of the Dirichlet boundary condition we prove that the local smooth solution of the p-system is the zero limit of the Suliciu model solutions.

Introduction

We study a relaxation approximation of the following p-system

   ∂ t u 1 -∂ x u 2 = 0, ∂ t u 2 -∂ x p(u 1 ) = 0. (1.1)
For the viscoelastic case, Suliciu introduces in [START_REF] Suliciu | On modelling phase transition by means of rate-type constitutive equations, shock wave structure[END_REF] the following approximation

             ∂ t u 1 -∂ x u 2 = 0, ∂ t u 2 -∂ x v = 0, ∂ t v -µ∂ x u 2 = 1 ε (p(u 1 ) -v), (1.2) 
where ε and µ are positive. The aim of this paper is to prove convergence results for the initial-boundary value problem when the relaxation coefficient ε tends to zero. Under the classical assumption ∀ ξ ∈ R,p (ξ) > 0, (1.3) the p-system is strictly hyperbolic with eigenvalues λ 1 (u 1 ) =p (u 1 ) < λ 2 (u 1 ) = p (u 1 ).

(1.4)

The semi-linear approximation system (1.2) is strictly hyperbolic with 3 constant eigenvalues

µ 1 = - √ µ < µ 2 = 0 < µ 3 = √ µ. (1.5) 
In all the paper we assume that µ is chosen great enough so that the subcharacteristictype condition holds

µ > p (u 1 ) (1.6)
for all the values of u 1 under consideration. Formally, when ε tends to zero, the behaviour of the solution w ε = (u ε ,v ε ) = ((u ε 1 ,u ε 2 ),v ε ) for the relaxation system (1.2) is the following: p(u ε 1 )v ε tends to zero, so that u ε tends to a solution u = (u 1 ,u 2 ) of the p-system (1.1).

Recent papers are devoted to the zero relaxation limit in the case of the Cauchy problem. In [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] Wen-An Yong establishes a general framework to study the strong convergence for the smooth solutions. This convergence result is obtained describing the boundary layer which appears at t = 0. We can apply Yong's tools for the Suliciu approximation

             ∂ t u ε 1 -∂ x u ε 2 = 0, ∂ t u ε 2 -∂ x v ε = 0, ∂ t v ε -µ∂ x u ε 2 = 1 ε (p(u ε 1 ) -v ε ), (1.7) 
for (t,x) ∈ R + × R, with the smooth initial data:

w ε (0,x) = w 0 (x),x ∈ R. (1.8) 
We give more details about this question in the annex at the end of this paper.

Since the lifespan for a smooth solution u of the Cauchy problem for the p-system is generally finite (see [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF]), the strong convergence of the solution u ε to u can only be obtained locally in time. Nevertheless, under the assumption

∀ ξ ∈ R,p (ξ) ≤ Γ < µ, (1.9) 
if w 0 is smooth, the solution for the semi-linear Cauchy problem (1.7)-(1.8) is global and smooth. In this case, the question is: what about the global convergence ? Under further additional assumptions (in particular p (ξ) ≥ γ > 0) the weak convergence to a global weak solution of the p-system is obtained by Tzavaras in [START_REF] Tzavaras | Materials with internal variables and relaxation to conservation laws[END_REF] using the compactness methods of [START_REF] Serre | Convergence with physical viscosity for nonlinear elasticity[END_REF].

Other convergence results in some particular cases can be found in [START_REF] Hsiao | Zero relaxation limit to centered rarefaction waves for a rate-type viscoelastic system[END_REF] and [START_REF] Li | Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic system in the presence of shocks[END_REF].

For other connected papers see also [START_REF] Matsumura | Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary[END_REF][START_REF] Nishihara | Boundary effect on asymptotic behaviour of solutions to the psystem with linear damping[END_REF][START_REF] Tang | Stability of Suliciu model for phase transitions[END_REF]...

In this paper we study the zero relaxation limit for the initial-boundary value problem. To our knowledge general convergence results are not available for hyperbolic relaxation systems in domains with boundary in the literature. A special well investigated problem is the semi-linear relaxation approximation to the boundary value problem for a scalar quasilinear equation, see [START_REF] Liu | Time-asymptotic stability of boundary-layers for a hyperbolic relaxation system[END_REF][START_REF] Natalini | Convergence of a relaxation approximation to a boundary value problem for conservation laws[END_REF][START_REF] Kress | Asymptotic behavior of hyperbolic boundary value problems with relaxation term[END_REF][START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws[END_REF], and [START_REF] Chalabi | Convergence of relaxation schemes for initial boundary value problems for conservation laws[END_REF][START_REF] Aregba | Kinetic approximation of a boundary value problem for conservation laws[END_REF] for related numerical considerations.

A first example of convergence result for a particular p-system (1.1) is obtained in [START_REF] Carbou | Relaxation approximation of some nonlinear Maxwell initial-boundary value problem[END_REF].

In that paper the p-system is the one-dimensionnal Kerr model, so p is the inverse function of ξ → (1 + ξ 2 )ξ. The relaxation approximation is given by the Kerr-Debye model which is the following quasilinear hyperbolic system

             ∂ t u ε 1 -∂ x u ε 2 = 0, ∂ t u ε 2 -∂ x (1 + v ε ) -1 u ε 1 = 0, ∂ t v ε = 1 ε (1 + v ε ) -2 (u ε 1 ) 2 -v ε .
For these two models we consider the ingoing wave boundary condition. In the case of the smooth solutions we obtained a local strong convergence result. The main tool of the proof is the use of the entropic variables as proposed in [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. In these variables, the system is symmetrized and the equilibrium manifold is linearized.

Here we study the zero relaxation limit for the Suliciu approximation

             ∂ t u ε 1 -∂ x u ε 2 = 0, ∂ t u ε 2 -∂ x v ε = 0, ∂ t v ε -µ∂ x u ε 2 = 1 ε (p(u ε 1 ) -v ε ), (1.10) 
for (t,x) ∈ R + × R + , with the null initial data

w ε (0,x) = 0,x ∈ R + , (1.11) 
and with the Dirichlet boundary condition

u ε 2 (t,0) = ϕ(t),t ∈ R + . (1.12)
For the null initial data to be in equilibrium we assume that p(0) = 0. We prove the strong convergence of u ε to the smooth solution of the initial-boundary value problem for the p-system

   ∂ t u 1 -∂ x u 2 = 0, ∂ t u 2 -∂ x p(u 1 ) = 0, (1.13) 
for (t,x) ∈ R + × R + , with the initial-boundary conditions

u(0,x) = 0,x ∈ R + , (1.14) 
u 2 (t,0) = ϕ(t),t ∈ R + .

(1.15)

Main Results

Let us specify the assumptions on the source term ϕ in the boundary condition (1.12) or (1.15). In order to simplify we chose ϕ smooth enough on R and such that supp ϕ ⊂ [0,b], with b > 0. In this case the boundary conditions and the null initial data (1.11) First we consider the solutions for the second problem (1.13)-(1.14)-(1.15) and using the methods of [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF] we establish that the lifespan T * is generally finite with formation of shock waves. Theorem 2.1. Assume the property (1.3)

. Let ϕ ∈ C ∞ (R) with supp ϕ ⊂ [0,b], b > 0, ϕ = 0. Let g the function defined by g(ξ) = ξ 0 p (s)ds.
We assume that p does not vanish on the interval g -1 (-ϕ(R)).

(2.1)

Then the local smooth solution of (1.13)-(1.14)-(1.15) exhibits a shock wave at the time T * < +∞ and we have

u L ∞ ([0,T * ]×R + ) ≤ C ϕ L ∞ (R) . (2.2)
We now investigate the smooth solutions of the initial-boundary value problem (1.10)-(1.11)-(1.12) for a fixed ε > 0. The system is semi-linear strictly hyperbolic and the boundary {x = 0} is characteristic. It is easy to prove that the local smooth solution w exists and, if the lifespan T * ε is finite, we have

w L ∞ ([0,T * ε ]×R + ) = +∞ (2.3)
(for general semi-linear hyperbolic systems, see [START_REF] Sueur | Couches limites semilinéaires[END_REF]).

If we assume that p is globally lipschitz we establish that the smooth solutions are global. Theorem 2.2. Assume the properties (1.3) and (1.9). Let ϕ ∈ H 3 (R) with supp ϕ ⊂ R + . Then the solution of (1.10)-(1.11)-(1.12) is global and

w ∈ C 0 (R + ;H 1 (R)), ∂ t w ∈ C 0 (R + ;L 2 (R)). (2.4)
Finally, let us describe the convergence result. Theorem 2.3. We suppose

(1.3). Let ϕ ∈ H 3 (R) with supp ϕ ⊂ R + . We consider a smooth solution u = (u 0 1 ,u 0 2 ) of (1.13)-(1.14)-(1.15) defined on [0,T * [. We suppose that µ > sup (t,x)∈[0,T * [×R + p (u 0 1 (t,x)). (2.5) 
Let T < T * . For ε small enough, the relaxation problem (1.10)-(1.11)-(1.12) admits a solution

w ε = (u ε ,v ε ) defined on [0,T ] such that u ε = u 0 + εu 1 ε
, and there exists a constant K such that

u 1 ε L ∞ (0,T ;H 1 (R + )) + ∂ t u 1 ε L ∞ (0,T ;L 2 (R + )) ≤ K. (2.6)
In this result we can remark that no boundary layer appears in the time variable because the null initial data belongs to the equilibrium manifold V = {v = p(u 1 )}. For the space variable, we have the same boundary condition for both systems, so no space boundary layer appears.

To prove Theorem 2.3 we don't use the method in [START_REF] Carbou | Relaxation approximation of some nonlinear Maxwell initial-boundary value problem[END_REF]: as observed in [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], with the entropic variables, we lose the semi-linear character of the system (1.10). We prefer write the following expansion of w ε

w ε = w 0 + εw 1 ε = ((u 0 1 ,u 0 2 ),p(u 0 1 )) + εw 1 ε
so that the rest term w 1 ε satisfies a semi-linear hyperbolic system. In order to estimate w 1 ε , we use the conservative-dissipative variables introduced in [START_REF] Bianchini | Asymptotic Behaviour of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF]. With these variables the system is symmetrized and its semi-linear character is preserved. Furthermore by this method we obtain a more precise result : for ε small enough the lifespan T * ε is greater that the lifespan T * of the limit system solution and the convergence is proved on all compact subset of [0,T * [.

Proof of Theorem 2.1

We use the methods proposed by Majda in [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF] for the Cauchy problem. We denote by l and r the left and right Riemann invariants of the system (1.1):

       l = 1 2 (u 2 + g(u 1 )), r = 1 2 (u 2 -g(u 1 )).
These variables define a diffeomorphism which inverse is given by

   u 1 = g -1 (l -r), u 2 = l + r.
These invariants (l,r) satisfy the diagonal system

                   ∂ t l -ν(l -r)∂ x l = 0, ∂ t r + ν(l -r)∂ x r = 0, l(0,x) = r(0,x) = 0,x > 0, (l + r)(t,0) = ϕ(t),t > 0, (3.1) 
where ν(lr) = p (g -1 (lr)). The smooth solution of (3.1) is (0,r) where r is the solution of the scalar equation

           ∂ t r + ν(-r)∂ x r = 0, r(0,x) = 0,x > 0, r(t,0) = ϕ(t),t > 0. (3.2)
Under the assumptions (1.3) and (2.1) we will prove that the lifespan T * of the solution of the problem (3.2) is finite and that this solution exhibits shock waves in T * . For solving (3.2) we can use the method of characteristics. The function r is constant on the characteristic curves which are the straight lines t = T + 1 ν(-ϕ(T ))

x, T ∈ R.

Denoting α(s) = 1 ν(-s)
we obtain then that

r(T,0) = ϕ(T ) = r(T + α(ϕ(T ))x,x).
Let us introduce the mapping

(T,X) → Φ(T,X) = (t,x) = (T + α(ϕ(T ))X,X).
This map is a diffeomorphism for X < X with

X = max T ∈[0,b] - d dT α(ϕ(T )) -1
.

Under assumption (2.1) we have 0 < X < +∞ and we have

r L ∞ (R + ×[0, X[) ≤ ϕ L ∞ (R) .
The characteristic curves through (0,0) and (b,0) cut the straight line {x = X} at times

T 1 = p (0) -1 X and T 2 = b + p (0) -1 X so T * ∈ [T 1 ,T 2 ].
4. Proof of Theorem 2.2 In this section ε > 0 and µ > 0 are fixed. We rewrite system (1.10)

∂ t w + A∂ x w = h(w)
where

A =   0 -1 0 0 0 -1 0 -µ 0   and h(w) =    0 0 1 ε (p(u 1 ) -v)   
and by (1.3) and (1.9) p is globally lipschitz. As zero is an eigenvalue of the matrix A, the boundary {x = 0} is characteristic, so for completeness we give the proof of the global existence. Using (2.3) it is sufficient to prove that the solution w is bounded on any domain [0,T ] × R + . In a first step we lift the boundary condition (1.12). We set ω(t,x) = ϕ(t)η(x) where η is a smooth function compactly supported with η(0) = 1. We replace u 2 by u 2ω and we obtain the following initial-boundary value problem

                   ∂ t w + A∂ x w = h(w) +   ∂ x ω -∂ t ω µ∂ x ω   , w(0,x) = 0,x ∈ R + , u 2 (t,0) = 0,t ∈ R + . (4.1) 
We diagonalize the matrix A by the matrix P : w = P W with

P =   1 1 1 √ µ 0 - √ µ µ 0 µ   .
We obtain

                   ∂ t W +   - √ µ 0 0 0 0 0 0 0 √ µ   ∂ x W = H(W ) + Φ, W (0,x) = 0,x ∈ R + , W 1 (t,0) -W 3 (t,0) = 0,t ∈ R + . (4.2)
We have H(W ) = P -1 h(P W ) so H is globally lipschitz

∃K > 0,|∂ W H| ≤ K. (4.3)
In addition, Φ is given by

Φ = P -1   ∂ x ω -∂ t ω µ∂ x ω   .
We denote by T * the lifespan of the solution W for system (4.2) and we assume that T * < +∞. We will prove that W L ∞ ([0,T * ]×R + ) < +∞ so that by (2.3) we obtain a contradiction.

L 2 estimate
We take the inner product of the first equation in (4.2) by W and we obtain 1 2

d dt W 2 L 2 (R + ) + R + √ µ(-W 1 ∂ x W 1 + W 3 ∂ x W 3 )dx = R + H(W )W dx + R + ΦW dx.
Using the third equation in (4.2) and ( 4.3) we obtain 1 2

d dt W 2 L 2 (R + ) ≤ C(1 + W 2 L 2 (R + ) ). (4.4) 
H 1 estimate We derivate system (4.2) with respect to t and with similar computations we obtain that 1 2

d dt ∂ t W 2 L 2 (R + ) ≤ C(1 + ∂ t W 2 L 2 (R + ) ). (4.5) 
By Gronwall lemma we obtain from (4.4) and (4.5) that

W L ∞ ([0,T * ];L 2 (R + )) + ∂ t W L ∞ ([0,T * ];L 2 (R + )) ≤ C(T * ). (4.6) 
So using the first equation in (4.2) we have

∂ x W 1 L ∞ ([0,T * ];L 2 (R + )) + ∂ x W 3 L ∞ ([0,T * ];L 2 (R + )) ≤ C(T * ), (4.7) 
In addition we have

∂ t ∂ x W 2 -∂ W2 H 2 (W )∂ x W 2 = H(t,x),
where

H = ∂ W1 H 2 (W )∂ x W 1 + ∂ W3 H 2 (W )∂ x W 3 + ∂ x Φ 2 .
By (4.3) and (4.7) we have

H L ∞ ([0,T * ];L 2 (R + )) ≤ C(T * ),
and since

∂ x W 2 (t,x) = t 0 exp t s ∂ W2 H 2 (W (τ,x))dτ H(s,x)ds,
we conclude that

∂ x W 2 L ∞ ([0,T * ];L 2 (R + )) ≤ C(T * ).
By Sobolev injections we can apply the continuation principle and we conclude the proof of Theorem 2.2.

Proof of Theorem 2.3

We denote by T * the lifespan of the smooth solution u 0 = (u 0 1 ,u 0 2 ) of system (1.13)-(1.14)- (1.15). Since the boundary data ϕ belongs to H 3 (R) we have

∂ i t u 0 ∈ C 0 ([0,T * [;H 3-i (R + )), i = 0,1,2,3. (5.1)
We define the profile w 0 by

w 0 = (u 0 ,v 0 ) = ((u 0 1 ,u 0 2 ),p(u 0 1 )). (5.2)
We denote

γ(t,x) = p (u 0 1 (t,x)),t < T * ,x > 0, (5.3) 
Γ = sup

(t,x)∈[0,T * [×R + γ(t,x), (5.4) 
and by (2.2), Γ < +∞. We fix µ such that µ > Γ.

(5.5)

We will construct the solution w ε of the relaxation problem (1.10)-(1.11)-(1.12) writing

w ε = w 0 + ε   0 0 v 1   + εr, (5.6) 
where

v 1 = -∂ t v 0 + µ∂ x u 0 2 , (5.7) 
so that r satisfies the following system

             ∂ t r 1 -∂ x r 2 = 0, ∂ t r 2 -∂ x r 3 = ∂ x v 1 , ∂ t r 3 -µ∂ x r 2 = 1 ε (p (u 0 1 )r 1 -r 3 ) + F (t,x,εr 1 )(r 1 ) 2 -∂ t v 1 , (5.8) 
for (t,x) ∈ [0,T * [×R + , with the initial-boundary conditions

   r(0,x) = 0,x ∈ R + , r 2 (t,0) = 0,0 ≤ t < T * .
(5.9)

The function F is defined by

F (t,x,ξ) = 1 0
(1s)p (u 0 1 (t,x) + sξ)ds.

(5.10)

First step: we want to construct a suitable symmetrization for system (5.8). We denote by A and B the matrices

A =   0 -1 0 0 0 -1 0 -µ 0   , B =   0 0 0 0 0 0 γ(t,x) 0 -1   .
With this object, we will use the conservative-dissipative form introduced in [START_REF] Bianchini | Asymptotic Behaviour of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF]. We first need a symmetric positive definite matrix A 0 such that AA 0 is a symmetric matrix, and such that

BA 0 =   0 0 0 0 0 0 0 0 -d   with d > 0.
Following [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], such a matrix can be constructed using the entropic variables. For the special case of the Suliciu model we have

A 0 (t,x) =   (γ(t,x)) -1 0 1 0 1 0 1 0 µ   =   A 0,11 A 0,12 A 0,21 A 0,22   .
We obtain

AA 0 =   0 -1 0 -1 0 -µ 0 -µ 0   , BA 0 =   0 0 0 0 0 0 0 0 γ -µ   ,
and we remark that with (5.5), we have µγ ≥ µ -Γ > 0. Finally we can apply Proposition 2.7 in [START_REF] Bianchini | Asymptotic Behaviour of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF]: the conservative-dissipative variables ρ is defined by ρ = P (t,x)r with

P (t,x) =   (A 0,11 ) -1 2 0 ((A -1 0 ) 22 ) -1 2 (A -1 0 ) 21 ((A -1 0 ) 22 ) 1 2   =   γ 1 2 0 0 0 1 0 -γ(µ -γ) -1 2 0 (µ -γ) -1 2   .
In these variables, system (5.8) is equivalent to

∂ t ρ + A 1 ∂ x ρ + Lρ = - 1 ε   0 0 ρ 3   +   0 0 F 1 (t,x,ερ 1 )ρ 2 1   + H, (5.11) 
for (t,x) ∈ [0,T * [×R + , with the initial-boundary conditions ρ(0,x) = 0 for x ∈ R + and ρ 2 (t,0) = 0 for t ∈ [0,T * [. (5.12)

The matrix A 1 = P AP -1 is symmetric

A 1 (t,x) =   0 -γ 1 2 0 -γ 1 2 0 -(µ -γ) 1 2 0 -(µ -γ) 1 2 0   .
The matrix L is given by L(t,x) = P ∂ t P -1 + P A∂ x P -1 . In addition, F 1 and H are given by

F 1 (t,x,ξ) = γ -1 (µ -γ) -1 2 F (t,x,γ -1 2 ξ), (5.13) 
H(t,x) =   0 ∂ x v 1 -(µ -γ) -1 2 ∂ t v 1   .
From (5.1) we have

∂ i t γ ∈ C 0 ([0,T * [;H 3-i (R + )),i = 0,1,2,3, (5.14) 
and using (2.2) there exists α > 0 such that γ(t,x) ≥ α for (t,x) ∈ [0,T * [×R + .

(5.15)

Using (5.14), (5.15) and (5.5) we have

A 1 ,∂ t A 1 ,∂ x A 1 ∈ C 0 ([0,T * [;L ∞ (R + )), (5.16) L,∂ t L,∂ x L ∈ C 0 ([0,T * [;L ∞ (R + )).
(5.17)

Using (5.1) and (5.7) we have

∂ i t H ∈ C 0 ([0,T * [;H 1-i (R + )),i = 0,1. (5.18)
We recall that by (5.10) and (5.13) we have

F 1 (t,x,ξ) = γ -1 (t,x)(µ -γ(t,x)) -1 2 1 0 (1 -s)p (u 0 1 (t,x) + sγ -1 2 (t,x)ξ)ds,
so, by (5.14), (5.15) and (5.5) we have

F 1 ,∂ t F 1 ,∂ x F 1 ,∂ ξ F 1 ∈ C 0 ([0,T * [;L ∞ (R + × [-1,1])). (5.19) 
Now we fix T < T * and we introduce T ε defined by

T ε = sup t ≤ T, ρ L ∞ ([0,t]×R + ) ≤ 1 ε .
(5.20)

We will prove that, for ε small enough, T ε = T and that there exists K such that for all ε small enough,

ρ L ∞ ([0,T ];H 1 (R + )) + ∂ t ρ L ∞ ([0,T ];L 2 (R + )) ≤ K. (5.21)
First, by variational methods, we obtain L 2 -estimates on ρ and ∂ t ρ. To obtain L 2estimates on ∂ x ρ we use the equations taking into account that the boundary {x = 0} is characteristic.

Second step: variational estimates

We take the inner product of system (5.11) by ρ and we obtain that

1 2 d dt ρ 2 L 2 (R + ) + R + A 1 ∂ x ρ • ρdx + R + Lρ • ρdx + 1 ε R + ρ 2 3 dx = R + F 1 (t,x,ερ 1 )ρ 2 1 ρ 3 + R + H • ρdx.
Using (5.12) we obtain that

R+ A 1 ∂ x ρ • ρdx = - 1 2 R + (∂ x A 1 )ρ • ρdx.
With the estimates (5.16),.., (5.19) and since ε|ρ| ≤ 1 on [0,T ε ] × R + , there exists a constant C > 0 such that, for t ≤ T ε , 1 2

d dt ρ 2 L 2 (R + ) + 1 ε R + ρ 2 3 dx ≤ C(1 + ρ 2 L 2 (R + ) + ρ 1 L ∞ (R + ) ρ 1 L 2 (R + ) ρ 3 L 2 (R + ) ).
Therefore we obtain that for t ≤ T ε ,

d dt ρ 2 L 2 (R + ) + 1 ε R + ρ 2 3 dx ≤ C(1 + ρ 2 L 2 (R + ) + ε ρ 1 2 L ∞ (R + ) ρ 1 2 L 2 (R + ) ). (5.22) 
We can derivate (5.11)-(5.12) with respect to t

∂ t ∂ t ρ + A 1 ∂ x ∂ t ρ + L∂ t ρ + 1 ε   0 0 ∂ t ρ 3   = -∂ t A 1 ∂ x ρ -∂ t Lρ +   0 0 ∂ t F 1 (t,x,ερ 1 )ρ 2 1   +   0 0 ε∂ ξ F 1 (t,x,ερ 1 )∂ t ρ 1 ρ 2 1   +   0 0 2F 1 (t,x,ερ 1 )ρ 1 ∂ t ρ 1   + ∂ t H.
With the same arguments as before we obtain that there exists C > 0 such that for

≤ T ε , d dt ∂ t ρ 2 L 2 (R + ) + 1 ε R + (∂ t ρ 3 ) 2 dx ≤ C(1 + ρ 2 L 2 (R + ) + ∂ t ρ 2 L 2 (R + ) + ∂ x ρ 2 L 2 (R + ) ) +Cε ρ 1 2 L ∞ (R + ) ( ρ 1 2 L 2 (R + ) + ∂ t ρ 1 2 L 2 (R + ) )).
(5.23) We define ψ by

ψ(t) = ρ(t) 2 L 2 (R + ) + ∂ t ρ(t) 2 L 2 (R + ) 1 2 , (5.24) 
so we obtain by (5.22) and (5.23) the L 2 -estimate: there exists C > 0 such that for

t ≤ T ε , d dt (ψ(t)) 2 + 1 ε ( ρ 3 2 L 2 (R + ) + ∂ t ρ 3 2 L 2 (R + ) ) ≤ C(1 + (ψ(t)) 2 +ε ρ 1 2 L ∞ (R + ) (ψ(t)) 2 + ∂ x ρ 2 L 2 (R + ) ).
(5.25)

Third step

We now estimate ∂ x ρ using the equations

   ∂ t ρ 1 -γ 1 2 ∂ x ρ 2 + (Lρ) 1 = 0, ∂ t ρ 2 -γ 1 2 ∂ x ρ 1 -(µ -γ) 1 2 ∂ x ρ 3 + (Lρ) 2 = H 2 , ∂ t ρ 3 -(µ -γ) 1 2 ∂ x ρ 2 + (Lρ) 3 + 1 ε ρ 3 = F 1 (t,x,ερ 1 )ρ 2 1 + H 3 .
(5.26)

From the first equation in (5.26), and with (5.15) and (5.17) we have for t ∈ [0,T ε ]

∂ x ρ 2 L 2 (R + ) ≤ Cψ. (5.27) Let us introduce ρ1 = ρ 1 + γ -1 2 (µ -γ) 1 2 ρ 3 .
From the second equation in (5.26) we have

∂ t ρ 2 -γ 1 2 ∂ x ρ1 + γ 1 2 ∂ x (γ -1 2 (µ -γ) 1 2 )ρ 3 + (Lρ) 2 = H 2 ,
so, by (5.15), (5.14), (5.17) and (5.18) we obtain that

∂ x ρ1 L 2 (R + ) ≤ C(1 + ψ).
(5.28)

We cannot estimate ∂ x ρ 1 or ∂ x ρ 3 by the same method because the boundary {x = 0} is characteristic. We rewrite the third equation in (5.26)

∂ t ρ 3 + 1 ε ρ 3 = γ -1 2 (µ -γ) 1 2 (∂ t ρ 1 + (Lρ) 1 ) -(Lρ) 3 + F 1 (t,x,ερ 1 )ρ 2 1 + H 3 .
So eliminating ρ 1 we obtain

µγ -1 ∂ t ρ 3 + 1 ε ρ 3 = γ -1 2 (µ -γ) 1 2 [∂ t ρ1 -∂ t (γ -1 2 (µ -γ) 1 2 )ρ 3 ] + M 1 (t,x)ρ 1 + M 2 (t,x)ρ 2 +M 3 (t,x)ρ 3 + H 3 + F 1 (t,x,ερ 1 )ρ 2 1 , (5.29) with ρ 1 = ρ1 -γ -1 2 (µ -γ) 1 2 ρ 3 .
We derivate (5.29) with respect to x and we obtain the equation satisfied by

∂ x ρ 3 ∂ t ∂ x ρ 3 + τ (t,x)∂ x ρ 3 = 6 i=1 T i , (5.30) 
with

τ = µ -1 γ 1 ε + γ -1 2 (µ -γ) 1 2 ∂ t (γ -1 2 (µ -γ) 1 2 ) + ε∂ ξ F 1 (t,x,ερ 1 )γ -1 2 (µ -γ) 1 2 ρ 2 1 +2F 1 (t,x,ερ 1 )ρ 1 γ -1 2 (µ -γ) 1 2 -M 3 (t,x) , T 1 = µ -1 γ 1 2 (µ -γ) 1 2 ∂ t ∂ x ρ1 , T 2 = µ -1 γ ∂ x (γ -1 2 (µ -γ) 1 2 )∂ t ρ1 -∂ x (γ -1 µ)∂ t ρ 3 -∂ x (γ -1 2 (µ -γ) 1 2 ∂ t (γ -1 2 (µ -γ) 1 2 ))ρ 3 + (∂ x M 1 )ρ 1 + (∂ x M 2 )ρ 2 + (∂ x M 3 )ρ 3 , T 3 = µ -1 γ∂ x H 3 , T 4 = µ -1 γ(M 1 ∂ x ρ1 + M 2 ∂ x ρ 2 ), T 5 = µ -1 γ ∂ x F 1 (t,x,ερ 1 )ρ 2 1 -ε∂ ξ F 1 (t,x,ερ 1 )∂ x (γ -1 2 (µ -γ) 1 2 )ρ 2 1 ρ 3 -2F 1 (t,x,ερ 1 )∂ x (γ -1 2 (µ -γ) 1 2 )ρ 1 ρ 3 , T 6 = µ -1 γ ε∂ ξ F 1 (t,x,ερ 1 )ρ 2 1 ∂ x ρ1 + 2F 1 (t,x,ερ 1 )ρ 1 ∂ x ρ1 .
For t ∈ [0,T ε ], using (5.5), (5.14) (5.15) and (5. [START_REF] Suliciu | On modelling phase transition by means of rate-type constitutive equations, shock wave structure[END_REF]) we obtain that

τ (t,x) - µ -1 γ ε ≤ C + C 0 ρ 1 L ∞ (R + ) .
We define T 1 ε ≤ T ε by

T 1 ε = max t ≤ T ε , ρ 1 L ∞ ([0,t]×R + ) ≤ 1 2C 0 ε , (5.31) 
so there exists τ 1 > 0 and τ 2 > 0 such that

∀ t ≤ T 1 ε , ∀ x > 0, τ 1 ε ≤ τ (t,x) ≤ τ 2 ε .
(5.32)

We solve Equation (5.30) by Duhamel formula

∂ x ρ 3 = 6 i=1 T i , (5.33) 
with

T i (t,x) = t 0 exp(- t s τ (σ,x)dσ)T i (s,x)ds.
We define Ψ by

Ψ(t) = sup [0,t] ψ(s), (5.34) 
where ψ is given by (5.24). Integrating by parts in T 1 we obtain

T 1 (t,x) = - t 0 µ -1 γ 1 2 (µ -γ) 1 2 τ (s,x)exp(- t s τ (σ,x)dσ)∂ x ρ1 (s,x)ds - t 0 exp(- t s τ (σ,x)dσ)∂ s (µ -1 γ 1 2 (µ -γ) 1 2 )(s,x)∂ x ρ1 (s,x)ds +µ -1 γ 1 2 (µ -γ) 1 2 ∂ x ρ1 (t,x).
Using (5.32), (5.5), (5.14), (5.15) and (5.28) we have

T 1 (t,•) L 2 (R + ) ≤ t 0 exp(- τ 1 ε (t -s))C(ψ(s) + 1)(1 + τ 2 ε )ds + C(ψ(t) + 1),
and we obtain that

∀ t ≤ T 1 ε , T 1 L 2 (R + ) ≤ C(1 + Ψ(t)).
(5.35) Using (5.5) (5.14) (5.15) (5.24) (5.34) and also (5.18) for T 3 and (5.27) and (5.28) for T 4 , we obtain

∀ t ≤ T 1 ε , T 2 L 2 (R + ) + T 3 L 2 (R + ) + T 4 L 2 (R + ) ≤ Cε(1 + Ψ(t)).
(5.36)

For the nonlinear terms T 5 and T 6 we use in addition (5.19) (5.20) and we obtain

∀ t ≤ T 1 ε , T 5 L 2 (R + ) + T 6 L 2 (R + ) ≤ C(1 + Ψ(t)).
(5.37)

Therefore we obtain the following estimation for ∂ x ρ using (5.27) (5.28) (5.33) (5.35) (5.36) (5.37)

∀ t ≤ T 1 ε , ∂ x ρ L 2 (R + ) ≤ C(1 + Ψ(t)), (5.38) 
so we have

∀ t ≤ T 1 ε , ρ L ∞ (R + ) ≤ C 1 (1 + Ψ(t)).
(5.39)

Fourth step

By a comparison method we estimate Ψ. For t ≤ T 1 ε , integrating (5.25) from 0 to t, using (5.38) and (5.39) we obtain that

(Ψ(t)) 2 ≤ C 2 t 0 (1 + (Ψ(s)) 2 + ε(Ψ(s)) 4 )ds.
(5.40)

We introduce the differential equation

y ε = C 2 (1 + y ε + εy 2 ε ), y ε (0) = 0.
(5.41)

There exists ε 0 > 0 such that, for ε ≤ ε 0 , the lifespan of y ε is greater than T . So we have

∀ ε ≤ ε 0 ,∀ t ≤ T,y ε (t) ≤ y ε0 (t) ≤ y ε0 (T ) = C 3 .
By comparison principle we deduce from (5.40) that

∀ ε ≤ ε 0 ,∀ t ≤ T 1 ε ,(Ψ(t)) 2 ≤ C 3 ,
and from (5.39),

∀ ε ≤ ε 0 ,∀ t ≤ T 1 ε , ρ L ∞ (R + ) ≤ C 1 (1 + C 3 ). Let ε 1 > 0 such that ε 1 ≤ ε 0 such that ∀ ε ≤ ε 1 ,C 1 (1 + C 3 ) ≤ 1 2C 0 ε .
So, by (5.20) and (5.31), we have for ε ≤ ε 1 , T 1 e = T ε = T and we conclude the proof by the estimate

∃K > 0, ∀ ε ≤ ε 1 , ρ L ∞ ([0,T ];H 1 (R + )) + ∂ t ρ L ∞ ([0,T ];L 2 (R + )) ≤ K.

Annex

Using the method in W.A. Yong [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] we show the convergence result for the Cauchy problem

             ∂ t u ε 1 -∂ x u ε 2 = 0, ∂ t u ε 2 -∂ x v ε = 0, ∂ t v ε -µ∂ x u ε 2 = 1 ε (p(u ε 1 ) -v ε ), (6.1) 
for (t,x) ∈ R + × R with the smooth initial data

w ε (0,x) = w 0 (x) = (u 0 (x),v 0 (x)) for x ∈ R. (6.2) 
Let us introduce u 0 the smooth solution of the Cauchy problem

   ∂ t u 0 1 -∂ x u 0 2 = 0, ∂ t u 0 2 -∂ x p(u 0 1 ) = 0, (6.3) 
with the initial data u 0 (0,x) = u 0 (x). (6.4)

As in Tzavaras [START_REF] Tzavaras | Materials with internal variables and relaxation to conservation laws[END_REF] we assume that there exists γ > 0 and Γ > 0 such that

∀ ξ ∈ R, γ ≤ p (ξ) ≤ Γ < µ, (6.5) 
so the problem (6.1)-(6.2) admits a global solution w ε = (u ε ,v ε ) such that

w ε ∈ C 0 (R + ;H s (R)) ∩ C 1 (R + ;H s-1 (R)).
We will prove the following convergence theorem. Theorem 6.1. Under assumption (6.5), if w 0 ∈ H s (R) with s ≥ 2, then there exists T 1 > 0 such that when ε tends to zero, u ε tends to u 0 in L ∞ ([0,T 1 ];H s (R)). Remark 6.1. It would be possible to relax hypothesis (6.5) as in Theorem 2.3; in this case, the lifespan of w ε is uniformly greater that T 1 . Remark 6.2. In fact it appears a boundary layer in time which affects only the third component of w ε .

Sketch of the proof

First step: the stability assumption in [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] are satisfied. As in [START_REF] Tzavaras | Materials with internal variables and relaxation to conservation laws[END_REF] and [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], we consider the strictly convex entropy function for the system (6.1)

E(u 1 ,u 2 ,v) = 1 2 u 2 2 + u 1 v - µ 2 u 2 1 - v-µu1 0 h -1 (y)dy,
where h(ξ) = p(ξ)µξ which is strictly decreasing by (6.5). So A 0 (w) = E (w) is a symmetrizer for the system. Denoting a = (h -1 ) (vµu 1 ) we obtain Using (6.6), (6.7) and (6.8) we obtain the stability conditions in [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF].

Second step: we use Theorems 6.1 and 6.2 in [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF]. We introduce the interior profile w 0 = ((u 0 1 ,u 2 ),p(u 0 1 )) and the boundary layer term I 0 = Ĩ0w 0 (0,x) where Ĩ0 is the solution of d Ĩ0 dτ = Q( Ĩ0 ), Ĩ(τ = 0) = w 0 (x).

We have I 0 1 = I 0 2 = 0 and I 0 3 (τ,x) = (v 0 (x)p(u 1 ,0))e -τ , and we obtain w ε (t,x) = w 0 (t,x) + I 0 ( t ε ,x) + O(ε), so we conclude the proof of Theorem 6.1. Remark 6.3. If w 0 belongs to the equilibrium manifold then the order zero boundary layer term vanishes. Remark 6.4. In fact using more precisely [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] and the appendix of [START_REF] Brenier | Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism[END_REF] we can prove that T 1 can be arbitrarily close to the lifespan of u 0 as in Theorem 2.3. Remark 6.5. In this annex the matrix P introduced in [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] plays an analogous role as the matrix P in section 5.

7 )

 7 the system (6.1) is equivalent to the quasilinear symmetric system A 0 (w)∂ t w + On the equilibrium manifold V = {v = p(u 1 )}, we haveA 0 (w)Q (w) + Q (w)A 0 (w) = 2 p (u 1 )µ