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ABSTRACT

Fluorescence microscopy images are contaminated by photon

and readout noises, and hence can be described by Mixed-

Poisson-Gaussian (MPG) processes. In this paper, a new vari-

ance stabilizing transform (VST) is designed to convert a fil-

tered MPG process into a near Gaussian process with a con-

stant variance. This VST is then combined with the isotropic

undecimated wavelet transform leading to a multiscale VST

(MS-VST). We demonstrate the usefulness of MS-VST for

image denoising and spot detection in fluorescence microscopy.

In the first case, we detect significant Gaussianized wavelet

coefficients under the control of a false discovery rate. A

sparsity-driven iterative scheme is proposed to properly re-

construct the final estimate. In the second case, we show

that a slight modification of the denoising algorithm leads to

a fluorescent-spot detector, where the false positive rate of

the detection in pure noise can be controlled. Experiments

show that the MS-VST approach outperforms the generalized

Anscombe transform in denoising, and that the proposed de-

tection scheme allows efficient spot extraction from complex

background.

Index Terms— variance stabilizing transform, Mixed-Pois-

son-Gaussian process, wavelet, fluorescence microscopy

1. INTRODUCTION

Fluorescence microscopy is a widely used technique to image

biological specimens. The resulting images are corrupted by

photon and camera readout noises. The stochastic data model

is thus a Mixed-Poisson-Gaussian (MPG) process. For many

applications such as denoising and deconvolution, it would be

rather complicated to directly deal with such processes since

every sample exhibits an infinite Gaussian mixture distribu-

tion. A commonly used technique is to first apply a variance

stabilizing transform (VST), e.g., the generalized Anscombe

transform (GAT) [1], to Gaussianize the data so that each

sample is near-normally distributed with an asymptotically

constant variance. The VST allows to apply standard de-

noising and deconvolution methods on the transformed data.
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Then, the final estimate is obtained by inverting the VST on

the processed data.

In this paper, we propose a new VST to Gaussianize a

low-pass filtered MPG process. This transform can be con-

sidered as a generalization of the GAT and a recently pro-

posed VST for Poisson data [2]. Then, this VST is combined

with the isotropic undecimated wavelet transform (IUWT) [1]

leading to a multiscale VST (MS-VST). The usefulness of

MS-VST is demonstrated for image denoising and spot de-

tection in fluorescence microscopy. In the first case, we de-

tect significant Gaussianized wavelet coefficients under the

control of a false discovery rate (FDR) [3]. A sparsity-driven

iterative scheme is proposed to properly reconstruct the final

estimate. In the second case, we show that a slight modifi-

cation of the denoising algorithm leads to a fluorescent-spot

detector, where the false positive rate of the detection in pure

noise can be controlled. Experiments show that the MS-VST

approach outperforms the GAT in denoising, and that the pro-

posed detection scheme allows efficient spot extraction from

complex background.

2. VST FOR A FILTERED MPG PROCESS

A MPG process x := (Xi)i∈Zd is defined as:

Xi = αUi + Vi, Ui ∼ P(λi), Vi ∼ N (µ, σ
2) (1)

where α > 0 is the overall gain of the detector, Ui is a Poisson

variable modeling the photon counting, Vi is a normal vari-

able representing the readout noise, and all (Ui)i and (Vi)i

are assumed mutually independent. Given a discrete filter h,

we note a filtered MPG process as Yi :=
∑

j h[j]Xi−j . We

will use X and Y to denote any one of Xi and Yi respectively.

We further denote by τk the quantity
∑

i(h[i])k for k ∈ N
∗.

To simplify the following analysis we assume that λi = λ
within the support of h. It can be verified that the variance
of Y (Var [Y ]) is an affine function of the Poisson intensity
λ. To stabilize Var [Y ], we seek a transformation Z := T (Y )
such that Var [Z] is (asymptotically) constant, irrespective of
the value of λ. We define:

T (Y ) := b · sgn(Y + c)|Y + c|1/2
, b 6= 0, c ∈ R (2)



Lemma 1 indicates that the square-root transform (2) is in-

deed a VST for stabilizing and Gaussianizing a low-pass fil-

tered MPG process.

Lemma 1 (square root as VST [4]) If τ1 6= 0, then we have:

T (Y ) − b · sgn(τ1)
√

|τ1|αλ
D−→

λ→+∞
N
(

0,
αb2τ2

4|τ1|

)

(3)

This result holds for any c ∈ R. However, the convergence

rate in (3) varies with the value of c (b is only a normalizing

factor), and we want to determine its optimal value.

2.1. Optimal parameter of the VST

Without loss of generality, suppose that τ1 > 0, then Pr(Y +
c > 0) can be made arbitrarily close to 1 as λ → +∞. So
in our asymptotic analysis below, we will essentially consider

the VST in the form T (Y ) = bT0(Y ) = b
√

Y + c. Expand-
ing T0(Y ) by Taylor series about the point Y = E [Y ] up to
the 4th order term, and by applying the expectation one can
calculate the asymptotic expectation and variance of T (Y ):

E [b1T0] ≈
√

λ +
4τ1(τ1µ + c) − τ2α

8τ2
1 α

︸ ︷︷ ︸

CE

λ
−1/2

(4)

Var [b2T0] ≈ 1+

8τ2
1 τ2(σ

2 − αµ) − 4τ1α(2τ2c + τ3α) + 7τ2
2 α2

8α2τ2
1 τ2

︸ ︷︷ ︸

CVar

λ
−1

(5)

where b1 = (τ1α)−
1

2 and b2 = 2( τ1

ατ2

)
1

2 . These settings nor-

malize respectively the asymptotic expectation and variance

to
√

λ and 1, both values being independent of the filter h.
Then the optimal c is found by minimizing the following bias-
variance tradeoff (controlled by η):

c
∗ := arg min

c∈R

Eη(c) := ηC
2
E + (1 − η)|CVar|, η ∈ [0, 1] (6)

With no prior preference for either bias or variance, η can

be set to 1/2. Note that CE is squared to give an equivalent

asymptotic rate for the tradeoff terms in (4) and (5). It can be

shown that (6) admits a unique solution, which can be explic-

itly derived out as a function of τk, µ, σ, α and η. This VST

reduces to the GAT if h = Dirac filter δ and η = 0.

In practice, if µ, σ, and α are unknown a priori, they can

be estimated by matching the first four cumulants of X with

the k-statistics [5] of the samples in a uniform image region.

This follows from the property that the k-statistics are the

minimum variance unbiased estimators for cumulants.

3. IMAGE DENOISING USING MS-VST

Isotropic structures are often presented in biological fluores-
cent images due to micrometric subcellular sources. Toward
the goal of image denoising, we will combine the proposed
VST with the IUWT. Indeed, since IUWT uses isotropic filter

banks, this transform adapts very well the isotropic features in
images. The left side of (7) gives the classical IUWT decom-
position scheme, and by applying the VST on the (low-pass
filtered) approximation coefficients at each scale, we obtain a
MS-VST scheme shown on the right side:

{
aj = h̄↑j−1 ⋆ aj−1

dj = aj−1 − aj
⇒
{

aj = h̄↑j−1 ⋆ aj−1

dj = Tj−1(aj−1) − Tj(aj)
(7)

Here h is a symmetric low-pass filter, aj and dj are respec-
tively the approximation and the wavelet coefficients at scale
j, h↑j [l] = h[l] if l/2j ∈ Z and 0 otherwise, h̄[n] = h[−n]
and “⋆” denotes convolution. The filtering of aj−1 can be
rewritten as a filtering of the original MPG data x = a0:

aj = h(j) ⋆ a0, where h(j) = h̄↑j−1 ⋆ · · · ⋆ h̄↑1 ⋆ h̄ for j ≥ 1

and h(0) = δ. Tj is the VST operator at scale j (cf. (2)):

Tj(aj) = b
(j)

sgn(aj + c
(j))|aj + c

(j)|1/2

The constants b(j) and c(j) are associated to h(j), and c(j)

should be set to c∗. Theorem 1 shows that (7) transfers the

asymptotic stabilized Gaussianity of the aj’s to the dj’s:

Theorem 1 (dj under a high intensity assumption) Setting

b(j) := sgn(τ
(j)
1 )/[α|τ (j)

1 |]1/2, we have:

dj
D−→

λ→+∞
N
(

0,
τ

(j−1)
2

4τ
(j−1)
1

2 +
τ

(j)
2

4τ
(j)
1

2 − 〈h(j−1), h(j)〉
2τ

(j−1)
1 τ

(j)
1

)

where τ
(j)
k :=

∑

i

(
h(j)[i]

)k
, and 〈·, ·〉 denotes inner product.

This result shows that the asymptotic variance of dj depends

only on the wavelet filter bank and the current scale, and thus

can be pre-computed once h is chosen.

3.1. Detection of significant coefficients by FDR

Wavelet denoising can be achieved by zeroing the insignif-

icant coefficients while preserving the significant ones. We

detect the significant coefficients by testing binary hypothe-

sis: ∀ d, H0 : d = 0 vs. H1 : d 6= 0. The distribution of d
under the null hypothesis H0 is given in Theorem 1. Thus, a

multiple hypothesis testing controlling the FDR can be carried

out [3]. The control of FDR offers many advantages over the

classical Bonferroni control of the Family-Wise Error Rate,

i.e., the probability of erroneously rejecting even one of the

true null hypothesis. For example, FDR usually has a greater

detection power and can handle correlated data easily. The

latter point is important since the IUWT is over-complete.

3.2. Sparsity-driven iterative reconstruction

After coefficient detection, we could invert the MS-VST (7) to

get the final estimate: a0 = T−1
0 [TJ (aJ)+

∑J
j=1 dj ], but this

solution is far from optimal. Indeed, due to the non-linearity

of the VST and the over-completeness of IUWT, the signifi-

cant coefficients are not reproducible when IUWT is applied



once more on this direct inverse, implying a loss of impor-

tant structures in the estimation. A better way is to find a

constrained sparsest solution, as sketched below (see [4] for

details).
We first define the multi-resolution support [1] M :=

{(j, l) | dj [l] is significant}, which is determined by the set
of the detected significant coefficients. The estimation is then
formulated as a constrained convex optimization problem in
terms of wavelet coefficients:

min
d∈C

J(d) := ‖d‖1 where C := S1 ∩ S2

S1 := {d|d = Wx in M} and S2 := {d|Rd ≥ µ} (8)

where W is the wavelet analysis operator, and R its synthe-

sis operator. Clearly by doing so, we minimize a sparsity-

promoting ℓ1 objective function [6] within the feasible set

C := S1 ∩ S2. The set S1 requires that the elements of d pre-

serve the significant coefficients; the set S2 assures a model-

consistent estimate since E [Xi] = αλi + µ ≥ µ.
Gradient descent method such as the hybrid steepest de-

scent (HSD) iterations [7] can be used to solve (8):

d
(k+1) := TCd

(k) − βk+1sgn
(

TCd
(k)
)

(9)

where the step length βk satisfies: (i) limk→∞ βk = 0, (ii)
∑

k≥1 βk = +∞, (iii)
∑

k≥1 |βk − βk+1| < +∞. The oper-

ator TC is defined as TC := PS1
◦ QS2

, and

PS1
d :=

{

Wx in M
d otherwise

; QS2
d := WPµRd (10)

where Pµ is the projector onto the set {x|xi ≥ µ}. It is worth

noting that compared with the direct reconstruction, every it-

eration of (9) involves a projection onto the set S1 that restores

all the significant coefficients. Therefore, important structures

are better preserved by the iteratively reconstructed solution.

3.3. Results

We first test our denoising approach on a simulated isotropic-

source grid (pixel size = 100 nm) shown in Fig. 1. From the

leftmost to the rightmost column, the source radii increase

from 50 nm to 350 nm. The image is then convolved with

a 2D Gaussian function with a standard deviation σg = 116
nm, which approximates the point spread function of a typical

fluorescence microscope [8]. Fig. 1(a) shows the sources with

amplitudes λi,j ∈ [0.05, 83.5], 1 ≤ i ≤ 18, 1 ≤ j ≤ 10.

After adding a MPG noise, we obtain Fig. 1(b). Fig. 1(c) and

(d) respectively show the denoised images using the GAT and

the MS-VST. To give a fair comparison, we have set η = 0
so that our VST parameter is derived using the same criterion

as for GAT. We can see that MS-VST is more sensitive than

GAT since more faint sources are restored. In terms of the

L1 loss, the MS-VST-denoised image is also more accurate

(‖err.‖L1 = 3.09) than the GAT result (‖err.‖L1 = 3.34).

Fig. 2(a) and (b) show two optical slices of a 3D confo-

cal image of a drosophila melanogaster ovary. The part of
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Fig. 1. Simulated source denoising. h = 2D B3-Spline filter, η =

0, FDR = 0.01, and 10 iterations. (a) simulated sources (amplitudes

λi,j ∈ [0.05, 83.5]; background = 0.05); (b) MPG noisy image

(α = 20, µ = 10, and σ = 1); (c) GAT-denoised image (‖err.‖L1 =

3.34); (d) MS-VST-denoised image (‖err.‖L1 = 3.09)

nurse cells consist of many nucleus surrounded by Green-

Fluorescent-Protein-marked Staufen genes. The slices of the

denoised image are shown in Fig. 2(c) and (d). We can see

clearly that the cytoplasm (homogeneous areas) is well smoothed

and the Staufen genes are restored from the noise.

4. SPOT DETECTION USING MS-VST

A slight modification of the denoising algorithm can serve

as a fluorescent-spot detector. Since wavelets are band-pass

filters, background information is mostly encoded in the ap-

proximation band. Therefore, if we zero the approximation

band at the last iteration of (9), the background will be largely

suppressed from the final estimate and, consequently, only

detail (spot) structures are reconstructed. Then, a positive

threshold can be easily found to binarize the result and all

connected components are extracted as putative bright spots.

With this approach, the false spot-detection rate in pure noise

can be controlled:

Proposition 1 Suppose that the FDR of wavelet coefficient

detection is controlled, i.e., FDR ≤ γ. Then the probability of

erroneously detecting spots in a spot-free homogeneous MPG

noise (λi = λ) is upper bounded by γ.
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Fig. 2. Denoising of a 3D confocal image of a drosophila

melanogaster ovary. h = 3D B3-Spline filter, FDR = 0.05, η = 0.5,

and 10 iterations. Observed image: (a) z = 22µm; (b) z = 26µm;

MS-VST-denoised image: (c) z = 22µm; (d) z = 26µm.

4.1. Results

Fig. 3 shows the detection of endocytic vesicles of COS-7

cells in a wide-field microscopy image. Although the original

image exhibits a highly nonuniform background (Fig. 3(a)),

the detection (Fig. 3(b)) is very effective as most spots are

well extracted while the background is canceled.

5. CONCLUSION

We have designed a VST to stabilize and Gaussianize a low-

pass filtered MPG process. The VST is then combined with

the IUWT yielding the MS-VST. We have shown the MS-

VST approach to be very effective in fluorescent image de-

noising and spot detection. Our future work will apply the

MS-VST in deconvolution and super-resolution detection.
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