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ABSTRACT

FMRI time course processing is traditionally performed using linear regression followed by statistical hypothesis
testing. While this analysis method is robust against noise, it relies strongly on the signal model. In this paper, we
propose a non-parametric framework that is based on two main ideas. First, we introduce a problem-specific type
of wavelet basis, for which we coin the term “activelets”. The design of these wavelets is inspired by the form of
the canonical hemodynamic response function. Second, we take advantage of sparsity-pursuing search techniques
to find the most compact representation for the BOLD signal under investigation. The non-linear optimization
allows to overcome the sensitivity-specificity trade-off that limits most standard techniques. Remarkably, the
activelet framework does not require the knowledge of stimulus onset times; this property can be exploited to
answer to new questions in neuroscience.
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1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has become a predominant modality for imaging human brain
function. The blood-oxygenation-level-dependent (BOLD) signal, which originates from an overcompensation in
oxygenated hemoglobine following neuronal activity by the neurovascular system, can be measured and localized
using fast acquisition of T2* MRI volumes. The analysis of these large spatio-temporal datasets is difficult due
to noise, measurement artifacts, and the variability of the BOLD response.

The classical approach puts forward a linear model to explain a voxel’s time course. The modeled BOLD
response is the convolution of the hemodynamic response function (HRF) with the stimulus function, which
can be a train of boxcar functions (block-based paradigm) or Dirac delta-functions (event-related paradigm). A
widely used model for the HRF is the sum of two gamma-functions. Finally, voxels are declared as activated
based on the results of statistical hypothesis testing.1

The variability of the BOLD response is particularly important in event-related fMRI (efMRI). It has been
shown that (1) the inter-subject differences in BOLD response are stronger than spatial ones inside one subject;
(2) the intra-subject variability is stronger in space than in time; and (3) task-related responses have more
coherent shapes than other activations, such as cardiac and respiratory ones.2

Several extensions have been proposed to the classical approach to deal with variations in BOLD response.
Friston et al. include the orthonormalized versions of first partial derivatives of the HRF model with respect
to parameters in the regression procedure.3 Adding more regressors reduces the number of degrees of freedom
and requires looking for an optimal trade-off between sensitivity (ability to identify the active voxels) and
specificity (ability to identify non-active voxels). Friman et al. use canonical correlation analysis to find basis
functions having this optimal trade-off.4 To get ultimate adaptivity, one could build up the model for the
HRF directly from the data. The FIR basis approach constructs the HRF as an FIR filter using statistical
significance as an optimization criterion. Finally, we mention PCA and ICA methods that consider the problem
as blind deconvolution of multiple sources. This strategy provides a data-dependent decomposition based on an
information-theoretic criterion.
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In this paper, we propose a new dictionary of building blocks (activelets) that approximate well a class of
gamma-function HRF models, instead of having a single HRF model. Recently, a family of exponential-spline
wavelets has been introduced.5 Their properties are essentially transpositions of polynomial-related properties
of traditional wavelets to the exponential-polynomial (gamma functions) setting. This makes exponential-spline
wavelets natural candidates that can be tuned for our purpose.

Another important ingredient of our approach is the usage of sparsity-driven algorithms to recover (in a
data-dependent way) the underlying activations. To get the minimum-budget building atoms of the event-
related activation response, our problem is formulated as finding the sparsest solution to an underdetermined
linear system of equations, which is the solution with the smallest number of nonzero elements. Therefore, we
would like to solve a sparsity-promoting optimization problem, where a quadratic data fidelity term is optimized
under a sparsity-budget constraint as measured by the l1 norm. Solving such problems is the area of an active
research work.

We validated this approach as follows. An initial experiment consisted into approximating arbitrary shifts
of a single gamma function. For the noiseless case, we found that the exponential-spline wavelet basis allowed
a very good approximation with as few as 4 coefficients. Interestingly, traditional B-spline wavelets required
more than 30 coefficients to obtain the same approximation quality. To further demonstrate the feasibility of
our approach, we evaluated its performance using a stochastic signal simulator. Three synthetic activations were
generated as HRFs with random onset and parameters (time-to-peak and decay) and corrupted with additive
white noise. The sparsity algorithms nicely detected all the activations within the presence of noise, even at
SNRs at 15dB. Note that the activations were detected without any prior knowledge on the stimulus function, as
opposed to model-based approaches. In addition, our method appears to cope well with the variability of BOLD
responses.

This paper is organized as follows. In Section 2, we use the gamma-function model for the fMRI time series
to find an appropriate wavelet (activelet) basis that could be used for the analysis. The activelet dictionary is
used to formulate the sparse optimisation problem in Section 3. We outline our algorithm in Section 4 and show
the validation results in Section 5. Finally, in Section 6, we discuss current challenges and the potential usage of
the activelet method in neuroscience.

2. ACTIVELETS REPRESENTATION

Consider a number of neuronal events at the time points tk, which can be modeled by a train of Dirac delta-
functions as

s(t) =
N∑

k=1

δ(t− tk).

In efMRI, the timings tk are known by the stimulation pattern. If we further assume the canonical HRF model
with the linear-shift-invariant assumption, we can then expect the induced BOLD signal x(t) to be

x(t) = s ∗ h(t), (1)

where h(t) is the canonical HRF that is described by a difference of gamma functions:

h(t) = g(t; τ1, l1)−
1
6
g(t; τ2, l2), g(t; τl) =

lτ tτ−1
+ e−lt

Γ(τ)
. (2)

The parameters of the Gamma functions are chosen by specifying the delay to peak (τ/l) and the dispersion
(τ/l2). The standard parameters are: delay=6s, dispersion=1s for the initial peak, and delay=16s, dispersion=1s
for the undershoot.1 Therefore, x(t) can be rewritten as

∑N
k=1 h(t− tk). The measured (noisy) data corresponds

to
y[k] = x(k) + n[k], (3)

where n[k] represents the additive gaussian noise.



In traditional fMRI analysis, the relevant question is whether the voxel is active or not with respect to the
known stimulus function. This question is answered by measuring the strength of the signal (1) in the data y[k].
A regression is fitted to the data; the resulting signal weight is subject to statistical testing for each voxel, using
its corresponding t-value. In the case of efMRI, this method can be very sensitive to HRF variations: inaccurate
estimation of the parameters τ1 and τ2 could lead to a false negative response. At the same time, τ1 and τ2 are
fixed for the whole volume. In order to account for the variability of h(t), state-of-the-art data analysis tools,
such as SPM, include the partial derivatives dx/dt and dx/dτ1 in the regression. This makes the model more
flexible; note, however, that each added regressor increases the risk of fitting non-stimuli related components in
the signal, potentially giving way to false positive responses. Selection of regressors always boils down to setting
a trade-off between sensitivity and specificity.

In this paper, we choose a different approach, which does not rely on the prior knowledge of the timings tk.
We note that the gamma-functions in (2) are piecewise exponential polynomials. A convenient tool to compactly
represent such signals is the exponential-spline wavelet (ESW) transform.5 This transform is governed by a
vector parameter ~α; similar to traditional wavelets, it provides a stable representation of L2(R) = ⊕∞i=−∞Wi

in terms of orthogonal wavelet spaces Wi = span{ψi(t − 2ik)}k∈Z. As compared to the traditional case, the
wavelets become scale-dependent. Nevertheless, the ESW transform can still be performed by means of fast
Mallat’s filterbank algorithm with scale-dependent filters.

Qualitatively, the ESW transform shows the same properties regarding exponential polynomials as the tra-
ditional wavelet transform has for polynomial functions. In particular, for piecewise exponential polynomials, it
has the energy-compaction property, leading to sparse representation in the ESW domain. All these favourable
properties of exponential-spline wavelets make them a natural tool for fMRI time-course analysis.

One degree of freedom is the choice of the ESW parameter ~α. We have optimized ~α by minimizing the
reconstruction error of the canonical HRF from K wavelet coefficients averaged over an interval of values for τ1
and τ2. With the optimal choice of α = {−0.6,−0.6,−0.6,−0.6}, we are able to reconstruct the HRF from as
little as K = 4 coefficients with an average SNR of 30dB. We coin the term activelets the corresponding HRF-
adapted exponential-spline wavelets. In comparison, to obtain the same quality using regular B-spline wavelets,
which corresponds to setting ~α = {0, 0, 0, 0}, we need about 30 coefficients.

The activelet transform gives us a representation that concentrates the energy of an fMRI time course on
few coefficients. In the next section, we describe a way detect BOLD activity in the noisy signal by means of a
sparse optimization problem.

3. OPTIMIZATION PROBLEM

We observe the noisy measurements y[k] of the signal x(t) as in (3), and we would like to find the sparsest set of
wavelet coefficients β0 that fits y[k] best after reconstruction. Mathematically, we can state this as a constrained
optimisation problem

min
β
‖β‖0 subject to ‖y − Φβ‖2 ≤ ε, (4)

where Φ is the inverse ESW transform matrix, ε is a constant of the same order as the noise norm, and the `0
quasi-norm of a vector is the number of its non-zero components. Unfortunately, the functional to be optimized
here is not convex, which makes the problem (4) NP-hard, demanding exorbitant computational efforts in general.
This is why authors in6 advocated the convexified `1 form:

min
β
‖β‖1 subject to ‖y − Φβ‖2 ≤ ε, (5)

Problem (5) can be also stated in the augmented lagrangian form

β0 = arg min
β

‖y − Φβ‖22 + λ ‖β‖1 , (6)

where λ is a regularisation parameter. The best choice of λ is determined by the actual noise level, which is
estimated using e.g. the MAD.7



Table 1. Mean and standard deviation of random parameters in the synthetic experiment.

Parameter Mean Standard deviation
a1, a2, a3 1 0.2

τ1 6 1.5
τ2 16 1.5

Note that the problems (6) and (4) are equivalent under an appropriate correspondence of parameters; that
is, for a given 0 ≤ λ < +∞ there exists ε > 0 such that the two problems share the same solution, and vice
versa. Formulation (6) is a (perturbed) linear programming problem known as BPDN.7

It has been shown in [6, Theorem 3.1] that if the noiseless ideal signal x is sufficiently sparse with ‖β‖0 ≤
(µ−1

Φ + 1)/4∗, then β0 is the unique maximally sparse representation of x, and stable recovery is possible by
minimizing (5). As far as the solution to (6) is concerned, Tropp [8, Theorem 8 and Corollary 9] proved that
if x is sufficiently sparse in Φ with ‖β‖0 < µ−1

Φ /2, and if the regularization parameter λ is chosen higher than
the noise level, then the support of the solution to (6) is either contained or identical to the support of β0. In
summary, if the signal has a sufficiently sparse representation, then, by minimizing either (5) or (6), we obtain a
solution that (i) is the unique sparsest solution, (ii) is recovered with the appropriate sparsity pattern, and (iii)
is stable to noise.

The optimisation in (6) can be cast as a (perturbed) linear program, and solved using general purpose
solvers such as simplex and interior point methods which are slow for large-scale problems. There has also
been interest in the statistical community in fitting regression models while imposing `1-norm constraints on
the regression coefficients. In,9–11 the Lasso, LARS and Homotopy methods were proposed to solve (6) in the
overdetermined case for all λ ∈ [0,

∥∥ΦT y
∥∥
∞]. In this paper, we propose an approximate path-following algorithm

which identifies groups of atoms at each iteration using a stagewise iterative-thresholding (IT) variant of LARS,
where the sequence {λk}k≥0 is not data-adapted, but allowed to be strictly decreasing.12 It can be shown that
the computational complexity of IT-LARS is O (KV ). Here, K is the number of non-zero coefficients in the
solution, and V is the cost of the ESW decomposition.

We now have all the tools needed for the activelet method, which is outlined in the next section.

4. THE ACTIVELET APPROACH

The algorithm takes the fMRI time course y[k] as input, which is fed into the sparse-solution search algorithm
that uses the activelet decomposition routine to perform fast dictionary search. We use the undecimated wavelet
(activelet) transform in order to gain shift-invariance. In addition, large-scale B-splines are incorporated in the
dictionary to fit the fMRI baseline signal.

In case when the the voxel’s time course encodes brain activity, the activelet part of the representation
becomes non-zero but still remains sparse. The full reconstruction contains BOLD signal both due to activation
and baseline. Contrarily, for a pure noisy voxel, coefficients of the activelet decomposition are kept to zero by
the sparsity-pursuing algorithm and the fit reduces essentially to the baseline component.

5. SYNTHETIC EXPERIMENT

As a proof of concept, we have validated our approach on a synthetic dataset with 3 stimuli occurring at non-
regularly spaced time moments. The variability is of HRF has been modelled by randomizing the amplitudes
a1, a2, a3 and the canonical HRF parameters τ1, τ2 of the 3 responses. The means and standard deviations of
these variables in our experiment are shown in Table 1. The data was corrupted by gaussian white noise with
standard deviation σ = 0.15.

In Figure 1, we show a typical activelet fit to a noisy dataset. We observe good visual quality of the
reconstructed signal and a significant gain (+6 dB on average) in the SNR, despite the strong noise level in the
original data. Importantly, as seen in Figure 2, a simulated pure-noise time course does not have a sparse activelet
representation, and the algorithm detects no activations. We repeat the same experiment using traditional B-
spline wavelets (cf. Fig. 3 and Fig. 4). The important degradation of results stresses the importance of a



0 50 100 150 200 250
−0.5

0

0.5

1

1.5

Figure 1. Activelet fit to a noisy fMRI time-course. Thin line: original signal. Dashed line: noisy measurements. Thick
line: reconstruction from sparse activelet representation.
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Figure 2. Activelet fit (thick line) to pure noisy data (dashed line). No activations are detected.



0 50 100 150 200 250
−0.5

0

0.5

1

1.5

Figure 3. Wavelet fit to a noisy fMRI time-course. Thin line: original signal. Dashed line: noisy measurements. Thick
line: reconstruction from sparse wavelet representation.
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Figure 4. B-spline wavelet fit (thick line) to pure noisy data (dashed line). Noise is partially fitted by the traditional
wavelets.



properly designed, problem-adapted wavelet basis. In particular, sparse optimisation with traditional wavelets
cannot distinguish pure noise from the activity-related signal.

6. CONCLUSION AND OUTLOOK

We have presented a novel approach for detecting activity in fMRI. The fMRI time course is decomposed in
the newly designed activelet basis that concentrates activity-related energy on few wavelet coefficients; these
coefficients are then identified by means of a sparse search algorithm.

The activelet representation and the sparse search algorithm are the two main ingredients for our method.
From the sensitivity-specificity viewpoint, activelets alone are nothing but a very flexible model; used with a
least-squares fit, they would “detect” the whole signal. At the same time, we have shown that sparse optimisation
with traditional wavelets can not fit the signal properly.

Undecimated wavelet transform has a disadvantage of having highly correlated elements in the dictionary.
This has a double negative impact on the algorithm: on one hand, the computation time amounts up to 5
sec/voxel; on the other hand, the noise could eventually well fitted by a linear combination of correlated elements.
A potential improvement to the algorithm would consist in taking advantage of the knowledge of the dictionary
structure and avoiding selection of correlated elements.

Interestingly, unlike traditional fMRI time-course processing methods, our algorithm does not use the knowl-
edge of the stimulus times tk. This opens a new horizon to the usage of fMRI in neuroscientific applications,
such as mental chronometry, where tk could be estimated from the time course itself.
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