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Abstract. The goal of this article is to analyze the time asymptotic stabil-
ity of one dimensional Bloch walls in ferromagnetic materials. The equation
involved in modelling such materials is the Landau-Lifchitz system which is
non-linear and parabolic. We demonstrate that the equilibrium states called
Bloch walls are asymptotically stable modulo a rotation and a translation trans-
verse to the wall. The linear part of the perturbed equation admits zero as an
eigenvalue forbiding a direct proof.

1. Introduction. Over the last decade, the interest for ferromagnetism modeliza-
tion had grown (see [7]). One of the main goals of these mathematical studies is to
understand the behaviour of dynamical structures in ferromagnets [3, 4, 5, 10, 11, 12]
to validate models. The obtained results will be exploited to enhance numerical
simulations of ferromagnets used by physicists [9] to understand and optimise the
magnetic characteristics of ferromagnetic materials. Remembering that the main
mean of observation is the microwave resonnance, we understand the importance
of studying the stabilty of the magnetization in ferromagnets; this study would
validate mathematically and therefore numerically, the use of that mean of obser-
vation. Then, one of the key points to understand this stability is to analyse the
stability of the microstructures developped by the magnetization: it is to say the
walls, separation zones between the domains in which the magnetization is smooth.

No extensive study of wall stability in micromagnetic states has been done yet.
The three dimensional structure of these objects is very complex and there are
no mathematical description in the three dimensional case and some for the two
dimensional one [1, 6].

The three dimensional model is the following : we denote by u = (u1, u2, u3) the
magnetic moment defined on R

+
t ×Ω with values in S2 the unit sphere of R

3, where
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Ω is the ferromagnetic domain. The variations of u are gouverned by the following
Landau-Lifschitz equation :

∂u

∂t
= −u ∧ heff (u) − u ∧ (u ∧ heff (u))

The effective field heff (u) is given by

h(u) = A 4u+ hd(u),

where A4u is the exchange field, and where the demagnetizing field hd(u) satisfies




rot(hd(u)) = 0,
div(hd(u)) = −div(u),
u = 0 in R

3 \ Ω.
(1)

This system has solutions for regular finite domain Ω as shown in [5].
In this paper we consider an asymptotic one dimensional model of nanowire

obtained and justified by D. Sanchez in [14]. In this case the demagnetizing field
writes :

hd(u) = −u2e2 − u3e3 = u1 e1 − u (2)

where (e1, e2, e3) is the canonical basis of R
3 and where u = (u1, u2, u3).

Remark 1. This model is obtained using a BKW method, taking the limit when
the diameter of the wire tends to zero (see [14]).

Finally using a space scaling factor to set A = 1, for a line along the x-axis we
study the following system





u : R
+
t × Rx −→ S2

∂u

∂t
= −u ∧ h(u) − u ∧ (u ∧ h(u))

with h(u) =
∂2u

∂x2
+ u1 e1

(3)

Remark 2. The demagnetizing field hd(u) given by Formula (2) only appears in
Landau-Lifschitz Equation in the expression u∧hd(u) = u∧ (u1e1−u) = u∧ (u1e1).
It is the reason why we can work with the expression of h(u) given in (3).

The aim of the paper is to study the stability of a static wall profile which
separates the domain in which u = −e1 (in the neighborhood of −∞) and the
domain in which u = e1 (in the neighborhood of +∞).

This profile is given by

M0 =




thx
0
1

chx


 .

We remark that Landau-Lifschitz equation (3) is invariant by translation in the
variable x and by rotation around e1. Hence for all Λ = (θ, σ) ∈ R × R, the profile
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x 7→MΛ(x) = Rθ(M0(x− σ)) is a static solution of (3) satisfying lim
−∞

u = −e1 and

lim
+∞

u = e1, where we denote by Rθ the rotation of angle θ around e1:

Rθ =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




.
Our main result is the following

Theorem 1. Let ε > 0, there exists η > 0 such that, for all v0 in H2(R) with
|v0| = 1 for all x in R and such that ‖v0 −M0‖H2(R) < η, if we denote by v the
solution of (3) with v0 as the initial data then, for all t in R

+, ‖v(t)−M0‖H2(R) < ε.

Furthermore there exists Λ = (θ, σ) ∈ R
2 such that v tends to MΛ when t tends to

infinity for the norm H1(R).

The invariance of (3) by rotation-translation implies that the linearized equation
in the neighborhood of M0 has zero as an eigen-value, wich is a major obstruction
to obtain strightly the stability result. In addition all the known results about
the stability of travelling waves are proved for semilinear equation (see [8]). Here
the considered Landau-Lifschitz equation is quasilinear and we have to combine
variational estimates with the methods used in [8].

The paper is organized as follows : in Section 2 we describe the perturbations of

M0 in the mobile frame (M0(x),M1(x),M2), where M1(x) = (
1

chx
, 0,−thx) and

M2 = (0, 1, 0), writing

u(t, x) = r1(t, x)M1(x) + r2(t, x)M2 +
√

1 − r21 − r22M0(x).

We obtain then an equivalent formulation of Equation (3) where the unknown is
r = (r1, r2), of the form:

∂r

∂t
= Lr + F (x, r,

∂r

∂x
,
∂2r

∂x2
) (4)

where Lr denotes the linear part.
The stability of M0 for Equation (3) is then equivalent to the stability of the

zero solution for Equation (4).
The two parameters family of static solutions MΛ for Equation (3) induces in

the new coordinates a two parameters family RΛ of statics solutions for Equation
(4). In Section 3, we decompose the solution r of (4) in

r(t, x) = RΛ(t)(x) +W (x)

where W ∈ (Ker L)⊥. This decomposition is rather classical for the study of static
solution stability for semilinear parabolic equations (see [8]). This technique has
also been used in [2] to demonstrate the stability of travelling waves in thin films
or in [13] in the case of the radially symmetric travelling waves in reaction-diffusion
equations.

The main difficulty here is that Equation (4) is quasilinear and then the non

linear term F depends also on
∂2r

∂x2
. We then use Section 5 variational estimates for
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the non linear part combined with more classical linear estimates on the operator
L (proved in Section 4).

In the following we denote by · the scalar product in R
3, and by ( | ) the scalar

product in L2(R).

2. Equation for the perturbations of the wall.

2.1. Moving frame. We consider the following moving frame (M0(x),M1(x),M2)
with

M0 =




thx

0

1

chx



, M1 =




1

chx

0

−thx




and M2 =




0

1

0




We consider u as a little perturbation of M0 and we write u on the form

u(t, x) = r1(t, x)M1(x) + r2(t, x)M2(x) +
√

1 − (r1(t, x))2 − (r2(t, x))2M0(x). (5)

We denote λ =
√

1 − r21 − r22 . In order to ensure the regularity of λ, we as-

sume that ‖u − M0‖L∞(R) ≤ 1

2
. This asumption is correct since we study little

perturbations of M0.

We have

• dM0

dx
=

1

chx
M1,

• dM1

dx
= − 1

chx
M0,

• d2M0

dx2
= − shx

ch 2x
M1 −

1

ch 2x
M0

• e1 = thxM0 +
1

chx
M1

• h(M0) = fM0 where f(x) = 2th 2x− 1.

Furthermore

h(u) = a0M0 + a1M1 + a2M2

with

a0 =
∂2λ

∂x2
+ λf(x) + 2r1

shx

ch 2x
− 2

∂r1
∂x

1

chx

a1 =
∂2r1
∂x2

+ 2
1

chx

∂λ

∂x

a2 =
∂2r2
∂x2
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We replace u by its expression (5) in Equation (3), and we obtain that

∂λ

∂t
M0 +

∂r1
∂t

M1 +
∂r2
∂t

M2 = − (r1a2 − r2a1)M0 − (r2a0 − λa2)M1 − (λa1 − r1a0)M2

− λ(r2a0 − λa2)M2 + λ(λa1 − r1a0)M1 + r1(r1a2 − r2a1)M2

− r1(λa1 − r1a0)M0 − r2(r1a2 − r2a1)M1 + r2(r2a0 − λa2)M0

(6)

Projecting Equation (6) in the directions M1 and M2 we obtain that if u is
solution of (3) then

∂r1
∂t

= −r2a0 + λa2 + λ(λa1 − r1a0) − r2(r1a2 − r2a1)

∂r2
∂t

= −(λa1 − r1a0) − λ(r2a0 − λa2) + r1(r1a2 − r2a1)

(7)

Remark 3. Equation (7) is equivalent to Equation (3). Indeed we write Equation
(3) on the form :

∂u

∂t
= F (u)

where F (u)(x)is orthogonal to u(x) for all x ∈ R.
Equation (7) is the projection of (3) on the directions M1 and M2, that is if

(r1, r2) satisfies Equation (7), then u = r1M1 + r2M2 +
√

1 − r21 − r22M0 satisfies

(
∂u

∂t
− F (u)) ·M1 = (

∂u

∂t
− F (u)) ·M2 = 0.

We remark that u = r1M1 + r2M2 +
√

1 − r21 − r22M0 is a normed vector field,

thus
∂u

∂t
· u = 0. Furthermore, u · F (u) = 0. Thus, if (r1, r2) satisfies Equation (7),

then (
∂u

∂t
− F (u)) · λM0 = 0 and since λ 6= 0 (since we consider little perturbations

of M0) we obtain that the third composant of
∂u

∂t
− F (u) is zero.

Thus for little perturbations of M0, Equation (3) is equivalent to (7).

We detail Equation (7) replacing the ai’s by their values. We obtain that Landau-
Lifschitz equation is equivalent for little perturbations ofM0 to the following system:
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∂r1
∂t

= −r2
∂2λ

∂x2
− r2λf(x) − 2r2r1

shx

ch 2x
+ 2r2

∂r1
∂x

1

chx

+λ
∂2r2
∂x2

− r1r2
∂2r2
∂x2

+
∂2r1
∂x2

+ 2
1

chx

∂λ

∂x
− r21

∂2r1
∂x2

−2r21
1

chx

∂λ

∂x
− λr1

∂2λ

∂x2
− λ2r1f(x) − 2λr21

shx

ch 2x
+ 2λr1

∂r1
∂x

1

chx

∂r2
∂t

= −λ∂
2r1
∂x2

− 2λ
1

chx

∂λ

∂x
+ r1

∂2λ

∂x2
+ r1λf(x) + 2r21

shx

ch 2x
− 2r1

∂r1
∂x

1

chx

+
∂2r2
∂x2

− r22
∂2r2
∂x2

− r1r2
∂2r1
∂x2

− 2r1r2
1

chx

∂λ

∂x
− λr2

∂2λ

∂x2

−λ2r2f(x) − 2λr1r2
shx

ch 2x
+ 2λr2

∂r1
∂x

1

chx
(8)

We denote r = (r1, r2), and we define µ : B(0, 1
2 ) ⊂ R

2 −→ R by µ(ξ) =√
1 − |ξ|2 − 1 (that is λ = 1 + µ(r)). We then write Equation (8) on the condensed

form detailed in the following proposition:

Proposition 1. The function u ∈ C1(R+;H2(R;S2)) such that ‖u −M0‖L∞ ≤ 1
2

satisfies Landau-Lifschitz equation (3) if and only if u = r1M1+r2M2+
√

1 − r21 − r22M0

where r = (r1, r2) satisfies:

∂r

∂t
= Lr +G(r)(

∂2r

∂x2
) +H1(x, r)(

∂r

∂x
) +H2(r)(

∂r

∂x
,
∂r

∂x
) + P (x, r) (9)

with

• L = JL with J =

(
−1 −1
1 −1

)
and L = − ∂2

∂x2
+ f (we recall that f(x) =

2th 2x− 1),
• G(r) is the matrix defined by:

G(r) =




r1r2√
1 − r21 − r22

r22√
1− r21 − r22

+ µ(r)

−µ(r) − r21√
1 − r21 − r22

− r1r2√
1 − r21 − r22




• H1(x, r) is the matrix defined by:

H1(x, r) =
2√

1 − r21 − r22ch x




r2
√

1 − r21 − r22 − r1r
2
2 −r2 − r2r

2
1

r2 − r32
√

1− r21 − r22r2 + r1r
2
2



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• H2(r) ∈ L2(R
2) is a symetric bilinear form defined by

H2(r)(ξ1, ξ2) =




√
1 − r21 − r22r1 + r2√

1 − r21 − r22
3

√
1 − r21 − r22r2 − r1√

1 − r21 − r22
3




(
(1 − r21 − r22)(ξ1 · ξ2) + (r · ξ1)(r · ξ2)

)

• P is defined by

P (x, r) =




−r2µ(r)f(x) − 2r2r1
sh x

ch 2x
+ (r21 + r22)r1f(x) − 2

√
1− r21 − r22r

2
1

shx

ch 2x

r1µ(r)f(x) + 2r21
sh x

ch 2x
+ (r21 + r22)r2f(x) − 2

√
1 − r21 − r22r1r2

shx

ch 2x




The properties concerning G, H1, H2 and P are summarized in the following
proposition:

Proposition 2. • G ∈ C∞(B(0, 1/2);M2(R)) and G(ξ) = O(|ξ|2)
• H1 ∈ C∞(R ×B(0, 1/2);M2(R)) and H1(x, r) = O(|r|)
• H2 ∈ C∞(B(0, 1/2);L2(R

2)), with H2(x, r) = O(|r|)
• P ∈ C∞(R ×B(0, 1/2); R2) with P (x, r) = O(|r|2) uniformly in x ∈ R

3. A new system of coordinates. We remark that L is a self adjoint operator on
L2(R), with domain H2(R). Furthermore, L is positive since we can write L = l∗ ◦ l
with l =

∂

∂x
+ th x, and Ker L is the one dimensional space generated by

1

chx
.

The matrix J being invertible, Ker L is the two dimensional space generated by
e1 and e2 with

e1(x) =

(
0
1

chx

)
, e2(x) =

(
1

chx
0

)
(10)

We introduce E = (Ker L)⊥. We denote by Q the orthogonal projection onto E
for the L2(R) scalar product.

Landau-Lifschitz equation (3) is invariant by translation in the variable x and by
rotation about the axis e1. This two parameters family of invariance explains the
presence of the eigenvalue zero (of multiplicity 2) for the linearized operator L. We
will write the solution u as a rotation-translation of M0 plus a term in E .

For Λ = (θ, σ) fixed in R
2 we know that the profile M0 rotated of the angle θ

and translated of σ is a solution of Landau-Lifschitz equation. We denote by MΛ

this solution:

MΛ(x) =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


M0(x− σ)

and we introduce RΛ(x) the coordinates of MΛ(x) in the basis (M1(x),M2(x)):

RΛ(x) =

(
MΛ(x) ·M1(x)
MΛ(x) ·M2

)
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In a neighborhood of zero (which represents the wall profile M0 in the frame
(M1,M2)), we use a coordinate system given by

r(x) = RΛ(x) +W (x). (11)

with (Λ,W ) ∈ R
2 × E .

The map r 7→ (Λ,W ) is a diffeomorphism from a neighborhood of zero in H2(R)
to a neighborhood of zero in R

2 × E . Indeed let r ∈ H2(R). In order to use the
coordinate system (11), there must exist a unique pair (Λ,W ) ∈ R

2 × E such that
r(x) = RΛ(x) +W (x).

If r = RΛ + W then taking the scalar product of r with e1 and e2, since W ∈
E = (Ker L)⊥ and since (e1, e2) defined by (10) is a basis of Ker L, we have

(r|e1) = (RΛ|e1) and (r|e2) = (RΛ|e2) (12)

Furthermore, if Λ ∈ R
2 satisfies (12) then W = r −RΛ ∈ E

We define ψ : R
2 −→ R

2 by

ψ(Λ) =




(RΛ|e1)

(RΛ|e2)




Therefore (11) defines a system of coordinates in a neighborhood of 0 if ψ is a local
diffeomorphism in a neighborhood of zero. This is the case since ψ is C∞ and since
ψ′(0) = Id.

We compute now the equation of the perturbation in the coordinates (Λ,W ).

We write the solution r of Equation (9) on the form :

r(t, x) = RΛ(t)(x) +W (t, x)

where for all t, W (t) ∈ E and where Λ : R
+
t 7→ R

2.

We will rewrite Equation (9) in the coordinates (Λ,W ). The equation on Λ is
obtained by taking the scalar product of (9) with e1 and e2. The equation on W is
obtained using Q the orthogonal projection onto E .

If Λ = (θ, σ) is fixed, we know that x 7→ RΛ(x) satisfies (9) that is we have:

LRΛ +G(RΛ)(
d2RΛ

dx2
) +H1(x,RΛ)(

dRΛ

dx
) +H2(RΛ)(

dRΛ

dx
,
dRΛ

dx
) + P (x,RΛ) = 0

In order to isolate the linear part in W we perform the Taylor expansion for G,
H1, H2 and K, and we have at order 1:

G(RΛ +W ) = G(RΛ) + Ĝ(RΛ,W )(W )

with

Ĝ(v1, v2)(ξ) =

∫ 1

0

G′(v1 + sv2)(ξ)ds

and at order 2:

G(RΛ +W ) = G(RΛ) +G′(RΛ)(W ) + G̃(RΛ,W )(W (2))

where

G̃(v1, v2)(ξ
(2)) =

∫ 1

0

(1 − s)G′′(v1 + sv2)(ξ, ξ)ds

We will use the same notations for H1, H2 and K.
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We have
dθ

dt
∂θRΛ +

dσ

dt
∂σRΛ +

∂W

∂t
= LW + T1 + . . . T5 (13)

where

T1 = K1
ΛW := G(RΛ)

∂2W

∂x2

T2 = K2
ΛW := H1(x,RΛ)

∂W

∂x
+ 2H2(RΛ)(

dRΛ

dx
,
∂W

∂x
) +G′(RΛ)(W )

∂2RΛ

∂x2

+H ′
1(x,RΛ)(W )

∂RΛ

∂x
+H ′

2(RΛ)(W )(
dRΛ

dx
,
dRΛ

dx
) + P ′(x,RΛ)(W )

T3 = R1(x,Λ,W )(
∂2W

∂x2
) := Ĝ(RΛ,W )(W )

∂2W

∂x2

T4 = R1
2(x,Λ,W,

∂W

∂x
) := H2(RΛ +W )(

∂W

∂x
,
∂W

∂x
) + Ĥ1(x,RΛ,W )(W )(

∂W

∂x
)

+ 2H ′
2(RΛ,W )(W )(

dRΛ

dx
,
∂W

∂x
)

T5 = R3(x,Λ,W ) := G̃(RΛ,W )(W (2))(
∂2RΛ

∂x2
) + H̃1(x,RΛ,W )(W (2))(

dRΛ

dx
)

+ H̃2(RΛ,W )(W (2))(
dRΛ

dx
,
dRΛ

dx
) + P̃ (x,RΛ,W )(W (2))

(14)
We take the scalar product in L2(R) of (13) with e1 and e2. Since (ei|∂W

∂t
) =

(LW |ei) = 0, we obtain that:

A(Λ)
dΛ

dt
=

5∑

i=1

T ′
i (15)

where

A(Λ) =




(e1|∂θRΛ) (e1|∂σRΛ)

(e2|∂θRΛ) (e2|∂σRΛ)


 (16)

and

T ′
i =

(
(Ti|e1)
(Ti|e2)

)

We remark that A(0) = Id, thus for Λ little enough, we can inverse the matrix
A(Λ) and we can write the equation satisfied by Λ on the form:

dΛ

dt
= M1(Λ)(W ) + M2(W,

∂W

∂x
,Λ) (17)

where
M1(Λ)(W ) = A(Λ)−1(T ′

1 + T ′
2)

M2(W,
∂W

∂x
,Λ) = A(Λ)−1(T ′

3 + T ′
4 + T ′

5)

(18)



10 GILLES CARBOU, STÉPHANE LABBÉ

Applying the projection operator Q to (13) yields to the following evolution
equation for W :

∂W

∂t
= LW +QKΛW +QR1(x,Λ,W )(

∂2W

∂x2
)+QR2(x,Λ,W,

∂W

∂x
)+QR3(x,Λ,W )

(19)
where the linear operator KΛ is defined by

KΛW = K1
ΛW + K2

ΛW + K3
ΛW (20)

with

K3
ΛW = −M1

1(Λ)(W )∂θRΛ −M2
1(Λ)(W )∂σRΛ (21)

and where the nonlinear term R2(x,Λ,W,
∂W

∂x
) is given by:

R2(x,Λ,W,
∂W

∂x
) = R′

2(x,Λ,W,
∂W

∂x
)−M1

2(Λ,W,
∂W

∂x
)∂θRΛ−M2

2(Λ,W,
∂W

∂x
)∂σRΛ

(22)

Remark 4. In the projection of Equation (13) we have replaced
dθ

dt
and

dσ

dt
by

their expressions given by Equation (17). In the previous equations, M1
i and M2

i

are respectively the first and the second component of Mi.

We have thus proved the following proposition:

Proposition 3. If r : (t, x) 7→ r(t, x) is small enough for the norm L∞(R+
t ;H2(R)),

then we can write r on the form

r(t, x) = RΛ(t)(x) +W (t, x)

with Λ ∈ L∞(R+
t ; R2) and W ∈ L∞(R+

t ; E). This decomposition is unique.
Furthermore r is solution for Equation (9) if and only if (Λ,W ) satisfies the

system coupling Equation (19) and Equation (17).

4. Linear Estimates.

4.1. Study of the operator L. The self-adjoint operator L is a compact pertur-

bation of − ∂2

∂x2
+ 1, thus its essential spectrum is [1,+∞[. Furthermore, we can

write L = l∗ ◦ l with l = − ∂

∂x
+th x, thus L is positive and 0 is a simple eigenvalue

associated with the eigenvector
1

chx
.

We denote E = (Ker L)⊥. The restriction of L on E is a symmetric definite
positive operator. We denote by α > 0 its smallest eigenvalue.

Proposition 4. There exists constants K1 and K2 such that for all u ∈ E

K1‖L
1

2 u‖L2 ≤ ‖u‖H1 ≤ K2‖L
1

2u‖L2

K1‖Lu‖L2 ≤ ‖u‖H2 ≤ K2‖Lu‖L2

K1‖L
3

2 u‖L2 ≤ ‖u‖H3 ≤ K2‖L
3

2u‖L2
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Proof. Since α is the smaller eigenvalue of L on E, we have:

∀ u ∈ H, ‖u‖L2 ≤ 1

α
‖Lu‖L2. (23)

Furthermore,

‖u′′‖L2 = ‖u′′ − fu+ fu‖L2 ≤ ‖L(u)‖L2 + ‖f‖L∞‖u‖L2

thus with the previous inequality, we obtain that there exists a constant K such
that for all u in E

‖u‖H2 ≤ K‖Lu‖L2 (24)

Since the domination of the L2 norm of Lu by the H2 norm of u is obvious, we
conclude the proof of the H2 estimate.

Now we have L2u = u(4) − 2fu′′ − 2f ′u′ − f ′′u+ f2u that is

‖u(4)‖L2(R) ≤ ‖L2u‖L2(R) + C1‖u‖H2(R)

since f , f ′ and f ′′ are bounded on R

≤ ‖L2u‖L2(R) + C1K‖Lu‖L2(R)

with Estimate (24)

≤ (1 +
C1K

α
)‖L2u‖L2(R)

with Estimate (23) applied on Lu

thus we obtain that there exists a constant C2 such that

‖u‖H4(R) ≤ C2‖L2u‖L2(R)

Since the opposite bound is obvious, we obtain an estimate about the H4 norm.
By interpolation result, we deduce the intermediate estimates and we conclude

the proof of Proposition 4.

4.2. Estimates for the perturbed operator L + QKΛ. We recall that KΛ is
defined by (20).

We remark that since Λ 7→ RΛ is regular and since RΛ=0 = 0, there exists a
constant C3 such that

‖RΛ‖L∞(R) + ‖∂RΛ

∂x
‖L∞(R) ≤ C3|Λ| (25)

Therefore by properties of G, H1, H2 and P , there exists then a constant C4

such that

‖K1
ΛW + K2

ΛW‖L2(R) ≤ C4|Λ| ‖W‖H2

Furthermore by properties of M1 and Proposition 4, since Q is an orthogonal
projection in L2, there exists a constant C5 such that

‖QKΛW‖L2(R) ≤ C5|Λ| ‖LW‖L2 (26)

In the same way, we prove that there exists a constant C ′
5 such that

‖L 1

2QKΛW‖L2(R) ≤ C ′
5|Λ| ‖L

3

2W‖L2(R) (27)
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In addition, for W ∈ E

(QK1
ΛW |W ) = (K1

ΛW |W )
since QW = W

=

∫

R

G(RΛ)
∂2W

∂x2
W

= −
∫

R

G′(RΛ)
∂RΛ

∂x

∂W

∂x
W −

∫

R

G(RΛ)
∂W

∂x

∂W

∂x
by integration by parts

∣∣(QK1
ΛW |W )

∣∣ ≤ C6|Λ|‖W‖2
H1(R)

with estimate (25)

where the constant C6 does not depend on Λ nor on W .

Writing that

|(QK2
ΛW +QK3

ΛW |W )| ≤ ‖QK2
ΛW +QK3

ΛW‖L2‖W‖L2

≤ C7|Λ|‖W‖2
H1

we obtain then that there exists a constant C8 suct that

|(QKΛW |W )| ≤ C8|Λ|‖L
1

2W‖2
L2(R) (28)

We denote by SΛ(t) the semigroup generated by the linear operator L + QKΛ.
We have the following proposition:

Proposition 5. There exists β > 0, there exists η1 > 0, there exists a constant K3

such that if |Λ(t)| ≤ η1 for all t ≥ 0 then for t > 0

‖SΛ(t)W0‖H1 ≤ K3e
−βt‖W0‖H1

‖SΛ(t)W0‖H1 ≤ K3
e−βt

√
t
‖W0‖L2

for W0 ∈ E

Proof. We fix W0 ∈ E and we denote by W the solution of the Cauchy problem





∂W

∂t
= LW +QKΛW

W (t = 0) = W0

We set A(t) = ‖L 1

2W (t)‖2
L2(R).
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dA

dt
= 2(L

1

2

∂W

∂t
|L 1

2W )

= 2(
∂W

∂t
|LW )

= 2(JLW |LW ) + (QKΛW |LW )

= −2‖LW‖2
L2(R) + 2(QKΛW |LW )

≤ −2‖LW‖2
L2(R) + 2C5|Λ| ‖LW‖2

L2(R)

with Estimate (26).

We fix η′1 =
1

2C5
and for |Λ| ≤ η′1 we obtain that

dA

dt
≤ −‖LW‖2

L2(R)

≤ − 1

K2
2

‖W‖2
H2(R) ≤ − 1

K2
2

‖W‖2
H1(R)

with Proposition 4

≤ −K
2
1

K2
2

‖L 1

2W‖2
L2(R)

with Proposition 4

≤ −K
2
1

K2
2

A

thus A(t) ≤ A(0)e
−

K
2
1

K2
2

t
and then with Proposition 4 there exists a constant K ′

3 such
that

‖W (t)‖H1(R) ≤ K ′
3e

−β′t‖W0‖H1(R)

with β′ =
K2

1

2K2
2

.

We set now B(t) = ‖W (t)‖2
L2(R) + t‖L 1

2W (t)‖2
L2(R).

dB

dt
= 2(W |∂W

∂t
) + (L

1

2W |L 1

2W ) + 2t(L
1

2

∂W

∂t
|L 1

2W )

= 2(W |LW ) + 2(W |QKΛW ) + (W |LW ) + 2t(
∂W

∂t
|LW )

= −(W |LW ) + 2(W |QKΛW ) + 2t
[
−‖LW‖2

L2(R) + (QKλW |LW )
]

≤ −‖L 1

2W‖2
L2(R) + 2C8|Λ| ‖L

1

2W‖2
L2(R) − 2t‖LW‖2

L2(R) + 2tC5|Λ| ‖LW‖2
L2(R)

with Estimates (26) and (28)
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We set η′′1 =min(
1

4C8
,

1

2C5
) and if |Λ| ≤ η′′1 we obtain that

dB

dt
≤ −1

2
‖L 1

2W‖2
L2(R) − t‖LW‖2

L2(R)

≤ − 1

2K2
2

‖W‖2
H1(R) − t

1

K2
2

‖W‖H2(R)

with Proposition 4

≤ − 1

2K2
2

‖W‖2
L2(R) − t

K2
1

K2
2

‖|L 1

2W‖L2(R)

with Proposition 4

≤ − K2
1

2K2
2

B

Therefore B(t) ≤ B(0)e
−

K
2
1

2K2
2

t
. We remark that B(0) = ‖W0‖L2(R), thus if we

denote β′′ = − K2
1

4K2
2

, we obtain that

‖W (t)‖2
L2(R) + t‖L 1

2W‖2
L2(R) ≤ ‖W0‖2

L2(R)e
−2β′′t

and so using Proposition 4 there exists a constant K ′′
3 such that

‖W (t)‖H1(R) ≤
K ′′

3√
t
‖W0‖L2(R)e

−β′′t

Setting η1 =min(η′1, η
′′
1 ), β =min(β′, β′′) and K3 =max(K ′

3,K
′′
3 ), we conclude

the proof of Proposition 5.

5. Stability. We consider (Λ,W ) the solution of System (17)-(19) with initial data
(Λ0,W0) ∈ R

2 × (H2(R))2.
In a first step, under Hypothesis H:”Λ(t) remains little”, we prove that if W0 is

small, then W (t) remains closed to zero for the H2 norm.
In a second step, under Hypothesis H, we show that in addition, (1 + t)2W (t)

remains bounded for the H1 norm.
As a conclusion, we establish that Hypothesis H is justified when Λ0 and W0 are

small.
In the following subsection, we prove preliminar estimates on the non linear

terms.

5.1. Preliminar nonlinear estimates.

Lemma 1. There exists a constant K4 such that for all λ ∈ R
2 such that |λ| ≤ η1

and all w ∈ E,

|M1(λ)(w)| ≤ K4|λ|‖w‖H1(R)

|M2(w,
dw

dx
, λ)| ≤ K4‖w‖2

H1(R)
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Proof. We recall that M1 and M2 are defined by (18).
We have for k = 1..2

(T1|ek) =

∫

R

G(Rλ(x))
d2w

dx2
(x) · ek(x)dx

= −
∫

R

(
G′(Rλ)(

dRλ

dx
)ek +G(Rλ)

dek

dx

)
dw

dx
dx

by integration by parts

|(T1|ek)| ≤ C|Λ|‖w‖H1(R)

thus

|T ′
1| ≤ C|Λ|‖w‖H1(R)

Furthermore, with the definition of T2 (cf. Equation (14)) there exists a constant
C such that

|T ′
2| ≤ C‖w‖H1(R)|λ|

Since the matrix A(λ) is invertible for |λ| ≤ η1, we obtain the estimation on M1.

Concerning M2 we remark that for k = 1..2

(T3|ek) =

∫

R

Ĝ(Rλ, w)(w)
d2w

dx2
(x) · ek(x)dx

= −
∫

R

[
d

dx

(
Ĝ(Rλ, w)(w)

) dw
dx

ek(x) + Ĝ(Rλ, w)(w)
dw

dx
(x) · dek

dx
(x)

]

by integration by parts

that is there exists a constant C such that

|T ′
4| ≤ C‖w‖2

H1(R)

A straightforward estimate on T4 and T5 gives that there exists a constant C such
that |T ′

4| + |T ′
5| ≤ C‖w‖2

H1(R), therefore since A(λ) is invertible, we conclude the
proof of Lemma 1.

Lemma 2. There exists a constant K5 such that for all λ such that |λ| ≤ η1 and
all w ∈ E,

‖QR1(x, λ, w)(
d2w

dx2
)‖L2(R) ≤ K5‖w‖H1(R)‖w‖H2(R)

‖QR1(x, λ, w)(
d2w

dx2
)‖H1(R) ≤ K5‖w‖H2(R)‖w‖H3(R)

‖QR2(x, λ, w,
dw

dx
)‖H1(R) ≤ K5‖w‖H1(R)‖w‖H2(R)

‖QR3(x, λ, w)‖H1(R) ≤ K5‖w‖2
H1(R)

Proof. It is a straightforward application of the definitions of R1, R2, R3, of the
properties of G, H1, H2, and P , and of Proposition 4.
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5.2. First step: variational estimate on W .

Proposition 6. There exists η2 > 0 (with η2 < η1) such that if |Λ(t)| ≤ η2 for all t,
then, there exists a constant γ1 such that if ‖LW (t = 0)‖L2 ≤ γ1, then t 7→ ‖LW‖L2

is decreasing and there exists K6 such that

∀ t, ‖W (t)‖H2(R) ≤ K6‖W0‖H2(R)

Proof. We take the scalar product on Equation (19) with J 2L2W . We remark that:

•
(
∂W

∂t
| J2L2W

)
=

(
∂W

∂t
| J4L2W

)
= −4

(
∂W

∂t
| L2W

)
= −2

d

dt
‖LW‖2

L2

•
(
LW | J2L2W

)
= −4

(
JLW | L2W

)
= −4

(
JL

3

2W | L 3

2W
)

= 4‖L 3

2W‖2
L2

•
(
QKΛW | J2L2W

)
=
(
L

1

2QKΛW | J4L
3

2W
)

thus, since J4 = −4Id, with

Estimate (27)
∣∣(QKΛW | J2L2W

)∣∣ ≤ 4C ′
5|Λ|‖L

3

2W‖2
L2

•
(
QR1(x,Λ,W )(

∂2W

∂x2
) | J2L2W

)
= −4

(
L

1

2 [QR1(x,Λ,W )(
∂2W

∂x2
)] | L 3

2W

)

thus with Lemma 2∣∣∣∣
(
QR1(x,Λ,W )(

∂2W

∂x2
) | J2L2W

)∣∣∣∣ ≤ 4

∥∥∥∥L
1

2 [QR1(x,Λ,W )(
∂2W

∂x2
)]

∥∥∥∥
L2(R)

‖L 3

2W‖L2(R)

≤ 4

K1

∥∥∥∥QR1(x,Λ,W )(
∂2W

∂x2
)]

∥∥∥∥
H1(R)

‖L 3

2W‖L2(R)

with Proposition 4

≤ 4K5

K1
‖W‖H2(R)‖W‖H3(R)‖L

3

2W‖L2(R)

with Lemma 2

≤ 4K5K
2
2

K1
‖LW‖L2‖L 3

2W‖2
L2

with Proposition 4

In the same way, we prove that
∣∣∣∣
(
QR2(x,Λ,W,

∂W

∂x
) | J2L2W

)∣∣∣∣ ≤
4K5K

2
2

K1
‖LW‖L2‖L 3

2W‖2
L2

and that
∣∣(QR3(x,Λ,W )|J2L2W

)∣∣ ≤ 4K5K
2
2

K1
‖LW‖L2‖L 3

2W‖2
L2

Therefore we obtain that if |Λ| ≤ η2, then

d

dt
‖LW‖2

L2 + 2‖L 3

2W‖2
L2 ≤ 2C ′

5η2‖L
3

2W‖2
L2 +

6K5K
2
2

K1
‖LW‖L2‖L 3

2W‖2
L2

that is:

d

dt
‖LW‖2

L2 + ‖L 3

2W‖2
L2

(
2 − 2C ′

5η2 −
6K5K

2
2

K1
‖LW‖L2

)
≤ 0 (29)
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We fix η2 < η1 such that 2C ′
5η2 < 1, and we set γ1 =

K1

6K5K2
2

. If |Λ| ≤ η2 then

while ‖LW (t)‖L2(R) ≤ γ1 this quantity remains decreasing with Equation (29), and
thus remains less than γ1.

Therefore, with Proposition 4, we have:

∀ t ≥ 0, ‖W (t)‖H2(R) ≤ K2‖LW (t)‖L2(R) ≤ K2‖LW0‖L2(R) ≤
K2

K1
‖W0‖H2

and we conclude the proof setting K6 =
K2

K1
.

5.3. Second step: parabolic estimates on W . Using Equation (19) we have:

W (t) = SΛ(t)W0 +

∫ t

0

SΛ(t− s)QR1(x,Λ,W )(
∂2W

∂x2
)(s) ds

+

∫ t

0

SΛ(t− s)QR2(x,Λ,W,
∂W

∂x
)(s) ds

+

∫ t

0

SΛ(t− s)QR3(x,Λ,W )(s) ds

and with Proposition 5, we know that while |Λ(t)| ≤ η1 there exists a constant K3

such that

‖W (t)‖H1(R) ≤ K3e
−βt‖W0‖H1(R) +

∫ t

0

K3
e−β(t−s)

√
t− s

‖QR1(x,Λ,W )(
∂2W

∂x2
)(s)‖L2(R)ds

+

∫ t

0

K3e
−β(t−s)‖QR2(x,Λ,W,

∂W

∂x
)(s)‖H1(R)

+

∫ t

0

K3e
−β(t−s)‖QR3(x,Λ,W )(s)‖H1(R)

Using Lemma 2 we obtain that

‖W (t)‖H1(R) ≤ K3e
−βt‖W0‖H1(R) +

∫ t

0

K3
e−β(t−s)

√
t− s

K5‖W (s)‖H1(R)‖W (s)‖H2(R)ds

+

∫ t

0

K3e
−β(t−s)K5‖W (s)‖H1(R)‖W (s)‖H2(R)ds

+

∫ t

0

K3e
−β(t−s)K5‖W (s)‖2

H1(R)

Using Proposition 6 we know that if ‖W0‖H2(R) ≤ γ1 and if |Λ(t)| remains less
than η2 then ‖W (s)‖H2(R) ≤ K6‖W0‖H2(R) for all s.

We define G(t) by

G(t) = sup
s∈[0,t]

(1 + s)2‖W (s)‖H1
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We obtain then that

‖W (t)‖H1 ≤ K3e
−βt‖W0‖H1 +K3K5

(∫ t

0

(1 + s)−4e−β(t−s)ds

)
[G(t)]2

+K3K5K6‖W0‖H2(R)G(t)

(∫ t

0

e−β(t−s)

√
t− s

(1 + s)−2ds+

∫ t

0

e−β(t−s)(1 + s)−2

)

Now there exists a constant K7 such that for all t we have

e−βt

(1 + t)2
≤ K7

∫ t

0

e−β(t−s)

√
t− s

(1 + s)−2ds+

∫ t

0

e−β(t−s)(1 + s)−2ds ≤ K7

(1 + t)2

∫ t

0

(1 + s)−4e−β(t−s)ds ≤ K7

(1 + t)2

Thus we obtain that there exists a constant C such that

(1 + t)k‖W (t)‖H1 ≤ K3K7‖W0‖H1 +K3K5K6K7‖W0‖H2G(t) +K3K5K7(G(t))2

and sinceG is a non decreasing map, denoting α1 =max{K3K7,
1

4
}, α2 = K3K5K6K7

and α3 = K3K5K7 we obtain that

G(t) ≤ α1‖W0‖H1 + α2‖W0‖H2G(t) + α3(G(t))2 (30)

We have then the following result:

Proposition 7. Let η2 and γ1 being given by Proposition 6. There exists γ2 with
0 < γ2 < γ1 such that for all δ > 0 there exists τ > 0 such that if the following
assumptions are satisfied:

(i) for all t, |Λ(t)| ≤ η2,

(ii) ‖LW0‖L2(R) ≤ γ2,

(iii) ‖W0‖H1(R) ≤ τ ,

then for all t > 0 we have

‖W (t)‖H1(R) ≤
δ

(1 + t)2

Proof. Under Hypothesis (i) and if ‖LW0‖L2(R) ≤ γ1 we have proved Estimate (30).

We set γ2 =min(
1

2α2
, γ1). Under Hypothesis (i) and (ii) we have that for all t

α3(G(t))2 − 1

2
G(t) + α1‖W0‖H1(R) ≥ 0 (31)

Let us study the polynomial map Pν : ξ 7→ α3ξ
2− 1

2
ξ+α1ν. If ν < γ2 :=

1

16α1α3

then this polynomial map has two positive zeros. The smaller one is ξ1(ν) =
1

4α3
(1−

√
1 − 16α1α3ν). We remark that since α1 ≥ 1

4
then ξ1(ν) ≥ ν.

Let δ > 0 be fixed.
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The map ν 7→ ξ1(ν) tends to zero when ν tends to zero, so we can fix τ > 0 such
that for ν ∈ [0, τ ], ξ(ν) ≤ δ. Even if it means reducing τ we can assume that τ ≤ δ
and τ ≤ γ2/2.

Under Hypothesis (i), (ii) and (iii), the map G(t) satisfies (31) and G(0) =
‖W0‖H1(R) ≤ ξ1(‖W0‖H1(R)). Thus for all t, G(t) ≤ ξ1(‖W0‖H1(R)) ≤ δ.

This conludes the proof of Proposition 7.

5.4. Estimates for Λ. We integrate Equation (17) between t = 0 and t. We obtain
that

|Λ(t)| ≤ |Λ0| +
∫ t

0

|M1(Λ(s))(W (s))|ds +

∫ t

0

|M2(W (s),
∂W

∂x
(s),Λ(s))|ds (32)

We assume that |Λ0| ≤ η2

2 and that ‖LW0‖L2(R) ≤ γ2. We fix an arbitrary δ. with
Proposition 7, while |Λ(t)| remains less that η2 we have, if ‖W0‖H1(R) ≤ τ we have:

‖W (t)‖H1(R) ≤
δ

(1 + t)2
.

Using this estimate in Equation (32) and using Lemma 1 we obtain that while
|Λ(t)| ≤ η2 we have:

|Λ(t)| ≤ η2
2

+

∫ t

0

K4η2δ
1

(1 + s)2
ds+

∫ t

0

K4δ
2 1

(1 + s)4
ds. (33)

We fix δ > 0 such that

K4η2δ

∫ +∞

0

1

(1 + s)2
ds+K4δ

2

∫ +∞

0

1

(1 + s)4
ds ≤ η2

2

With Proposition 6 we find τ0 > 0 and if |Λ0| ≤ η2
2

, ‖LW0‖H2(R) ≤ γ2 and if

‖W0‖H1(R) ≤ τ0 then with Estimate (33), |Λ(t)| remains less than η2 for all time,
and all the estimates are true for all time, which concludes the proof of our theorem.
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