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Abstract

Morphological Component Analysis (MCA) is a new method wigkes advantage of the sparse
representation of structured data in large overcompletigodiaries to separate features in the data
based on the diversity of their morphology. It is an efficithnique in such problems as separating
an image into texture and piecewise smooth parts or for imipg applications. The MCA algorithm
consists of an iterative alternating projection and thoédihg scheme, using a successively decreas-
ing threshold towards zero with each iteration. In this pate MCA algorithm is extended to the
analysis of spherical data maps as may occur in a number & ateeh as geophysics, astrophysics
or medical imaging. Practically, this extension is madesjile thanks to the variety of recently
developed transforms on the sphere including several sealé transforms such as the undecimated
isotropic wavelet transform on the sphere, the ridgelet@amgelet transforms on the sphere. An
MCA-inpainting method is then directly extended to the cafsgpherical maps allowing us to treat
problems where parts of the data are missing or corrupteddéienstrate the usefulness of these
new tools of spherical data analysis by focusing on a selecti challenging applications in physics
and astrophysics.

Keywords and Phrases. : Spherical Data, Morphological Component Analysis, Spaepre-
sentation, Inpainting.

1 Introduction

A usual task in processing signals, images as well as spthelata maps, is to decompose the data into
its elementary building blocks. This can be formulated ageerse problem where the data is assumed
to have been generated according to the following model :
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that is a linear combination of relevant waveforgise R™ with weightsa;. Heren represents possible
contamination by additive, typically Gaussian white noiggiven datay € R"™, one then wants to
recover the underlying structures that is to say estimatket afswaveformsp; that build the data and



their corresponding weight&;. The solution to this estimation problem will depend heawh the
available prior information. Of interest here is the caserglone is givera priori a set a waveforms
from which to select a good subset. This set may be a basianeefor several bases or frames grouped
into a large redundant dictionary.

Possible dictionaries in 1D and 2D include Fourier and eeldtases, wavelet bases, as well as other
more recent multiscale systems such as the ridgelet [17tanatlet frames [24, 52], etc. Depending
on the morphology of the data, each of these dictionaridshaile different performance characteristics
in a non-linear approximation scheme. For instance, sgwXximations of piecewise smooth signals
or images with point singularities are easily obtained gisiavelets. However these are no longer
optimal in the case of piecewise smooth images with singi#laralong smooth curves or edges. Such
images are more efficiently approximated using curveletshwvare highly anisotropic and thus exhibit
high directional selectivity. Digital implementations loéth ridgelet and curvelet transforms and their
application to image denoising are described in [52].

Available transforms in the spherical topology include $ipberical harmonics and several wavelet
transforms. Software packages such as He&[Bi&] or Glesp [29] provide approximate digital spherical
harmonic transform routines based on their specific piagbn schemes. Schroder and Sweldens [49]
have developed an orthogonal wavelet transform on the sfifassed on the Haar wavelet function which
then suffers from the poor frequency domain localizatioopprties of the primitive Haar function and
from the problems inherent in orthogonal decompositiery.(lack of translation invariance). A few
papers describe continuous wavelet transforms on theefihet8, 39, 59, 9] which have been extended
to directional wavelet transforms [60, 45]. Although uséfu data analysis, these continuous transforms
lack an inverse transform and hence are clearly not suitablestoration or synthesis purposes.

In their pioneering work, Freeden and Maier [33, 34] gave wel& transform/reconstruction scheme
on the sphere which is based on the spherical harmonic transfollowing this idea, Starait al. [56]
have proposed a new invertible isotropic undecimated weateinsform (UWT) on the sphere which
preserves the same desirable properties as the standaopisd@WT for flat 2D maps [57]: the recon-
struction is simple and immediate since it is just the addiof all the wavelet bands with the coarsest
scale. Based on this new decomposition, other multiscalestorms such as the pyramidal wavelet
transform, the ridgelet transform and the curvelet tramsfhave been successfully constructed on the
sphere [56]. Each of these decompositions on the spherepaitsely represent parts of the image based
on their morphological properties. Wavelets will easilyad more or less isotropic localized structures,
while curvelets are better suited for efficiently detectighly anisotropic objects.

A data sety has an exact representation over any complete basis of thespiace, or several such
exact representations in the case of redundant overcaerglitgtonaries. However, these representations
are not equally interesting in terms of data modeling oruieatetection. In fact, a strorg priori
is to favor representations gfthat use only a small number of waveforms leading to a moreisen
and possibly more interpretable representation of the. datdact, building sparse representations or
approximations is the (he)art of structured data procgssihe design of good detection, denoising,
restoration and compression algorithms relies on theahility of good dictionaries and good selection
algorithms. Indeed, selecting the smallest subset of wawef from a large dictionary, that will linearly
combine to reproduce the salient features of a given signahage, is a hard combinatorial problem.
Severalpursuit algorithms have been proposed that can help build very sghlssompositions such as
the greedy Matching Pursuit (MP) [42] algorithm which refiribe signal approximation by picking at
each iteration the one waveform which best correlates Wwétturrent approximation error. Basis Pursuit
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(BP) [20] is a global procedure which seeks an approximajitmy by solving the linear programming
problem:
min ||a||e, subject toy = ®av. 2)

where the/; norm measures sparsity in place of thecounting norm. In the presence of noise, a
noise-aware variant of BP, known as BPDN (for BP denoising)) be stated as a convex quadratic
programming problem and solved using the Interior Pointho@{20]. The BPDN problem can also be
written in the augmented Lagrangian form:

min [}y — ®al?, + A - [, ©)

Among all possible solutions, the chosen one has the minifyumerm. This choice of; norm is very
important. An¢, norm, as used in the method of frames [21], does not favoisgpdR0]. A number

of recent results prove that these algorithms will recoher unique maximally sparse decomposition
provided this solution is sparse enough and the dictionisssyfficiently incoherent [25, 31, 37, 26, 35].
Nevertheless, in problems involving large data setg.(images, spherical maps), BP or MP synthesis
algorithms are computationally prohibitive.

Morphological Component Analysis (MCA) is a recent fastiéeraative described in [54] that con-
structs a sparse representation of a signal or an image agptimat it is a combination of morpho-
logically distinct features which are sparsely represgmtedifferent dictionaries associated with fast
transform algorithms. For instance, images commonly cambbntours and textures: the former are
well accounted for using curvelets, while the latter may ledl vepresented using local cosine functions.
In searching for a sparse decomposition of a signal or imagds assumed thaj is a sum ofK’ com-
ponents(sy)1,... x, where each can be describedsgs= ®;«, with a possibly over-complete dictionary
®,. and a sparse vector of coefficients. It is further assumed that for any given component the spars
est decomposition over the proper dictionary yields a igplrse description, while its decomposition
over the other dictionariegp;,, is non sparse. Thus, the differedy, can be seen as discriminating
between the different components of the initial signal. M&zhieves its sparse decomposition relying
on an iterative thresholding algorithm with a successidgygreasing threshold [8] thus refining the cur-
rent approximation by including finer structures altemngity in the different morphological components.
Based on MCA, it has also been shown that we can derive a viicieat inpainting method [32].

This paper: Motivated by the success of MCA in signal and image procegsshe purpose of this
contribution is to take advantage of the variety of transf®on the sphere recently made available [56]
to extend the applicability of MCA to the analysis of sphalimaps which are commonly recorded in a
number of areas such as geophysics, astrophysics or madaginhg. As in the case of Euclidean 2D
images, we further extend the MCA algorithm on the spherederto perform inpainting tasks on the
sphere. The proposed numerical tools are shown to be valirabéveral selected applications in physics
and astrophysics. The construction of the undecimatetbigiotwavelet and curvelet transforms on the
sphere is reviewed in the next section. Sections 3 and 4idledbe extension to the sphere of the MCA
algorithm and of its modification for inpainting purposes.



2 Transformson the Sphere

2.1 Isotropic Undecimated Wavelet Transform on the Sphere (UWTYS)

The undecimated isotropic transform on the sphere destiibfb6] is similar in many respects to the
regular & trousisotropic wavelet transform. It is obtained using a zonaliag functiong;_ (¢, ¢) which
depends only on colatitud@and is invariant with respect to a change in longityddt follows that the
spherical harmonic coefficient{sc(l,m) of ¢;, vanish whenn # 0 which makes it simple to compute
the spherical harmonic coefficierig(l, m) of co = ¢;, * f wherex stands for convolution :
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A possible scaling function [57], defined in the sphericainanics representation, ig; (I,m) =
%Bg(%) where Bs is the cubic B-spline compactly supported oyeR, 2]. Denoting¢,-;; a rescaled
version ofg;, with cut-off frequency21., a multi-resolution decomposition gfon a dyadic scale is
obtained recursively :

éO(lvm) = m(l7m) =

co = G.xf
Cj = ¢27jlc * f - Cj_l * h]—l
®)
where the zonal low pass filtets are defined by
o] 'lil (L,m) l
A 4 R o7 . e _
Hlm) = | =T (lm) = e am Tl<gir and m=0 ©
20+ 1 L |
0 otherwise

The cut-off frequency is reduced by a factor2ddit each step so that in applications where this is useful
such as compression, the number of samples could be redydbd bame factor. Using a pixelization
scheme such as Healpix [36], this can easily be done by diyidy 2 the Healpixsideparameter when
computing the inverse spherical harmonics transform. @Qfsm this is only an approximag&ampling
Theorembut it proved sufficient for numerical purposes. Howevethim present isotropic undecimated
transform, no downsampling is performed and the maps havedine number of pixels on each scale.
Hence the orthogonality requirement is relaxed, which jolesrus with a higher degree of freedom in the
choice and design of the wavelet functigy) to be used with the scaling functien_. As in thea trous
algorithm, the wavelet coefficients can be defined as therdiffce between two consecutive resolutions,
wir1(Y, @) = ¢j(0,¢) — ¢j+1 (¥, ¢) which defines a zonal wavelet functign, as

@%(l,m) Zéﬁ(l,m)—ﬂgﬁ(l,m) -

This particular decomposition is readily inverted by sumgnihe coefficient maps on all wavelet scales
J

FW,0) =cs(¥,0) + > w;(¥,¢) ®)
j=1
where we have made the simplifying assumption yhistequal tacy. Obviously, other wavelet functions
could be used just as well. Also, because of the redundanttyeafescribed decompaosition, the inverse
transform is not unique and in fact this can profitably be useinpose additional constraints on the
synthesis functionse(g. smoothness, positivity) used in the reconstruction [55].
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2.2 Curveletson the Sphere

The 2D ridgelet transform [17] was developed in an attempttrcome some limitation inherent in for-
mer multiscale methods.g.the 2D wavelet, when handling smooth images with edgesingukrities
along smooth curves. Ridgelets are translation invaridge functions with a wavelet profile in the nor-
mal direction. Although ridgelets provide sparse repreg@ns of smooth images with straight edges,
they fail to efficiently handle edges along curved lines.sTikithe framework for curvelets which were
given a first mathematical description in [16]. Basicalhg turvelet dictionary is a multiscale pyramid
of localized directional functions with anisotropic suppabeying a specific parabolic scaling such that
at scale2 7, its length is2—7/2 and its width is2—7. This is motivated by the parabolic scaling property
of smooth curves. Other properties of the curvelet transfand decisive optimality results in approx-
imation theory are reported in [16, 14]. Notably, curveletsvide optimally sparse representations of
manifolds which are smooth away from edge singularitieag@kmooth curves. Several digital curvelet
transforms [24, 52, 22, 13] have been proposed which atteoeserve the essential properties of the
continuous curvelet transform and many papers [51, 54,8&%3 report on their successful application
in image processing experiments. The contourlet transfori22] is a filter bank implementation of the
curvelet transform. Candés al. implement fast discrete curvelet transforms in [13]. Thleisign is very
close to the mathematical transformation as they resorptwvimg of the Fourier plane into pseudo-polar
wedges delimited by dyadic concentric squares. The sedtitist generation discrete curvelet described
in [24, 52] is a very different construction : it consists op#ying the ridgelet transform to sub-images
of a wavelet decomposition of the original image. By cortdtan, the sub-images are well localized in
space and frequency and the subsequent ridgelet transforma@s the necessary directional sensitivity.
This latter implementation in combination with the good igetric properties of the Healpix pixelisation
scheme, inspired the digital curvelet transform on the spf&s].

Partitioning using the Healpix representation. The Healpix representation [36] is a curvilinear par-
tition of the sphere into quadrilateral pixels of exactlyualjarea but with varying shape. The base
resolution divides the sphere into 12 quadrilateral fadesqaal area placed on three rings around the
poles and equator. Each face is subsequently dividechisige? pixels following a hierarchical quadri-
lateral tree structure. The geometry of the Healpix samgpdind makes it easy to partition a spherical
map into blocks of a specified size. We first extract the twélase-resolution faces, and each face is
then decomposed into smoothly (i.e. an apodizing windowsedy overlapping blocks of side-length
Bj pixels in such a way that the overlap between two verticadjpeent blocks is a rectangular array of
size B; x B;/2, as in the 2D digital curvelet transform [24, 52, 53]. Witlistacheme however, there is
no overlapping between blocks belonging to different b@selution faces. This may result in blocking
aritfacts in different data processing tasks such as imageigingvia non linear filtering. A simple way
around this difficulty, which however results in greateruedancy, is to work with various rotations of
the data with respect to the sampling grid.

Ridgdet transform The continuous ridgelet transform is the application of avi&velet transform
to the angular slices of the Radon transform [17]. A digitaplementation described in [53] consists
in i) first computing the 2D Fourier transform of tthe imagg niext extracting lines going through the
origin in the frequency plane, iii) then computing the 1Ddrse Fourier transform of each of these
lines, iv) and finally computing the 1D wavelet transform loé textracted lines. The first three steps
implement the discrete Radon transform method calleditfogram Other implementations of the
Radon transform, such as tB&ant Stack Radon Transforfi23], can be used as well, provided they offer



an exact reconstruction. Applying the ridgelet transfomsob-images as suggested in [15] provides the
means to localize and limit the extent of the ridgelet fumtéi. More details on the implementation of
the digital ridgelet transform can be found in [52].

Curveet transform Finally, the proposed digital curvelet transform algamtlon the sphere is as
follows:

1. Apply the undecimated isotropic wavelet transform onsghieere withJ scales,
2. Initialize the block sizé31 = Bmin,
3. Forj=1,...,Jdo,
e partition the subband; with a block sizeB; and apply the digital ridgelet trans-
form to each block,
e if jmodulo2 = 1thenBj;1 = 2Bj,
e elseB;1 = B;j.

where smalleri means smaller length scales and higher frequency bandsbliBguhe sidelength of
the localizing windowat every othedyadic sub-bandi.€. when the spatial frequency has been divided
by four ) approximately preserves the specific parabolidireggroperty of the continuous curvelets.
Nevertheless, the proportionality factor betweerth andlength? has to be decided on in practice. The
proposed implementation uses the default valyg,, = 16 pixels. Figure 1 shows the backprojection
of a few curvelet coefficients at different scales and ostobhs on the sphere. The digital curvelet
transform on the sphere is clearly invertible in the senaedhch step of the overall transform is itself
invertible. The curvelet transform on the sphere has a mahry factor ofl6.J + 1 whenJ scales
are used, which may be a problem for handling huge data seltisesufrom the future Planck-Surveyor
experiment. This can be reduced by substituting the pyralnvicivelet transform to the undecimated
wavelet transform in the above algorithm. More details anwlavelet, ridgelet, curvelet algorithms on
the sphere can be found in [56] and software related to thesenansforms is available from the web
pagehttp://jstarck.free.fr

Local DCT on the Sphere The Healpix partitionning of the sphere into warped squédoels allows
for even more numerical local transformations on the sphEag instance, a local DCT on the sphere
is readily obtained by applying the standard DCT to a corepbett of possibly overlapping blocks of
maybe different sizes. This heuristic revealed useful iaiqular application described in section 3.3.
Although it is difficult to fully characterize the geometr§ such digital transformations on the sphere,
they profitably enrich the set of tools available for sphedrdtata analysis.

3 MCA onthe Sphere
3.1 Principleand algorithm

For a given spherical mapmodeled as a linear combination &f spherical maps(sy)x=1.... x, ¥ =

Zszl sk, having different morphologies, MCA assumes that a dietigrof base§®, - - - , ® } exists
such that, for eaclt, s, is sparse in®,, while its representation in the othdp, ( k' # k) is not sparse :
VK # k, ||®T skllo < ||®L sk]|0, where||z||o denotes thé, pseudo-norm of the vectar. The problem
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Figure 1. Curvelets on the Sphere - The above figures show abkplojection of various curvelet
coefficients at different scales and orientations on thempHEach map is obtained by setting all but one
of the curvelet coefficients to zero, and applying an invergeelet transform. Depending on the scale
and the position of the non zero curvelet coefficient, themetructed image presents a feature with a
given width, length and orientation.

is to separate the mixtunginto its constitutive morphological componerits;);—: ... x relying on the
discriminating power of the different dictionarids,. Ideally, thea,, are the solutions to:

K K

min llakllo subjectto y= Doy 9)
While sensible from the point of view of the desired solutitme problem formulated in Equation (9)
is non-convex and combinatorial by nature. Its complexitgwg exponentially with the number of
columns in the overall dictionary (NP-hard problem). Mat&d by recent equivalence resuits.
in [25], the MCA algorithm seeks a solution to the followingnimization problem:

K 2
y=_ s

k=1 2
where ary; sparsity measure is substituted to theounting norm following a prescription of the Basis
Pursuit algorithm [20]. In the above, the equality consiraias relaxed and agaig, = ®ay. In the

case where eacl;, is an orthonormal basis, a block-coordinate solution tcetteve problem is given
by the following set of coupled equations:

with s = Pray, (10)

K
min A [laglly +
K k=1

81y.+4yS

A , ,
Vk,sp =1k — Tk@k&gn(@zsk) with 7, = s — Z Sk (11)
k' £k

This can be solved efficiently using the iteratBick-Coordinate Relaxation Meth¢til] in conjunction
with, at a givenk, a soft-thresholding of the decompositionrgfover ®,.. However, when non-unitary
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or redundant transforms are used, the above is no longetlyswvalid. Nevertheless, simple shrinkage
still gives satisfactory results as explained in [30]. Madenoting by T, and R, the forward and
inverse transforms associated with the redundant diatyofg,, MCA seeks a solution to problem (10)
with the following algorithm:

1. Set the number of iterations Imax and the initial thresholds (Aio))
k

2. While A,i” is greater than a given lower bound Amin (€.9. can depend on the noise standard deviation),
— Proceed with the following iteration to estimate components (sx)r=1,...,x at iteration ¢:
For k=1,--- |K
e Compute the residual term rff) assuming the current estimates 51(5;2 of sy, are fixed:
T(,t) — y _ Z , g(t/*l)
k k'#k "k
o Estimate the current coefficients of §,(f) by thresholding with threshold /\,(f):
NG (Tkﬁ(f))
k
e Get the new estimate of s, by reconstructing from the selected coeffcients &,(f) :
5" = Ryal!
— Decrease the thresholds A, following a given strategy.

,,,,,

3.2 Thresholding strategy

The operatob in the above algorithm is a soft thresholding operator as@tref the use of a#; sparsity
measure in approximation to the ide& norm. In practice, hard thresholding leads generally ttebet
results [54]. The final threshold should vanish in the neisglcase or it may be set to a multiple of the
noise standard deviation in the presence of noise as in condetection or denoising methods. The way
the threshold is decreased along the iterations of the pempiterative thresholding scheme is paramount
in terms of performance of the MCA separation mechanism. drtggnal algorithm [54] used a linear
strategy :

>\(0) - /\min

A = \O _ ¢ —1) T

(12)
where\(©) is the initial threshold, and,,.. is the number of iterations. The first threshold can be set
automatically to a large enough value such as the maximurt obefficients A(¥) = max;, | T1y||co-

But there is no way to estimate the minimum number of iteratipielding a successful separation. Too
small a number of iterations leads to bad separation whildatime a number is computationally costly.
Further, experiments have clearly shown that the optimahber of iterations depends on the data.
We recently focused on devising some new data adaptivehibiding strategies to speed up the MCA
decomposition preserving the quality of the componentrsejoa. Hereafter we describe two promising
strategies, namely MAD and MOM, in the case wh&re= 2 ; generalizing taX’ > 2 is straightforward.

MAD Consider a mag such thaty = s; + so = ®1a;1 + ®2a2 Where s; and sy have similard,
norm andoy—1 2 = <I>f,§:1723k:172 are sparse. When boti;_, » are orthonormal bases, decomposing
y in ®; leads toy®? = a1 + ®7®,05. Provided the mutual coherence [12, 37, 25faf and & is

low, y2 has no particular structure #; and hence it is tempting to modeb? s, as a Gaussianoise

Its standard deviation can be estimated using a robustastirauch as the Median Absolute Deviation
(MAD) [27]. It follows that estimating the significant ergga; in o7 is a denoising problem readily
solved by thresholding?y with a thresholdio (typically k is in the range 3 to 4). The next step is to
project the residualy — 1 = y — ®1a; on ®5 and so on. Clearly, the variance of the residual decreases



along iterations and so this provides a simple strategy &ptagely control the threshold in the MCA
algorithm. In practice, this strategy remains fruitful hetcase of redundant dictionaries. Don@ha@il.

in [28] have recently focused on an iterative thresholdicigesne applied to solving under-determined
linear sparse problems in which they use a similar rule toagartheir decreasing threshold.

MOM Let 59 and §§t) denote the current estimates of componestsind s, at thet' iteration of

the MCA decomposition of. The current residual is® = y — 59 — §§t). In the strategy coined MOM
as in "Mean of Max”, the value of the threshold at iteratiois given by :

A = (18] (587 =8 oo 128 (-5 - ) ] )

which is easily computed at each step of the iterative procéghen one considers more than two dic-
tionaries, one should take the mean of the two largest degsitign coefficients of the full residual over
two distinct dictionaries. The intuition underlying thisategy is that the next significant coefficients to
be selected should be attached to the dictionary in whictptbgction of the full residual has coeffi-
cients of largest amplitudes. Assuming the coefficientscset at iteratiort are in®+, it can be shown,
under some conditions on the sparsity of the componentshenchtitual coherence of the dictionary [8],
that the proposed strategy fixes the threshold so that :

8T @20y Voo < A < ll6{ VI @) = a1 — @) (14)

hence avoiding false detections (upper bound) and enstivin@t least one coefficient is selected (lower
bound). This thresholding strategy can easily be made mdes®conservative depending on the desired
decomposition speed. With these new thresholding stege®lCA is a fast and robust algorithm to
achieve sparse decompositions in redundant dictionanés gractical alternative to other well-known
sparse decomposition algorithms [8].

Example

The spherical maps shown on figure 2 illustrate a simple ngadesxperiment. We applied the proposed
Morphological Component Analysis on the Sphere to synttadta resulting from the linear mixture of
components respectively sparse in the spherical harmandat¢he isotropic wavelet representations. The
method was able to separate the data back into its origimatitoents. A more involved application is
described in the next section.

3.3 Application in Physics

In Inertial Confinement Fusion (ICF) a spherical shell iadiinted by laser energy directly or after the
laser energy has been converted to soft X-rays [3]. Eithgr the aim is to implode the capsule which
contains a shell of nuclear fusion fuel (deuterium andutmifj ready to ignite if, after it has been im-
ploded, its density is high enough and a hot spot in its cdrgeomes hot enough to cause a propagating
nuclear burn wave to travel through the rest of the fuel. Thimate energy source will not work if dur-
ing the implosion hydrodynamic instabilities develop whean break apart the shell before it assembles
at the center and a hot spot forms [41]. Hydrodynamic inktiglsi such as Rayleigh-Taylor occur due to
nonuniformities in the laser spatial profile or imperfensan the compaosition of multiple surfaces which
make up the layers of thin material that surround the nudleglr Very small amplitude imperfections
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Figure 2: Simple toy experiment with MCA on the sphere - The mtap shows a linear combination
of a spherical harmonic function and a localized Gausskenfunction on the sphere. The bottom
maps show the resulting separated components that wenmebtasing the proposed Morphological
Component Analysis on the sphere.

-391 391 —2B1 e— — 11

Figure 3:left : Surface structures of ICF spherical shells measured onghemeter scale are a su-
perposition of global scale variations, isolated bumps serdtches as well as artifacts which look like
interference patterns on intermediate scaléght : Coarsest scale of the undecimated isotropic wavelet
transform of the surface measurements of an ICF target.
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initially can result in the ultimate failure of the targetelto the large compression ratios involved in
ICF. It is therefore extremely important to characterize ittmer and outer surfaces of ICF shell targets
so as to know whether they are worthy of consideration foril@plosions. One day in a reactor setting
tens of thousands of targets will have to be imploded dailyhsb checking each one is totally out of
the question. Instead, very good target fabrication qualintrol processes have to be adopted so that
confidence levels in proper performance will be high. A majep along this path to fusion energy then
is to understand why imperfections occur and to correct yiséematic elements and control the harm
done by random sources.

Fine structures on the surfaces of spherical shells can lasured on the nanometer scale, among
others, by atomic force microscopy or phase shifting sphéediffractive optical interferometry. An
example of such measurements is shown on figure 3. As can bdrsee the figure, there appears to
be a superposition of global scale variations, isolateddsuand scratches as well as artifacts which
look like interference patterns on intermediate scalecélization. The latter must be isolated and
eliminated from consideration when deciding the readiné#ise target for implosion. We have achieved
the morphological feature separation by first doing an dgutr wavelet transform on the spherical data
and subtracting the coarsest scale information. MCA on pher® was used on the rest of the image
using the undecimated wavelet and the local cosine tramsfon the sphere. The isolated bumps were
thus identified and the measurement technique causedtstifare removed easily. The resulting bumps
added to the coarsest scale, is the clean data with thedrgade patterns and artifacts removed as shown
in figure 4. The spherical harmonic decomposition of thereeaimage gives rise to coefficients of
various/ modes which will be amplified by the implosion process whiah aow be assessed correctly
using numerical hydrodynamics simulation generated drdadtors. If the bumps are clustered and not
randomly distributed, then systematic errors in the mastufang process can be tracked down. A code
called MODEM has been put together to study such targetsidata and extract the localized bump
statistics including their correlations in height, sizel aelative location. For more details see [1].

4 Inpainting on the Sphere

4.1 Algorithm

Named after the expert recovery process used for the résto deteriorated masterpieces, inpainting
refers to a set of techniques used to alter images in a wajsthatletectable to people who are unaware
of the original images. There are numerous applicationsngnwchich removing scratches or objects
in digitized photographs, removing overlayed text or greghfilling-in missing blocks in unreliably
transmitted images, predicting values in images for beterpression or image upsampling. Inpainting
algorithms strive to interpolate through the gaps in thegengelying on the available pixels, the contin-
uation of edges, the periodicity of textures, etc. The prxedmn of edges and texture, in other words
discontinuities, across gaps has attracted much interedtmany contributions have been proposed to
solve this interpolation task. Non-texture image inpaigthas received considerable interest and excite-
ment since the pioneering paper by Masnou and Morel [43, 44 proposed variational principles for
image disocclusion. A recent wave of interest in inpaintiag started from the recent contributions of
Sapiroet al.[4, 5, 6], followed by Chan and Shen [19]. In these works, argtpoint to the importance
of geometry and design anisotropic diffusion PDEs to fill apg by smooth continuation of isophotes.
PDE methods have been shown to perform well on piecewise tbrfiactions.

A very different approach is the inpainting algorithm basedMCA described in [32] which has
proved capable of filling in holes in either texture or cartamntent in 2D images. To make the link
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Figure 4:top : Spherical map obtained by subtracting the coarse scale mtpaight of figure 3 from
the initial map on the left of figure 3.bottom : Component maps separated by the MCA method on
the sphere : interference patterns and measurement ertif@ce grabbed by the local cosine functions
on the sphere (left) while the isolated bumps were cauginigusie undecimated wavelet on the sphere
(right). Adding back the coarse scale on the right of figure e latter map results in a clean map of
the surface structures of an ICF spherical shell with therfatence patterns and artifacts removed.
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between building sparse representations and inpaintimggsider the effect of a rectangular gap on the
set of Fourier coefficients of a monochromatic sinewave abse of the non-locality of the Fourier basis
functions it takes a large number of coefficients to accoanttie gap, which is known as the Gibbs
effect. Seeking a sparse representation of the incompietewsave outside the gap, that is without
fitting the gap, enables the recovery of the complete momochtic sinewave.

Following [32], an inpainting algorithm on the sphere isdigabuilt from the Morphological Com-
ponent Analysis on the sphere described in the previousosed onsider a discrete spherical data map
y and a binary mapg/ such that ones i/ indicate that the corresponding pixelsijrare valid data
while zeros indicate invalid data. The objective functidMCA (eqg. 10) can be modified as follows :

2

K
min )\Z llo|lx + with s, = ®L0y. (15)

S1yeeesS
k=1

K
M ® (y — Zsk)
k=1

2

where® stands for entry-wise multiplication. Thus we are prevanthe sparse model under construc-
tion from attempting to fit the invalid data. Other consttainan be easily imposed on the interpolated
sparse components. For instance, in [32], a total varigtiemalty is shown to enhance the recovery
of piece-wise smooth components. Asking for the regularigoss the gaps of some localized statistics
(e.g.enforcing that the empirical variance of a given inpainfegrse component beearly equabutside
and inside the masked areas) are other possible constrairigactice, because of the lack of accuracy
of some digital transformations we used in the sphericabltayy, additional constraints, which may be
relaxed close to convergence, were also found useful in s@ses to stabilize the described iterative
algorithms.

It is proposed that a solution to the above minimization fmoebcan be reached using the same
iterative thresholding process as in the MCA algorithm idiedain the previous section, with the only
required modification consisting maskinghe full residual using\/ after each residual estimation. The
MCA-inpainting algorithm is as follows :

1. Set the number of iterations I'max and the initial thresholds A\(®
2. While /\,(f) is greater than a given lower bound Amin (€.9. can depend on the noise standard devia-
tion),
— Proceed with the following iteration to estimate components (sy)x=1
For k=1,--- K
e Compute the residual term r(*) :
r® =y — 3, 50D
e Estimate the current coefficients of §§f) by thresholding with threshold /\l(f):
=g (10 (1100 +51)
k

e Get the new estimate of s; by reconstructing from the selected coeffcients dl(f) :
58 = Ryal”
— Decrease the thresholds )\, following a given strategy.

K at iteration ¢:

-----

The different thresholding strategies described in theipus section can be used in the proposed MCA
inpainting iterative thresholding algorithm.

Example

A simple numerical experiment is shown on figure 5. Startiritly & full satellite view of the Earth an
incomplete spherical map was obtained by randomly maslongesof the pixels. In fact, as much as

2availbale from : http://www.nasa.gov/vision/earth/feas/bmnggallery.4.html
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Figure 5: Application of the proposed MCA-inpainting alom on the spheretop left : original
satellite view of the Earthfhean = 76.9, o = 47.7). top right : incomplete map retaining 40 percent
of the original pixels. bottom left : inpainted map.bottom right : map of reconstruction errors
(mean = 0.0, 0 = 2.86 empirically estimated from the reconstructed pixels only )

sixty percent of the pixels were masked. Using both the sgdidrarmonics transform and the curvelet
transform on the sphere within the proposed MCA inpaintiggthm, it is possible to fill in the missing
pixels in a visually undetectable way. The residual map @swhat the bottom right of figure 5.

4.2 Application in Astrophysics

A major issue in modern cosmology is the measurement anddtigtical characterization (spatial power
spectrum, Gaussianity) of the slight fluctuations in ther@iodMicrowave Background radiation field.
These are indeed strongly related to the cosmological gosn@escribing the properties and evolution
of our Universe. Some 370 000 years after the 'Big Bang’, winentemperature of the Universe was
around 3000 K, thermal energy was no longer sufficient to ledegtrons and positively charged particles
apart so they combined. Photons were then set free in a rteamigparent Universe. Since the Universe
further expanded, these photons are now in the microwawgerant they should still be distributed
according to a Black Body emission law. Indeed, before rdaination, the Universe was a highly
homogeneous opaque plasma in near thermal equilibrium ichaghotons and charged particles were
highly interacting. Hence the slight fluctuations in mattensity from which such large scale structures
as galaxies or clusters of galaxies have evolved, are algortad on the distribution of photons.

The Cosmic Microwave Background (CMB) was first observedd@5lby Penzias and Wilson con-
firming a prediction made by Gamow in the late 1940’s. But iswat until the early 1990’s that
evidence for small fluctuations in the CMB sky could finallyfband thanks to the observations made
by COBE [50]. This was confirmed by several subsequent obgens and recently by NASA's Wilkin-
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Figure 6:left : CMB data map provided by the WMAP team. Areas of significanégoound contam-
ination in the galactic region and at the locations of straajo point sources have been masked out.
right . Map obtained by applying the proposed MCA-inpainting ailfpon on the sphere to the former
incomplete WMAP CMB data map.

son Microwave Anisotropie ProBeFull-sky multi-spectral observations with unpreceddrgensitivity
and angular resolution are expected from the ESA's PLAR®Ission, which is to be launched in 2008.
The statistical analysis of this data set will help set gglitounds on major cosmological parameters.
There are nonetheless a few practical issues and notablgaweral other astrophysical sources also
emit radiation in the frequency range used for CMB obseowsti[10]. Separating back the observed
mixtures into maps of the different astrophysical contiims in order to isolate the CMB properly is
a difficult inverse problem for which methods and algorithamns being actively designed (ses.[47,
7, 46, 48] and references therein). The estimated spheZigdd maps will inevitably be contaminated
by some level of residual contributions, most significarmtiyhe galactic region and at the locations of
strong radio point sources. Therefore, it is common pradtiamask out that part of the datd. using
the mask shown on figure 7 upper left, provided by the WMAP deimnorder to reliably assess the
non-gaussianity of the CMB field through estimated higheleostatistics €.9. skewness, kurtosis ) in
various representations.). wavelet, curvelet, e)d51, 40]. But the gaps in the data thus created need
to be handled properly as the detection of non-gaussiami@MB would have a major scientific impact.
The proposed MCA-inpainting on the sphere was used heressitdly to fill in the masked regions
in order to restore the stationarity of the observed CMB fégld lower the impact of the incompleteness
of the data set on the estimated measures of non-gaussiaratyy other non-local statistical test. The
experiment was conducted on several simulations of fyllGlaussian CMB maps. A typical CMB
map (the CMB data map disclosed by the WMAP consortium) isvshan figure 6 along with the map
obtained as a result of the inpainting process allowing ffirsa visual assessment of the quality of the
proposed method. Figure 7 shows the wavelet decompositithre onpainted map. We can see that the
mask is not visible at all in the different scales. Here weehapplied the MCA-Inpainting algorithm
with 200 iterations and a single transform which was the 8palkeHarmonic Decomposition. A more
guantitative evaluation of the proposed inpainting aldponi is reported on figure 8 where plots of the
estimated measures of non-Gaussianity on both the origiapland the inpainted map are given. These
reveal no significant discrepancy: we believe that the peganethod will help discriminate between
truly non-Gaussian CMB and non-Gaussianity related to tresiationarity of incomplete maps. This
will be further investigated in the future.

*The WMAP data and mask we used here are available onlinegat/hitap.gsfc.nasa.gov/
“http://astro.estec.esa.nl/Planck

15



R
A /

4 ’
o ,;‘YA Liveaby d,,

.
/ oe
()

"

et 5

” /
eas. o
R \J

N

-

il

- ~ T --" -
“%. DL R TR NN
Yl g o ( a W # ‘ -
. . - . - \ b ) \\
f» e J* . e -
. - .' \ .(” . ." .
b . - . g
\ \ ‘ .
" !‘ N . ’. ) - §
N . >
-— ’/

-0.035 0.081 —0.027 ee— —0.017

Figure 7:left : Mask provided by the WMAP team. The dark blue pixels indicateas of high level
foreground contamination in the WMAP CMB data m&pom top to bottom and left to right : Maps

of the wavelet decomposition on seven scales of the inghWAP CMB map shown on the right of
figure 6. From the visual point of view, the masked area cabadtistinguished anymore in the wavelet
scales of the inpainted map.
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Figure 8: Horizontally is the scale number increasing fovdo frequencies.Left . skewness of the
wavelet coefficients in a given scale of the original complgimulated spherical CMB mapx ] and
of the inpainted map{Y). Right : kurtosis of the wavelet coefficients in a given scale of thgioal
complete simulated spherical CMB mayp)(and of the inpainted mag)j. Error bars were estimated on
a small set of fifteen simulated complete CMB maps.

5 Conclusion

This paper presented an extension of the Morphological @oemt Analysis method to the case of
spherical maps. This was made possible thanks to the weattiuliscale analysis tools and discrete
transforms newly made available for the representatioalyais and synthesis of data on the sphere. An
inpainting algorithm on the sphere was also described ingjldn the ideas of MCA. The difficulties
in porting MCA and the related inpainting algorithm to thénepcal topology are less theoretical than
practical. Indeed, the proposed algorithms are iteratice some of the digital transforms we used on
the sphere were insufficiently accurate. As quickly memgthradditional constraints were sometimes
necessary to stabilize the convergence of the algorithnasveider, lingering over such practicalities is
not the purpose of this paper especially since they did neplgieaffect the algorithms. We reported
on a few applications of the proposed methods to challendatg analysis problems in physics and
astrophysics. We expect these tools to be valuable in mésy applications such as in areas where very
smooth and precise motion is requiregl@. moving chips on a conveyor belt in an ultra clean room in the
semiconductor industry ) : hundred micron scale balls driddrings are used which must not have any
imperfections on their surfaces above the nano-scale.aCteizing such tiny spherical objects with that
kind of precision requires optical or X ray techniques whiidherently produce artifacts. But since the
morphology of the artifacts (interference pattern likeaaied ring or arrays of light and dark regions)
is far different than the bumps and scratches one is tryingvtod, they can be isolated using MCA
techniques on the sphere and thus help assess the mannfagiacess and make the changes required
to meet specifications. Similar considerations are at plagnitreating ICF targets for laser fusion. The
results reported in this paper allow us to expect that theries] extensions of MCA and inpainting
to the sphere will bear much fruit in the study of CMB, non-Ggianity, and related matters such as
astrophysical component separation [7] in full-sky miiltinnel observations of the celestial sphere in
the microwave range.
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