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initial-boundary value problem
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Libération, 33405 Talence cedex, France.

Abstract Two nonlinear Maxwell systems are considered: Kerr model exhibiting an instantaneous re-
sponse of the medium, Kerr-Debye model which contains some delay term and is a relaxation approxi-
mation of the first one. In one space dimension, we prove that the limit of the solution to the ingoing
wave condition for Kerr-Debye model is a solution to the Kerr model.
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1 Introduction

Nonlinear Maxwell’s equations are used for modelling nonlinear optical phenomena. The wave
propagation in an isotropic medium is described by Maxwell’s system:

O¢D — curl H =0,
0B + curl £ = 0,
div D =div B=0.

The field quantities £ and H represent the electric and magnetic fields, D and B the electric and
magnetic displacements. We consider the constitutive relations for a nonlinear Kerr medium:

B = poH,
D =¢eyE + P,

where P is the nonlinear polarization.
If the medium exhibits an instantaneous response we have a Kerr model:

P = Px = eoe,|E|?E.
If the medium exhibits a finite response time 7 we have a Kerr-Debye model:
P = Pgp = eoxFE,

where ] ]
B + =x = ~&.|EB|?
T T

(see for example [15] or [20]).

So the Kerr-Debye model is a relaxation approximation of the Kerr model and 7 is the relaxation
parameter (for a general presentation of relaxation problems, see [13]). Formally, when 7 tends
to 0, x converges to .|E|?> and Pk p converges to Pk.



Recently for the Cauchy problem with regular initial data, the convergence result was obtained in
[7] and [8] using the general framework given in [17]. This study is based on a precise description
of the boundary layer in time.

For the modelling of realistic physical situations it is more convenient to take into account
boundary value conditions. In particular we consider the impedance boundary value problem.
For the Kerr-Debye model in two space dimension, numerical studies were proposed for the
Dirichlet condition on the magnetic field in [19] and for the ingoing boundary condition in [8].

The aim of this paper is to prove convergence results in the case of impedance initial-boundary
value problem for Kerr-Debye model in one space dimension.

2 The one space dimension models

Let us suppose that
D(Qj‘, Y, Z) = (0’ d(l‘), 0)7
H(z,y,z) = (0,0,h(z)).
Then Maxwell’s system rewrite
Oyd + 0,h =0,
Oth + 0,e = 0,

for (t,z) € ([0, +oo[)?.

Once nondimensionalized the Kerr model, denoted by (K), becomes:

8td + 8zh = 0,
Oth + 0ye =0, (2.1)
d=(1+¢)e,

for (t,r) € (RT)2
We suppose that the initial data vanishes
d(0,z) = h(0,2) = 0 for z € RT, (2.2)
and that we have the boundary condition
h(t,0) + ae(t,0) = g(t) for t € RT, (2.3)
where a is a non negative constant.

The system (K) is quasi-linear hyperbolic. It is a p-system where p is the reciproque function
of e (1 + e?)e, and it is strictly hyperbolic with eigenvalues

A =—VP(d) <0< = +/p(d).
The energy density Ex given by

1 3
Ex(e h) = 5(62 + R+ 564) (2.4)

is a strictly convex entropy. In the entropic variable (e, h), system (K) writes in the symmetric

(5 ) i)+ (88 )(s) -
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The boundary {x = 0} is non characteristic. We can verify that the boundary condition (2.3) is
an ingoing wave condition and is maximal dissipative (since a > 0). Therefore classical existence
results of regular solution for the (K) boundary value problem (2.1)-(2.2)-(2.3) apply.

The one dimensional Kerr-Debye model, denoted by (KD) system, writes:
Oyde + Ophe =0,

8thg + 89565 = 0,

1 (2.6)
Oixe = g(eg — Xe),
[ de = (1+ xe)ee,
for (t,x) € (R*)?2, with initial data
d-(0,z) = h-(0,2) = x(0,7) = 0 for z € R (2.7)
and with boundary condition
he(t,0) + aec(t,0) = g(t) for t € RT. (2.8)
Using the third equation in (2.6) and (2.7) we remark that
Xe(t, ) > 0. (2.9)

The system (KD) is quasi-linear strictly hyperbolic with eigenvalues

[N

M=14y)2<Ad=0<A=(1+x)"2.

The energy density Exp given by

1 . 1 1
Exp(d,h,x) = 5(1 +x) '+ §h2 + ZX2

is a strictly convex entropy in {x > 0}, so the system (KD) is symmetrizable.
Using the entropy variables given by

adgK'D((L h?X) = (1 + X)_ld =€,

athD(d7 h? X) = ha

1 _ 1 1
Oiep(dshx) = =51+ +gx = 5lx =€) = v,

system (KD) takes the symmetric form

(1+ 36? + 2v.)0re. + 2e.0pve + Ophe =0,

Oyhe + Bpe. = 0,

2
2e: 0. + 2000 = —EUE.



If we use the following notations:

We = (Ug,v:) with Uz = (e, he),

1+3e2+2v. 0 2e. 010
Ag(W.) = 0 1 0 |,4=(100],
2e. 0 2 000
0
Q(WE): 0 )
Ve
we obtain )
Ag(W2)o W, + A10, W, = —EQ(WE). (2.10)

The matrix Ag(W,) is definite positive because y. = e + 2v. > 0 by (2.9). The matrix A;
is singular with one dimensional kernel, so the boundary {x = 0} is characteristic of constant
multiplicity. In addition, the boundary condition (2.8) is an ingoing wave boundary condition
and is maximal dissipative. Therefore the general results of [5] apply to obtain existence result
of regular solutions for the (KD) boundary value problem (2.6)-(2.8).

Now let us specify the assumptions on the source term g in the boundary condition (2.3) or (2.8).
For the modelling of realistic physical situations we can assume that g is compactly supported in
[0, +00[. We denote by H* the classical Sobolev space and we suppose that g belongs to H*(R)
for s great enough. So the boundary condition and the null initial data match one each other
and we obtain smooth solutions.

In order to obtain homogeneous boundary condition we replace the magnetic field h by h(t,z)+
g(t)n(x) where 1 is a smooth function, compactly supported in R, equal to 1 in a neighbourhood
of 0. We rewrite the (K) boundary value problem in the entropic variables

(0 9y )+ (23 () = (2 ) mimeqerr

e(0,2) = h(0,x) =0 for z € RT, (2.11)

h(t,0) + ae(t,0) =0 for t € RT,

where g1 (t,2) = —g(t)n'(z) and g2(t,z) = —¢'(t)n(x), and we consider a regular solution of this
problem.

Proposition 2.1 There exists T* > 0 and a unique regular solution U = (e, h) for the (K)
boundary value problem (2.11) defined in [0, T*[xR* and such that

olU € CO[0, T*[; H*{(RT)) fori=0,1,2.

In the same way we rewrite the (KD) boundary value problem in the entropic variables



2
Ag(W)O W, + A0, W, = —EQ(WE) + G(t,z) for (t,z) € (RT)?,

W.(0,z) = 0 for z € RT, (2.12)

he(t,0) + ae(t,0) =0 for t € R,
where G = (g1, g2,0).

For fixed € > 0, using the results in [5] we consider a regular local solution of this problem.

Proposition 2.2 There exists T > 0 and a unique reqular solution W = (U.,v;) for the (KD)
boundary value problem (2.12) defined on [0, TX[xR* and such that

OW. € CO([0, T2 [; H*H(R™)),i = 0,1,2.

The goal of this paper is to analyse the behaviour of the regular solutions for the (KD) boundary
value problem when the relaxation parameter ¢ tends to 0. By energy estimates we first obtain
uniform bound of W, in the following theorem.

Theorem 2.1 Let W, and T} given by Proposition 2.2. There exist T > 0 and a constant
K > 0 such that for all e > 0, T > T and the solution W, = (U.,v:) of the (KD) boundary
value problem (2.12) satisfies

;

||8ZU€||C0([0,ff];H2—i(R+)) <K fOT 1= 0, 1, 2,

1
2 velleoqo 2y, )y < K

||8§U€||C0([0,’f“];H27i(R+)) <K fori=0,1,2.

1
Theorem 2.1 shows the strong convergence of v, = E(Xg - 63) to zero. The convergence of

U to the solution of the boundary value problem (2.11) for (K) is contained in the following
statement.

Theorem 2.2 Let U and T™ given by Proposition 2.1, let U. and T given by Theorem 2.1. For
T<T and T <T*, there exists a constant K > 0 such that for all ¢ > 0,

|Ue = Ulleo(o,my;2m+)) < Ke. (2.13)
So we have proved that the regular solutions for the (KD) boundary value problem tend to the
solution for the (K) boundary value problem when the relaxation parameter tends to zero.

In our study we remark that no boundary layer appears in the time variable because the null
initial data belongs to the equilibrium manifold defined by

V = {(d,h,x) such that x — (1 +x)2d* =20 = 0}.

For the space variable, we have the same boundary condition for the system (K) and for the
system (KD), so no space boundary layer appears again.

In the case of non characteristic boundary conditions, a general study of boundary conditions
for hyperbolic relaxation systems is given in [16].



To our knowledge general convergence results are not available for hyperbolic relaxation systems
in domains with boundary in the literature.

A special well investigated problem is the semilinear relaxation approximation to the boundary
value problem for a scalar quasilinear equation, see [11, 14, 10, 12], and [4, 1] for related numerical
considerations.

For the strong solutions of the (KD) boundary value problem with the entropic variables, we
obtain a symmetric hyperbolic system endowed with a flat equilibrium manifold. This basic
structure of numerous relaxation systems is explained and used for the global existence of smooth
solutions in [6] and for asymptotic behaviour in [2]. For connected works see also [18, 9].

The study of the three-dimensional case is the subject of a work in progress [3]. In this case the
previous properties are still valid: there is no boundary layer and with the entropic variables,
the equilibrium manifold is flat. On the other hand, the boundary is characteristic for both
problems, with a two-dimensional kernel for Kerr problem, and a three-dimensional kernel for
Kerr-Debye problem. We must then take into account the nonlinear conservation equations
div D = div B = 0, which is irrelevant for the one-dimensional case.

Section 3 is devoted to the proof of Theorem 2.1. Using energy estimates, we bound the time
derivatives of W,.. The boundary is characteristic so we cannot directly obtain the bounds for
the space derivatives. Since Ker A7 = R(0,0, 1) with the first two equations, we can express and
estimate the space derivatives for U.. Estimates for v. are obtained solving the third equation
by Duhamel formula.

We prove Theorem 2.2 in Section 4.

3 Proof of Theorem 2.1

We denote by - the canonical scalar product on R? and by |.| the associated euclidean norm.

For the convenience of the reader, we rewrite System (2.12) omitting the dependance on . Let
W be a solution to the problem

2
Ag(W)OW + A0, W = _EQ(W) + G on [0, TS[xRT,
W(0,2) =0 on RT, (3.1)
(h + ae)(t,0) =0 on [0,T].
Here we denote by T2 €]0, +o0] the lifespan of W given by [5]. We prove the result when

Wl oo 0,12 xr+) = +00.

If this asumption is not satisfied, we use the extension Theorem in [5] with analogous arguments
as below.

Let M be a positive constant large enough with respect to the L°°-norm of the initial data.
Consider the regular solution W = (U, v) to problem (3.1), as given by Proposition 2.2. Define
T. >0 as

T: = max{T < T7, [[W|| oo (o, 1 xr+) < M}, (32)

that is T; is the first time such that the L°°-norm of W reaches the given bound M.
We recall that the solution W = (U, v) satisfies:



oW € C°([0,T.]; H* Y (RT)) for i = 0,1, 2. (3.3)
Furthermore we recall that

e*+2v>0o0n [0,T.] x RT. (3.4)
From (3.2) and (3.4), by definition of Ay we have

1

3
VECR®, Ao(W)E €2 3

€12, (3.5)

We measure the boundary value lifting G by the quantities v and I" defined by:

1
V(t) = (HG(t)”%Q(RJr) 10 GO 7@y + 10uG D172 gy + ||azG(t)”%2(R+)) : (3.6)
and
I'(t) = sup ~(s). (3.7)
s€[0,¢]

For t € [0, 7] we define ¢ and ® by

1
o(t) = <||W(t)”%2(R+) +18W ()] 72 gy + ||attW(t)”%2(R+)> ° (3.8)
O(t) = sup ¢(s). (3.9)
s€[0,t]

We first prove the following result.

Lemma 3.1 There exists a constant K1, independant of M, such that

Ve>0,Vtel0,TL], d(t)? < Ki(2+ M?) /t (1 +(D(s))° + (F(s))5) ds. (3.10)
0

First step: L? estimate

We take the inner product of Equation (3.1) with W and we obtain that

Ld Ag(WW - Wdz + g/ lv|dz + ale(t,0)* = | G-W + E O(Ag(W)W - W,
2dt R+ € Jr+ R+ 2 R+
where
6edie +20;v 0 20:e
O (Ag(W)) = 0 0O O . (3.11)
2(‘3te 0 0
We have
. (Ag(WNW - Wdaz| < [|8(Ao(W)) | @) W |72

< C(1+ el oo w+y) (10eell oo rey + 10¢0] oo () HW”%?(RJr)v



thus we obtain that

1d

2
57 [ AdW)W - W dx + —/ |v]*dz + ale(t, 0)]* < (|G| L2 IVl L2ty
2dt R+ € Jr+

(3.12)
+C(1 + [le]| oo m+)) (10ke|| oo (rt) + HatUHLOO(]Rﬂ)”WH%?(RJr)'

Second step: estimate on 0;IWW

We can derivate the system (3.1) with respect to t. We obtain that
Ao(W)0uW + 0(Ag(W))Ot W + A10i W = —gQ(@tW) +0;G on [0,T.] x RT,
W (0,2) =0on R, (3.13)
(Oth + ade)(t,0) =0 on [0, T:].

Taking the inner product of (3.13) with 9;W, we obtain that

1d

2
- Ao(W)atW . 8thZII + - / |8tv|2dx + a](?te(t, 0)’2 = 8tG . 8tW
2dt Jp+ € JR+

R+
1
== | O(A(W))OW - O Wdz,
2 Jp+
and thus there exists a constant C' such that
1d

2
57 [ AW)oW - 0:Wdx + —/ |0 [P da + a|dse(t, 0)* < [|0:G|l L2 @) |0:W || L2+
2dt Jrp+ € JRr+

+C 1+ |lell oo ) (10eell oo ) + 1|00 oo (r+)) ||8tW||%2(R+)'
(3.14)

Third step: estimate on 9;W
We can derivate System (3.13) with respect to t. We obtain that

1d

2
- Ao( )(’9ttW 815th£13 + - / |8ttv| dx + a|8tte t 0 / 8ttG 8tt
2 dt R+

——/ 8t AO 8ttW 8tthx—/ 8tt Ao( 8tW 8ttW

6(8,56)2 + 6€att€ + 28tt'l) 0 28tte
Ou(Ag(W)) = 0 0 0 ,

Now we have:

2(‘3tte 0 0
thus

106 (Ao (W)W || p2g+y < C(A A+ llellzoe @) (19sell ooy + 11000] oo e t)) 106 W | L2 @)

+C|0sel|F oo () 10cel| L2 (R4 -



Therefore

1d

2
—— Ao(W)attW - OuWdzx + — / |8ttv|2d:r + a|8tte(t, O)|2
2dt Jp+ € Jr+

< 10uGl 2 @) 106 Wl L2r+) + C(1+ llell oo m+)) ([10ke]l oo ey + 1001 oo () 10 W 117 2 g

+C|0vel| oo iy 0rell 2 @) 106 W [l L2 et -

(3.15)
Fourth step: L estimates for 0;e and 0;v
We recall the equations satisfied by W = (e, h,v):
(3e? 4 20 + 1)de + 2edpv + ph = gy, (3.16)
Oth + Oze = g2, (3.17)
1
edie + 0w = —2v (3.18)
From (3.17) we have
0zell2mey < @+ [|Gllr2@ty < 0+, (3.19)
where ¢ is defined by (3.8) and ~ is defined by (3.6). Thus
el gt m+y < 2¢0 +7, (3.20)
and by Sobolev injection
llell oo m+) < Clep + 7). (3.21)
Derivating (3.17) with respect to ¢ we obtain that
[0:0cell 2ty < @ + 10:Gl L2+,
SO
0cell i1 (m+y < 200 + |O:GI| L2(m+), (3.22)
and by Sobolev injections there exists a constant C' such that
[0l oo mr) < Clep +7)- (3.23)

Now we solve Equation (3.18) with Duhamel formula:

s—t

u(t,z) = _/0 exp( Je(s,x)0e(s, x)ds,

€

SO

¢ s—t
v M zoe@+) < /0emp(T)He(sv-)||L°°(R+)||ate(57')|L°°(R+)d5

< O [ eap(*—=) (pls) +1(s) ds
< O@(t) +T(1)%,

9



where @ is defined in (3.9) and T is defined by (3.7).
Using Equation (3.18) we obtain then that

1
10| oo (mty < EHUHLOO(RH +|2|€8t€||Loo(R+) (3.24)
< C(P(t) +T'(t))=.

Fifth step: end of the proof of Lemma 3.1

We sum up inequalities (3.12), (3.14) and (3.15). Using (3.23) and (3.24) we obtain that there
exists a constant K independant of e, M and t € [0, 7] such that

1d

2 dt (AO(W)W -Wdx + Ag(W)OW - O Wdx + Ag(W )0 W - 8ttW) dx
R+

2
+—/ (\v|2da:+ Oy [2da + yattv|2) da:+a<|e(t,0)|2 +19pelt, 0)2 + \8tte(t,0)]2)
€ Jr+

<Cyp+C(L+9+7) (p+7+(@+1D)?) ¢* + Clp +7)%p°
< K, (1+<I>5+F5).

We integrate this inequality on [0,¢] for ¢ € [0,7-] and we have by (3.5) that
t
Vitel0,T], p2(t) < Ki(2+ M2)/ (14 ®(s)° +I'(s)°) ds.
0
So we obtain Lemma 3.1.

Lemma 3.1 provides estimates on the time derivatives of W. The space derivatives can not be
obtained by the same method since it is impossible to derivate the system (KD) with respect to
the normal variable z. We deduce estimates on the space derivatives from the equations as we
will see in the following lemma.

Lemma 3.2 There exists Ko such that for allt <T7,
Ul g2y < Ko(T 4+ @ +T° + 0%),
0]l g gy < Ka(I? + @%)e,
1000l gy < Ka(IT? + @),
Wl oo me) < Kao(T 4 @ + T2 + &7).

Proof of Lemma 3.2
We recall that

t p—
v(t,x) = —/ exp <8Tt> e(s,z)0e(s, x)ds,
0
thus .
s—1t
ot Mgy < € [ e (S5 et s oy el s oy s

10



thus by Estimates (3.22) and (3.20), we have
ot, M @) < C((t) +T(1))%. (3.25)

From (3.18) we obtain that

1
[0 (t, ) a1 m+) < g”v(tv M@y + lellar @+ylIOcell g+,

thus
[0po(t, M ey < C(D(t) +T(£))* (3.26)

Now from Equation (3.16) we estimate J,h in the following way:
102kl ey < Mgl @y +113€% +20]| 1 e+ 10se]| 1 ey + 1 Ocell g my + 21 el 1 et 1960 ] 1 ey
and thus there exists a constant C such that
Bl r2 @y < C(L+ @ + T2 + @%). (3.27)
We derivate (3.17) with respect to x:
Ozze = Ozg2 — O1Ozh.

Thus
||am€||L2(R+) =7+ ||8t8wh||L2(R+)-

Derivating (3.16) with respect to ¢ we obtain that:

1000l L2ty < 1136 + 20 + 1| poo ) | Outell L2y + |6€die + 20| L2t |0l Lo ()
+2||0tel| oo (m) 100 || L2ty + 2[10e]| oo () 1Ot | L2ty + 10kg1 ] L2+

< CT+o+034T13),

using (3.21), (3.23), (3.24) and (3.25).
So we have obtained that
el gzg+) < C(T+ @ + @* +T%). (3.28)

This concludes the proof of Lemma 3.2.

Proof of Theorem 2.1

We fix M = 3K5(T's +I'3.), where Kj is given by Lemma 3.2, and where I'y, = supT.
R+

Let us introduce £ the solution of

{ ¢ = Ky (2+ M?) <1+§% +rgo) ,
£(0) =0,

defined on the maximal interval [0, 77 [, where K is given by Lemma 3.1. By comparison results,
from Estimate (3.10) we have

Vit e [0,min(Ty, Ty, ®(t) < £().

11



From Lemma 3.2 we have then that
W oy < Ka(T + €2 +T% 4 £3),

The map £ is continuous and £(0) = 0, thus there exists a time T with 0 < T < Ty such that

=

~ 3 ~ M
Kol€h(D) + 2 (T) < Y.
For all t < T, we then have:

KT +67 +T%462) <
_ _ ) oM o .
Thus T' < T: because if T. < T' then ||[W ()| Lo mt+) < ES for all ¢ < T, which is contradictory
to the fact that ||W(T%)|| Lo @+) = M (see (3.2)).

2M
3

It remains to obtain an uniform H? estimate on v. We have

thus with an integration by parts we obtain that

o(t,z) = —% [emp (S = t> e(s,x)2K + % /Ot exp (S ~ t) e(s,x)2ds.

So we obtain that there exists a constant C independant of ¢ such that for ¢ < T

[o(t, Mm@y < CllellZoo o2 @+))-

This concludes the proof of Theorem 2.1.

4 Proof of Theorem 2.2

Let us consider U = (e, h) the solution of the (K) boundary value problem (2.11) defined on the
time interval [0, 7% given by Proposition 2.1. We recall that we denote by W, = (U, v.) the
solution of the (KD) boundary value problem (2.12) given by Proposition 2.2, with U, = (ec, h.).

1
Set R. = —(U: — U) = (r¢, sc). The remainder term R, satisfies
5
) 2 2
(3eZ + 2v; + 1)1z + Opse + 3(ec + €)(0re)re = —gegatva — gvgate,

Otse + Opre = 0,
with the initial and boundary conditions:

se = e, =0 for t =0,

se +ar. =0 for z = 0.

In order to estimate the right hand side term we recall that from (2.12) we have

1
gatva = —0yv, — (atea)z — e0pee.

12



Using Theorem 2.1, for all T' < T, there exists a constant K independant of € such that

Hat'UEHLQ(R+) S KE. (43)

We take the inner product of (4.1) with R, to obtain that

1d
2dt Jgp+

- / 3(es + ) (Dre)r? — 2 / e (O )re — 2 / v (e
R+ € Jr+ € Jr+

1
((362 + 20, + )72 + sg) + a(s:(t,0))? = 3 /+(6e€8te€ + 2040 )12
R

So, there exists a constant C such that

1d
2dt R+

(B2 +2ve + 1)r2 + 52) < C ([lec | ooy 10rec | oo ey + 10rvell Lo @) 7e 122
+C (|lec | oo g+ 10kl oo r+y + ll€ll oo () 10kl oo (r+)) ||Te||%2(R+)

2 2
+g||€e||L°o(R+)||8tUs||L2(R+)||7"s||L2(1R+) + g||at€||L°<>(R+)||Ue||L2(1R+)||7"s||L2(R+)-

From the estimates of Theorem 2.1, from the properties of e (see Proposition 2.1) and from
(4.3), there exists a constant K such that fo all 7" < min(7",7™),

1d

33 |, (B + 20 £ 102 452 < KO+ ).

We integrate this equation from 0 to ¢ and we obtain, using (3.5), that

t
re(O172@ry + lse(OllF2@ry < K(M? + 2)/0 (1 + ”TE(T)H%Q(R"')> dr.

We conclude the proof of Theorem 2.2 by Gronwall Lemma.
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