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Abstract

Morphological Component Analysis (MCA) is a new method which takes advantage of the sparse
representation of structured data in large overcomplete dictionaries to separate features in the data
based on the diversity of their morphology. It is an efficienttechnique in such problems as separating
an image into texture and piecewise smooth parts or for inpainting applications. The MCA algorithm
consists of an iterative alternating projection and thresholding scheme, using a successively decreas-
ing threshold towards zero with each iteration. In this paper, the MCA algorithm is extended to the
analysis of spherical data maps as may occur in a number of areas such as geophysics, astrophysics
or medical imaging. Practically, this extension is made possible thanks to the variety of recently
developed transforms on the sphere including several multiscale transforms such as the undecimated
isotropic wavelet transform on the sphere, the ridgelet andcurvelet transforms on the sphere. An
MCA-inpainting method is then directly extended to the caseof spherical maps allowing us to treat
problems where parts of the data are missing or corrupted. Wedemonstrate the usefulness of these
new tools of spherical data analysis by focusing on a selection of challenging applications in physics
and astrophysics.

Keywords and Phrases. : Spherical Data, Morphological Component Analysis, Sparse repre-
sentation, Inpainting.

1 Introduction

A usual task in processing signals, images as well as spherical data maps, is to decompose the data into
its elementary building blocks. This can be formulated as aninverse problem where the data is assumed
to have been generated according to the following model :

y =
∑

i

αiφi + η (1)

that is a linear combination of relevant waveformsφi ∈ Rn with weightsαi. Hereη represents possible
contamination by additive, typically Gaussian white noise. Given datay ∈ Rn, one then wants to
recover the underlying structures that is to say estimate a set of waveformsφi that build the data and
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their corresponding weights̃αi. The solution to this estimation problem will depend heavily on the
available prior information. Of interest here is the case where one is givena priori a set a waveforms
from which to select a good subset. This set may be a basis, a frame or several bases or frames grouped
into a large redundant dictionary.

Possible dictionaries in 1D and 2D include Fourier and related bases, wavelet bases, as well as other
more recent multiscale systems such as the ridgelet [17] andcurvelet frames [24, 52], etc. Depending
on the morphology of the data, each of these dictionaries will have different performance characteristics
in a non-linear approximation scheme. For instance, sparseapproximations of piecewise smooth signals
or images with point singularities are easily obtained using wavelets. However these are no longer
optimal in the case of piecewise smooth images with singularities along smooth curves or edges. Such
images are more efficiently approximated using curvelets which are highly anisotropic and thus exhibit
high directional selectivity. Digital implementations ofboth ridgelet and curvelet transforms and their
application to image denoising are described in [52].

Available transforms in the spherical topology include thespherical harmonics and several wavelet
transforms. Software packages such as Healpix1 [36] or Glesp [29] provide approximate digital spherical
harmonic transform routines based on their specific pixelization schemes. Schröder and Sweldens [49]
have developed an orthogonal wavelet transform on the sphere based on the Haar wavelet function which
then suffers from the poor frequency domain localization properties of the primitive Haar function and
from the problems inherent in orthogonal decomposition (e.g. lack of translation invariance). A few
papers describe continuous wavelet transforms on the sphere [2, 18, 39, 59, 9] which have been extended
to directional wavelet transforms [60, 45]. Although useful for data analysis, these continuous transforms
lack an inverse transform and hence are clearly not suitablefor restoration or synthesis purposes.

In their pioneering work, Freeden and Maier [33, 34] gave a wavelet transform/reconstruction scheme
on the sphere which is based on the spherical harmonic transform. Following this idea, Starcket al. [56]
have proposed a new invertible isotropic undecimated wavelet transform (UWT) on the sphere which
preserves the same desirable properties as the standard isotropic UWT for flat 2D maps [57]: the recon-
struction is simple and immediate since it is just the addition of all the wavelet bands with the coarsest
scale. Based on this new decomposition, other multiscale transforms such as the pyramidal wavelet
transform, the ridgelet transform and the curvelet transform have been successfully constructed on the
sphere [56]. Each of these decompositions on the sphere willsparsely represent parts of the image based
on their morphological properties. Wavelets will easily detect more or less isotropic localized structures,
while curvelets are better suited for efficiently detectinghighly anisotropic objects.

A data sety has an exact representation over any complete basis of the data space, or several such
exact representations in the case of redundant overcomplete dictionaries. However, these representations
are not equally interesting in terms of data modeling or feature detection. In fact, a stronga priori
is to favor representations ofy that use only a small number of waveforms leading to a more concise
and possibly more interpretable representation of the data. In fact, building sparse representations or
approximations is the (he)art of structured data processing: the design of good detection, denoising,
restoration and compression algorithms relies on the availability of good dictionaries and good selection
algorithms. Indeed, selecting the smallest subset of waveforms from a large dictionary, that will linearly
combine to reproduce the salient features of a given signal or image, is a hard combinatorial problem.
Severalpursuit algorithms have been proposed that can help build very sparse decompositions such as
the greedy Matching Pursuit (MP) [42] algorithm which refines the signal approximation by picking at
each iteration the one waveform which best correlates with the current approximation error. Basis Pursuit

1http://www.eso.org/science/healpix
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(BP) [20] is a global procedure which seeks an approximationỹ to y by solving the linear programming
problem:

min
α

‖α‖ℓ1 subject toy = Φα. (2)

where theℓ1 norm measures sparsity in place of theℓ0 counting norm. In the presence of noise, a
noise-aware variant of BP, known as BPDN (for BP denoising),can be stated as a convex quadratic
programming problem and solved using the Interior Point method [20]. The BPDN problem can also be
written in the augmented Lagrangian form:

min
α

‖y − Φα‖2
ℓ2 + λ · ‖α‖ℓ1 (3)

Among all possible solutions, the chosen one has the minimumℓ1 norm. This choice ofℓ1 norm is very
important. Anℓ2 norm, as used in the method of frames [21], does not favor sparsity [20]. A number
of recent results prove that these algorithms will recover the unique maximally sparse decomposition
provided this solution is sparse enough and the dictionnaryis sufficiently incoherent [25, 31, 37, 26, 35].
Nevertheless, in problems involving large data sets (e.g. images, spherical maps), BP or MP synthesis
algorithms are computationally prohibitive.

Morphological Component Analysis (MCA) is a recent faster alternative described in [54] that con-
structs a sparse representation of a signal or an image assuming that it is a combination of morpho-
logically distinct features which are sparsely represented in different dictionaries associated with fast
transform algorithms. For instance, images commonly combine contours and textures: the former are
well accounted for using curvelets, while the latter may be well represented using local cosine functions.
In searching for a sparse decomposition of a signal or imagey, it is assumed thaty is a sum ofK com-
ponents(sk)1,...,K , where each can be described assk = Φkαk with a possibly over-complete dictionary
Φk and a sparse vector of coefficientsαk. It is further assumed that for any given component the spars-
est decomposition over the proper dictionary yields a highly sparse description, while its decomposition
over the other dictionaries,Φk′ 6=k, is non sparse. Thus, the differentΦk can be seen as discriminating
between the different components of the initial signal. MCAachieves its sparse decomposition relying
on an iterative thresholding algorithm with a successivelydecreasing threshold [8] thus refining the cur-
rent approximation by including finer structures alternatingly in the different morphological components.
Based on MCA, it has also been shown that we can derive a very efficient inpainting method [32].

This paper: Motivated by the success of MCA in signal and image processing, the purpose of this
contribution is to take advantage of the variety of transforms on the sphere recently made available [56]
to extend the applicability of MCA to the analysis of spherical maps which are commonly recorded in a
number of areas such as geophysics, astrophysics or medicalimaging. As in the case of Euclidean 2D
images, we further extend the MCA algorithm on the sphere in order to perform inpainting tasks on the
sphere. The proposed numerical tools are shown to be valuable in several selected applications in physics
and astrophysics. The construction of the undecimated isotropic wavelet and curvelet transforms on the
sphere is reviewed in the next section. Sections 3 and 4 describe the extension to the sphere of the MCA
algorithm and of its modification for inpainting purposes.
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2 Transforms on the Sphere

2.1 Isotropic Undecimated Wavelet Transform on the Sphere (UWTS)

The undecimated isotropic transform on the sphere described in [56] is similar in many respects to the
regular à trousisotropic wavelet transform. It is obtained using a zonal scaling functionφlc(ϑ,ϕ) which
depends only on colatitudeϑ and is invariant with respect to a change in longitudeϕ. It follows that the
spherical harmonic coefficientŝφlc(l,m) of φlc vanish whenm 6= 0 which makes it simple to compute
the spherical harmonic coefficientsĉ0(l,m) of c0 = φlc ∗ f where∗ stands for convolution :

ĉ0(l,m) = φ̂lc ∗ f(l,m) =

√

4π

2l + 1
φ̂lc(l, 0)f̂ (l,m) (4)

A possible scaling function [57], defined in the spherical harmonics representation, isφlc(l,m) =
2
3B3(

2l
lc

) whereB3 is the cubic B-spline compactly supported over[−2, 2]. Denotingφ2−j lc a rescaled
version ofφlc with cut-off frequency2−j lc, a multi-resolution decomposition off on a dyadic scale is
obtained recursively :

c0 = φlc ∗ f

cj = φ2−j lc ∗ f = cj−1 ∗ hj−1

(5)

where the zonal low pass filtershj are defined by

Ĥj(l,m) =

√

4π

2l + 1
ĥj(l,m) =











φ̂ lc

2j+1
(l,m)

φ̂ lc
2j

(l,m)
if l < lc

2j+1 and m = 0

0 otherwise

(6)

The cut-off frequency is reduced by a factor of2 at each step so that in applications where this is useful
such as compression, the number of samples could be reduced by the same factor. Using a pixelization
scheme such as Healpix [36], this can easily be done by dividing by 2 the Healpixnsideparameter when
computing the inverse spherical harmonics transform. Of course, this is only an approximateSampling
Theorembut it proved sufficient for numerical purposes. However, inthe present isotropic undecimated
transform, no downsampling is performed and the maps have the same number of pixels on each scale.
Hence the orthogonality requirement is relaxed, which provides us with a higher degree of freedom in the
choice and design of the wavelet functionψlc to be used with the scaling functionφlc . As in theà trous
algorithm, the wavelet coefficients can be defined as the difference between two consecutive resolutions,
wj+1(ϑ,ϕ) = cj(ϑ,ϕ) − cj+1(ϑ,ϕ) which defines a zonal wavelet functionψlc as

ψ̂ lc

2j
(l,m) = φ̂ lc

2j−1
(l,m) − φ̂ lc

2j
(l,m) (7)

This particular decomposition is readily inverted by summing the coefficient maps on all wavelet scales

f(ϑ,ϕ) = cJ(ϑ,ϕ) +
J

∑

j=1

wj(ϑ,ϕ) (8)

where we have made the simplifying assumption thatf is equal toc0. Obviously, other wavelet functions
could be used just as well. Also, because of the redundancy ofthe described decomposition, the inverse
transform is not unique and in fact this can profitably be usedto impose additional constraints on the
synthesis functions (e.g.smoothness, positivity) used in the reconstruction [55].
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2.2 Curvelets on the Sphere

The 2D ridgelet transform [17] was developed in an attempt toovercome some limitation inherent in for-
mer multiscale methodse.g. the 2D wavelet, when handling smooth images with edges i.e. singularities
along smooth curves. Ridgelets are translation invariantridge functions with a wavelet profile in the nor-
mal direction. Although ridgelets provide sparse representations of smooth images with straight edges,
they fail to efficiently handle edges along curved lines. This is the framework for curvelets which were
given a first mathematical description in [16]. Basically, the curvelet dictionary is a multiscale pyramid
of localized directional functions with anisotropic support obeying a specific parabolic scaling such that
at scale2−j , its length is2−j/2 and its width is2−j. This is motivated by the parabolic scaling property
of smooth curves. Other properties of the curvelet transform and decisive optimality results in approx-
imation theory are reported in [16, 14]. Notably, curveletsprovide optimally sparse representations of
manifolds which are smooth away from edge singularities along smooth curves. Several digital curvelet
transforms [24, 52, 22, 13] have been proposed which attemptto preserve the essential properties of the
continuous curvelet transform and many papers [51, 54, 38, 58, 53] report on their successful application
in image processing experiments. The contourlet transformin [22] is a filter bank implementation of the
curvelet transform. Candèset al. implement fast discrete curvelet transforms in [13]. Theirdesign is very
close to the mathematical transformation as they resort to apaving of the Fourier plane into pseudo-polar
wedges delimited by dyadic concentric squares. The so-called first generation discrete curvelet described
in [24, 52] is a very different construction : it consists in applying the ridgelet transform to sub-images
of a wavelet decomposition of the original image. By construction, the sub-images are well localized in
space and frequency and the subsequent ridgelet transform provides the necessary directional sensitivity.
This latter implementation in combination with the good geometric properties of the Healpix pixelisation
scheme, inspired the digital curvelet transform on the sphere [56].

Partitioning using the Healpix representation. The Healpix representation [36] is a curvilinear par-
tition of the sphere into quadrilateral pixels of exactly equal area but with varying shape. The base
resolution divides the sphere into 12 quadrilateral faces of equal area placed on three rings around the
poles and equator. Each face is subsequently divided intonside2 pixels following a hierarchical quadri-
lateral tree structure. The geometry of the Healpix sampling grid makes it easy to partition a spherical
map into blocks of a specified size. We first extract the twelvebase-resolution faces, and each face is
then decomposed into smoothly (i.e. an apodizing window is used) overlapping blocks of side-length
Bj pixels in such a way that the overlap between two vertically adjacent blocks is a rectangular array of
sizeBj × Bj/2, as in the 2D digital curvelet transform [24, 52, 53]. With this scheme however, there is
no overlapping between blocks belonging to different base-resolution faces. This may result in blocking
aritfacts in different data processing tasks such as image denoisingvia non linear filtering. A simple way
around this difficulty, which however results in greater redundancy, is to work with various rotations of
the data with respect to the sampling grid.

Ridgelet transform The continuous ridgelet transform is the application of a 1D-wavelet transform
to the angular slices of the Radon transform [17]. A digital implementation described in [53] consists
in i) first computing the 2D Fourier transform of tthe image, ii) next extracting lines going through the
origin in the frequency plane, iii) then computing the 1D inverse Fourier transform of each of these
lines, iv) and finally computing the 1D wavelet transform of the extracted lines. The first three steps
implement the discrete Radon transform method called thelinogram. Other implementations of the
Radon transform, such as theSlant Stack Radon Transform[23], can be used as well, provided they offer
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an exact reconstruction. Applying the ridgelet transform on sub-images as suggested in [15] provides the
means to localize and limit the extent of the ridgelet functions. More details on the implementation of
the digital ridgelet transform can be found in [52].

Curvelet transform Finally, the proposed digital curvelet transform algorithm on the sphere is as
follows:

1. Apply the undecimated isotropic wavelet transform on thesphere withJ scales,

2. Initialize the block sizeB1 = Bmin,

3. Forj = 1, . . . , J do,

• partition the subbandwj with a block sizeBj and apply the digital ridgelet trans-
form to each block,

• if j modulo2 = 1 thenBj+1 = 2Bj ,

• elseBj+1 = Bj .

where smallerj means smaller length scales and higher frequency bands. Doubling the sidelength of
the localizing windowat every otherdyadic sub-band (i.e. when the spatial frequency has been divided
by four ) approximately preserves the specific parabolic scaling property of the continuous curvelets.
Nevertheless, the proportionality factor betweenwidth andlength2 has to be decided on in practice. The
proposed implementation uses the default valueBmin = 16 pixels. Figure 1 shows the backprojection
of a few curvelet coefficients at different scales and orientations on the sphere. The digital curvelet
transform on the sphere is clearly invertible in the sense that each step of the overall transform is itself
invertible. The curvelet transform on the sphere has a redundancy factor of16J + 1 whenJ scales
are used, which may be a problem for handling huge data sets such as from the future Planck-Surveyor
experiment. This can be reduced by substituting the pyramidal wavelet transform to the undecimated
wavelet transform in the above algorithm. More details on the wavelet, ridgelet, curvelet algorithms on
the sphere can be found in [56] and software related to these new transforms is available from the web
pagehttp://jstarck.free.fr.

Local DCT on the Sphere The Healpix partitionning of the sphere into warped square blocks allows
for even more numerical local transformations on the sphere. For instance, a local DCT on the sphere
is readily obtained by applying the standard DCT to a complete set of possibly overlapping blocks of
maybe different sizes. This heuristic revealed useful in a particular application described in section 3.3.
Although it is difficult to fully characterize the geometry of such digital transformations on the sphere,
they profitably enrich the set of tools available for spherical data analysis.

3 MCA on the Sphere

3.1 Principle and algorithm

For a given spherical mapy modeled as a linear combination ofK spherical maps(sk)k=1,··· ,K , y =
∑K

k=1 sk, having different morphologies, MCA assumes that a dictionary of bases{Φ1, · · · ,ΦK} exists
such that, for eachk, sk is sparse inΦk while its representation in the otherΦk′ ( k′ 6= k) is not sparse :
∀k′ 6= k, ||ΦT

k sk||0 < ||ΦT
k′sk||0, where||x||0 denotes theℓ0 pseudo-norm of the vectorx . The problem
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Figure 1: Curvelets on the Sphere - The above figures show the backprojection of various curvelet
coefficients at different scales and orientations on the sphere. Each map is obtained by setting all but one
of the curvelet coefficients to zero, and applying an inversecurvelet transform. Depending on the scale
and the position of the non zero curvelet coefficient, the reconstructed image presents a feature with a
given width, length and orientation.

is to separate the mixturey into its constitutive morphological components(sk)k=1,··· ,K relying on the
discriminating power of the different dictionariesΦk. Ideally, theαk are the solutions to :

min
α1,..., αK

K
∑

k=1

‖αk‖0 subject to y =

K
∑

k=1

Φkαk (9)

While sensible from the point of view of the desired solution, the problem formulated in Equation (9)
is non-convex and combinatorial by nature. Its complexity grows exponentially with the number of
columns in the overall dictionary (NP-hard problem). Motivated by recent equivalence resultse.g.
in [25], the MCA algorithm seeks a solution to the following minimization problem:

min
s1,...,sK

λ

K
∑

k=1

‖αk‖1 +

∥

∥

∥

∥

∥

y −

K
∑

k=1

sk

∥

∥

∥

∥

∥

2

2

with sk = Φkαk (10)

where anℓ1 sparsity measure is substituted to theℓ0 counting norm following a prescription of the Basis
Pursuit algorithm [20]. In the above, the equality constraint was relaxed and againsk = Φkαk. In the
case where eachΦk is an orthonormal basis, a block-coordinate solution to theabove problem is given
by the following set of coupled equations:

∀k, sk = rk −
λk

2
Φksign(ΦT

k sk) with rk = s−
∑

k′ 6=k

sk′ (11)

This can be solved efficiently using the iterativeBlock-Coordinate Relaxation Method[11] in conjunction
with, at a givenk, a soft-thresholding of the decomposition ofrk overΦk. However, when non-unitary
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or redundant transforms are used, the above is no longer strictly valid. Nevertheless, simple shrinkage
still gives satisfactory results as explained in [30]. Finally, denoting byTk andRk the forward and
inverse transforms associated with the redundant dictionary Φk, MCA seeks a solution to problem (10)
with the following algorithm:

1. Set the number of iterations Imax and the initial thresholds
“

λ
(0)
k

”

k

2. While λ
(t)
k is greater than a given lower bound λmin (e.g. can depend on the noise standard deviation),

– Proceed with the following iteration to estimate components (sk)k=1,...,K at iteration t:
For k = 1, · · · , K

• Compute the residual term r
(t)
k assuming the current estimates s̃

(t−1)

k′ 6=k
of sk′ 6=k, are fixed:

r
(t)
k = y −

P

k′ 6=k
s̃
(t−1)

k′

• Estimate the current coefficients of s̃
(t)
k by thresholding with threshold λ

(t)
k :

α̃
(t)
k = δ

λ
(t)
k

“

Tkr
(t)
k

”

• Get the new estimate of sk by reconstructing from the selected coeffcients α̃
(t)
k :

s̃
(t)
k = Rkα̃

(t)
k

– Decrease the thresholds λk following a given strategy.

3.2 Thresholding strategy

The operatorδ in the above algorithm is a soft thresholding operator as a result of the use of anℓ1 sparsity
measure in approximation to the idealℓ0 norm. In practice, hard thresholding leads generally to better
results [54]. The final threshold should vanish in the noiseless case or it may be set to a multiple of the
noise standard deviation in the presence of noise as in common detection or denoising methods. The way
the threshold is decreased along the iterations of the proposed iterative thresholding scheme is paramount
in terms of performance of the MCA separation mechanism. Theoriginal algorithm [54] used a linear
strategy :

λ(t) = λ(0) − (t− 1)
λ(0) − λmin

Imax − 1
(12)

whereλ(0) is the initial threshold, andImax is the number of iterations. The first threshold can be set
automatically to a large enough value such as the maximum of all coefficients λ(0) = maxk ‖Tky‖∞.
But there is no way to estimate the minimum number of iterations yielding a successful separation. Too
small a number of iterations leads to bad separation while too large a number is computationally costly.
Further, experiments have clearly shown that the optimal number of iterations depends on the data.
We recently focused on devising some new data adaptive thresholding strategies to speed up the MCA
decomposition preserving the quality of the component separation. Hereafter we describe two promising
strategies, namely MAD and MOM, in the case whereK = 2 ; generalizing toK ≥ 2 is straightforward.

MAD Consider a mapy such that y = s1 + s2 = Φ1α1 + Φ2α2 where s1 and s2 have similarℓ2
norm andαk=1,2 = Φ

T
k=1,2sk=1,2 are sparse. When bothΦk=1,2 are orthonormal bases, decomposing

y in Φ1 leads toyΦT
1 = α1 + Φ

T
1 Φ2α2. Provided the mutual coherence [12, 37, 25] ofΦ1 andΦ2 is

low, y2 has no particular structure inΦ1 and hence it is tempting to modelΦT
1 s2 as a Gaussiannoise.

Its standard deviation can be estimated using a robust estimator such as the Median Absolute Deviation
(MAD) [27]. It follows that estimating the significant entries α̃1 in α1 is a denoising problem readily
solved by thresholdingΦT

1 y with a thresholdkσ (typically k is in the range 3 to 4). The next step is to
project the residualy− s̃1 = y−Φ1α̃1 onΦ2 and so on. Clearly, the variance of the residual decreases
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along iterations and so this provides a simple strategy to adaptively control the threshold in the MCA
algorithm. In practice, this strategy remains fruitful in the case of redundant dictionaries. Donohoet al.
in [28] have recently focused on an iterative thresholding scheme applied to solving under-determined
linear sparse problems in which they use a similar rule to manage their decreasing threshold.

MOM Let s̃(t)1 and s̃
(t)
2 denote the current estimates of componentss1 and s2 at thetth iteration of

the MCA decomposition ofy. The current residual isr(t) = y− s̃
(t)
1 − s̃

(t)
2 . In the strategy coined MOM

as in ”Mean of Max”, the value of the threshold at iterationt is given by :

λ(t) =
1

2

[

||ΦT
1

(

y − s̃
(t−1)
1 − s̃

(t−1)
2

)

||∞ + ||ΦT
2

(

y − s̃
(t−1)
1 − s̃

(t−1)
2

)

||∞

]

(13)

which is easily computed at each step of the iterative process. When one considers more than two dic-
tionaries, one should take the mean of the two largest decomposition coefficients of the full residual over
two distinct dictionaries. The intuition underlying this strategy is that the next significant coefficients to
be selected should be attached to the dictionary in which theprojection of the full residual has coeffi-
cients of largest amplitudes. Assuming the coefficients selected at iterationt are inΦ1, it can be shown,
under some conditions on the sparsity of the components and the mutual coherence of the dictionary [8],
that the proposed strategy fixes the threshold so that :

||ΦT
1 Φ2ᾱ

(t−1)
2 ||∞ < λ

(t)
1 < ||ᾱ

(t−1)
1 ||∞, ᾱ

(t−1)
k=1,2 = αk=1,2 − α̃

(t−1)
k=1,2 (14)

hence avoiding false detections (upper bound) and ensuringthat at least one coefficient is selected (lower
bound). This thresholding strategy can easily be made more or less conservative depending on the desired
decomposition speed. With these new thresholding strategies, MCA is a fast and robust algorithm to
achieve sparse decompositions in redundant dictionaries and a practical alternative to other well-known
sparse decomposition algorithms [8].

Example

The spherical maps shown on figure 2 illustrate a simple numerical experiment. We applied the proposed
Morphological Component Analysis on the Sphere to synthetic data resulting from the linear mixture of
components respectively sparse in the spherical harmonicsand the isotropic wavelet representations. The
method was able to separate the data back into its original constituents. A more involved application is
described in the next section.

3.3 Application in Physics

In Inertial Confinement Fusion (ICF) a spherical shell is irradiated by laser energy directly or after the
laser energy has been converted to soft X-rays [3]. Either way, the aim is to implode the capsule which
contains a shell of nuclear fusion fuel (deuterium and tritium) ready to ignite if, after it has been im-
ploded, its density is high enough and a hot spot in its centerbecomes hot enough to cause a propagating
nuclear burn wave to travel through the rest of the fuel. Thisultimate energy source will not work if dur-
ing the implosion hydrodynamic instabilities develop which can break apart the shell before it assembles
at the center and a hot spot forms [41]. Hydrodynamic instabilities such as Rayleigh-Taylor occur due to
nonuniformities in the laser spatial profile or imperfections in the composition of multiple surfaces which
make up the layers of thin material that surround the nuclearfuel. Very small amplitude imperfections
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Figure 2: Simple toy experiment with MCA on the sphere - The top map shows a linear combination
of a spherical harmonic function and a localized Gaussian-like function on the sphere. The bottom
maps show the resulting separated components that were obtained using the proposed Morphological
Component Analysis on the sphere.

Figure 3: left : Surface structures of ICF spherical shells measured on the nanometer scale are a su-
perposition of global scale variations, isolated bumps andscratches as well as artifacts which look like
interference patterns on intermediate scales.right : Coarsest scale of the undecimated isotropic wavelet
transform of the surface measurements of an ICF target.
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initially can result in the ultimate failure of the target due to the large compression ratios involved in
ICF. It is therefore extremely important to characterize the inner and outer surfaces of ICF shell targets
so as to know whether they are worthy of consideration for ICFimplosions. One day in a reactor setting
tens of thousands of targets will have to be imploded daily sothat checking each one is totally out of
the question. Instead, very good target fabrication quality control processes have to be adopted so that
confidence levels in proper performance will be high. A majorstep along this path to fusion energy then
is to understand why imperfections occur and to correct the systematic elements and control the harm
done by random sources.

Fine structures on the surfaces of spherical shells can be measured on the nanometer scale, among
others, by atomic force microscopy or phase shifting spherical diffractive optical interferometry. An
example of such measurements is shown on figure 3. As can be seen from the figure, there appears to
be a superposition of global scale variations, isolated bumps and scratches as well as artifacts which
look like interference patterns on intermediate scales of localization. The latter must be isolated and
eliminated from consideration when deciding the readinessof the target for implosion. We have achieved
the morphological feature separation by first doing an isotropic wavelet transform on the spherical data
and subtracting the coarsest scale information. MCA on the sphere was used on the rest of the image
using the undecimated wavelet and the local cosine transforms on the sphere. The isolated bumps were
thus identified and the measurement technique caused artifacts were removed easily. The resulting bumps
added to the coarsest scale, is the clean data with the interference patterns and artifacts removed as shown
in figure 4. The spherical harmonic decomposition of the cleaned image gives rise to coefficients of
variousℓ modes which will be amplified by the implosion process which can now be assessed correctly
using numerical hydrodynamics simulation generated growth factors. If the bumps are clustered and not
randomly distributed, then systematic errors in the manufacturing process can be tracked down. A code
called MODEM has been put together to study such target surface data and extract the localized bump
statistics including their correlations in height, size and relative location. For more details see [1].

4 Inpainting on the Sphere

4.1 Algorithm

Named after the expert recovery process used for the restoration of deteriorated masterpieces, inpainting
refers to a set of techniques used to alter images in a way thatis undetectable to people who are unaware
of the original images. There are numerous applications among which removing scratches or objects
in digitized photographs, removing overlayed text or graphics, filling-in missing blocks in unreliably
transmitted images, predicting values in images for bettercompression or image upsampling. Inpainting
algorithms strive to interpolate through the gaps in the image relying on the available pixels, the contin-
uation of edges, the periodicity of textures, etc. The preservation of edges and texture, in other words
discontinuities, across gaps has attracted much interest,and many contributions have been proposed to
solve this interpolation task. Non-texture image inpainting has received considerable interest and excite-
ment since the pioneering paper by Masnou and Morel [43, 44] who proposed variational principles for
image disocclusion. A recent wave of interest in inpaintinghas started from the recent contributions of
Sapiroet al. [4, 5, 6], followed by Chan and Shen [19]. In these works, authors point to the importance
of geometry and design anisotropic diffusion PDEs to fill in gaps by smooth continuation of isophotes.
PDE methods have been shown to perform well on piecewise smooth functions.

A very different approach is the inpainting algorithm basedon MCA described in [32] which has
proved capable of filling in holes in either texture or cartoon content in 2D images. To make the link
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Figure 4:top : Spherical map obtained by subtracting the coarse scale map on the right of figure 3 from
the initial map on the left of figure 3.bottom : Component maps separated by the MCA method on
the sphere : interference patterns and measurement artifacts were grabbed by the local cosine functions
on the sphere (left) while the isolated bumps were caught using the undecimated wavelet on the sphere
(right). Adding back the coarse scale on the right of figure 3 to the latter map results in a clean map of
the surface structures of an ICF spherical shell with the interference patterns and artifacts removed.
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between building sparse representations and inpainting, consider the effect of a rectangular gap on the
set of Fourier coefficients of a monochromatic sinewave : because of the non-locality of the Fourier basis
functions it takes a large number of coefficients to account for the gap, which is known as the Gibbs
effect. Seeking a sparse representation of the incomplete sine-wave outside the gap, that is without
fitting the gap, enables the recovery of the complete monochromatic sinewave.

Following [32], an inpainting algorithm on the sphere is readily built from the Morphological Com-
ponent Analysis on the sphere described in the previous section. Consider a discrete spherical data map
y and a binary mapM such that ones inM indicate that the corresponding pixels iny are valid data
while zeros indicate invalid data. The objective function of MCA (eq. 10) can be modified as follows :

min
s1,...,sn

λ
K

∑

k=1

‖αk‖1 +

∥

∥

∥

∥

∥

M ⊙ (y −
K

∑

k=1

sk)

∥

∥

∥

∥

∥

2

2

with sk = Φkαk. (15)

where⊙ stands for entry-wise multiplication. Thus we are preventing the sparse model under construc-
tion from attempting to fit the invalid data. Other constraints can be easily imposed on the interpolated
sparse components. For instance, in [32], a total variationpenalty is shown to enhance the recovery
of piece-wise smooth components. Asking for the regularityacross the gaps of some localized statistics
( e.g.enforcing that the empirical variance of a given inpainted sparse component benearly equaloutside
and inside the masked areas) are other possible constraints. In practice, because of the lack of accuracy
of some digital transformations we used in the spherical topology, additional constraints, which may be
relaxed close to convergence, were also found useful in somecases to stabilize the described iterative
algorithms.

It is proposed that a solution to the above minimization problem can be reached using the same
iterative thresholding process as in the MCA algorithm detailed in the previous section, with the only
required modification consisting inmaskingthe full residual usingM after each residual estimation. The
MCA-inpainting algorithm is as follows :

1. Set the number of iterations Imax and the initial thresholds λ(0)

2. While λ
(t)
k is greater than a given lower bound λmin (e.g. can depend on the noise standard devia-

tion),
– Proceed with the following iteration to estimate components (sk)k=1,...,K at iteration t:

For k = 1, · · · , K

• Compute the residual term r(t) :
r(t) = y −

P

k
s̃
(t−1)
k

• Estimate the current coefficients of s̃
(t)
k by thresholding with threshold λ

(t)
k :

α̃
(t)
k = δ

λ
(t)
k

“

Tk

“

M ⊙ r(t) + s̃
(t−1)
k

””

• Get the new estimate of sk by reconstructing from the selected coeffcients α̃
(t)
k :

s̃
(t)
k = Rkα̃

(t)
k

– Decrease the thresholds λk following a given strategy.

The different thresholding strategies described in the previous section can be used in the proposed MCA
inpainting iterative thresholding algorithm.

Example

A simple numerical experiment is shown on figure 5. Starting with a full satellite view of the Earth2, an
incomplete spherical map was obtained by randomly masking some of the pixels. In fact, as much as

2availbale from : http://www.nasa.gov/vision/earth/features/bmnggallery 4.html
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Figure 5: Application of the proposed MCA-inpainting algorithm on the sphere.top left : original
satellite view of the Earth (mean = 76.9, σ = 47.7 ). top right : incomplete map retaining 40 percent
of the original pixels. bottom left : inpainted map.bottom right : map of reconstruction errors
( mean = 0.0, σ = 2.86 empirically estimated from the reconstructed pixels only ).

sixty percent of the pixels were masked. Using both the spherical harmonics transform and the curvelet
transform on the sphere within the proposed MCA inpainting algorithm, it is possible to fill in the missing
pixels in a visually undetectable way. The residual map is shown at the bottom right of figure 5.

4.2 Application in Astrophysics

A major issue in modern cosmology is the measurement and the statistical characterization (spatial power
spectrum, Gaussianity) of the slight fluctuations in the Cosmic Microwave Background radiation field.
These are indeed strongly related to the cosmological scenarios describing the properties and evolution
of our Universe. Some 370 000 years after the ’Big Bang’, whenthe temperature of the Universe was
around 3000 K, thermal energy was no longer sufficient to keepelectrons and positively charged particles
apart so they combined. Photons were then set free in a nearlytransparent Universe. Since the Universe
further expanded, these photons are now in the microwave range but they should still be distributed
according to a Black Body emission law. Indeed, before recombination, the Universe was a highly
homogeneous opaque plasma in near thermal equilibrium in which photons and charged particles were
highly interacting. Hence the slight fluctuations in matterdensity from which such large scale structures
as galaxies or clusters of galaxies have evolved, are also imprinted on the distribution of photons.

The Cosmic Microwave Background (CMB) was first observed in 1965 by Penzias and Wilson con-
firming a prediction made by Gamow in the late 1940’s. But it was not until the early 1990’s that
evidence for small fluctuations in the CMB sky could finally befound thanks to the observations made
by COBE [50]. This was confirmed by several subsequent observations and recently by NASA’s Wilkin-
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Figure 6: left : CMB data map provided by the WMAP team. Areas of significant foreground contam-
ination in the galactic region and at the locations of strongradio point sources have been masked out.
right : Map obtained by applying the proposed MCA-inpainting algorithm on the sphere to the former
incomplete WMAP CMB data map.

son Microwave Anisotropie Probe3. Full-sky multi-spectral observations with unprecedented sensitivity
and angular resolution are expected from the ESA’s PLANCK4 mission, which is to be launched in 2008.
The statistical analysis of this data set will help set tighter bounds on major cosmological parameters.

There are nonetheless a few practical issues and notably that several other astrophysical sources also
emit radiation in the frequency range used for CMB observations [10]. Separating back the observed
mixtures into maps of the different astrophysical contributions in order to isolate the CMB properly is
a difficult inverse problem for which methods and algorithmsare being actively designed (seee.g.[47,
7, 46, 48] and references therein). The estimated sphericalCMB maps will inevitably be contaminated
by some level of residual contributions, most significantlyin the galactic region and at the locations of
strong radio point sources. Therefore, it is common practice to mask out that part of the data (e.g.using
the mask shown on figure 7 upper left, provided by the WMAP team) in order to reliably assess the
non-gaussianity of the CMB field through estimated higher order statistics (e.g. skewness, kurtosis ) in
various representations (e.g. wavelet, curvelet, etc.) [51, 40]. But the gaps in the data thus created need
to be handled properly as the detection of non-gaussianity in CMB would have a major scientific impact.

The proposed MCA-inpainting on the sphere was used here successfully to fill in the masked regions
in order to restore the stationarity of the observed CMB fieldand lower the impact of the incompleteness
of the data set on the estimated measures of non-gaussianityor any other non-local statistical test. The
experiment was conducted on several simulations of full-sky Gaussian CMB maps. A typical CMB
map (the CMB data map disclosed by the WMAP consortium) is shown on figure 6 along with the map
obtained as a result of the inpainting process allowing for afirst visual assessment of the quality of the
proposed method. Figure 7 shows the wavelet decomposition of the inpainted map. We can see that the
mask is not visible at all in the different scales. Here we have applied the MCA-Inpainting algorithm
with 200 iterations and a single transform which was the Spherical Harmonic Decomposition. A more
quantitative evaluation of the proposed inpainting algorithm is reported on figure 8 where plots of the
estimated measures of non-Gaussianity on both the originalmap and the inpainted map are given. These
reveal no significant discrepancy: we believe that the proposed method will help discriminate between
truly non-Gaussian CMB and non-Gaussianity related to the non-stationarity of incomplete maps. This
will be further investigated in the future.

3The WMAP data and mask we used here are available online at http://map.gsfc.nasa.gov/
4http://astro.estec.esa.nl/Planck
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Figure 7: left : Mask provided by the WMAP team. The dark blue pixels indicateareas of high level
foreground contamination in the WMAP CMB data map.From top to bottom and left to right : Maps
of the wavelet decomposition on seven scales of the inpainted WMAP CMB map shown on the right of
figure 6. From the visual point of view, the masked area cannotbe distinguished anymore in the wavelet
scales of the inpainted map.
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Figure 8: Horizontally is the scale number increasing for lower frequencies.Left : skewness of the
wavelet coefficients in a given scale of the original complete simulated spherical CMB map (×) and
of the inpainted map (♦). Right : kurtosis of the wavelet coefficients in a given scale of the original
complete simulated spherical CMB map (×) and of the inpainted map (♦). Error bars were estimated on
a small set of fifteen simulated complete CMB maps.

5 Conclusion

This paper presented an extension of the Morphological Component Analysis method to the case of
spherical maps. This was made possible thanks to the wealth of multiscale analysis tools and discrete
transforms newly made available for the representation, analysis and synthesis of data on the sphere. An
inpainting algorithm on the sphere was also described building on the ideas of MCA. The difficulties
in porting MCA and the related inpainting algorithm to the spherical topology are less theoretical than
practical. Indeed, the proposed algorithms are iterative and some of the digital transforms we used on
the sphere were insufficiently accurate. As quickly mentioned, additional constraints were sometimes
necessary to stabilize the convergence of the algorithms. However, lingering over such practicalities is
not the purpose of this paper especially since they did not deeply affect the algorithms. We reported
on a few applications of the proposed methods to challengingdata analysis problems in physics and
astrophysics. We expect these tools to be valuable in many other applications such as in areas where very
smooth and precise motion is required (e.g.moving chips on a conveyor belt in an ultra clean room in the
semiconductor industry ) : hundred micron scale balls or ball bearings are used which must not have any
imperfections on their surfaces above the nano-scale. Characterizing such tiny spherical objects with that
kind of precision requires optical or X ray techniques whichinherently produce artifacts. But since the
morphology of the artifacts (interference pattern like repeated ring or arrays of light and dark regions)
is far different than the bumps and scratches one is trying toavoid, they can be isolated using MCA
techniques on the sphere and thus help assess the manufacturing process and make the changes required
to meet specifications. Similar considerations are at play when treating ICF targets for laser fusion. The
results reported in this paper allow us to expect that the described extensions of MCA and inpainting
to the sphere will bear much fruit in the study of CMB, non-Gaussianity, and related matters such as
astrophysical component separation [7] in full-sky multichannel observations of the celestial sphere in
the microwave range.
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