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Introduction

Introduction

2 approaches for Segmentation

Segmentation⇒ Horowitz[1976] with a predicate P
I split/merge while an homogeneity criteria
I only a local criteria

The use of energy minimisation scheme within the region based
segmentation framework

I Level-Set, Bayesian, Min-cut / N-Cut, Minimum Description Length
I allows to define criteria which should be globally optimised over a

partition
I allows an objective evaluation the segmentations
I Level-Set⇒ minimisation for one scale parameter λ
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The Scale Set Framework The Causality principle

The Scale Set Framework

Level Set / N-Cut / MDL⇒ local minimum in a full search space

Principle

minimize an energy partition E(P) :
( E(P) is supposed to be an Affine Separable Energy (ASE) )

I Energy for each region Ri (weighted sum of 2 terms) :

E(R) =
∑
Ri∈R

D(Ri) + λC(Ri)

I D(Ri) : internal region energy (fit to data)
I C(Ri) : complexity energy (regularization term)
I λ : scale parameter
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The Scale Set Framework The Causality principle

used energy

Energy Eλ(P) = λC(P) + D(P) affine energy

D : internal energy (fit to data) :
I squared error :

SE(R) =
∑

i∈R ||ci − µR ||
2

I ⇒ minimal if each region is a pixel

C : energy of complexity (regularisation term) :
I total length of the boundaries
I ⇒ low if the partition is composed of few regions

J.H. PRUVOT, L.BRUN (GreyC) Scale Set representation for image segmentation GbR2007 - 2007-6-11 5 / 22



The Scale Set Framework The Causality principle

The Scale Set Framework

Causality principle
introduced by Witkin in 1984

I coherent structures are present at different scales in an image

∀(λ1, λ2) ∈ R
+2 with λ2 ≤ λ1 ⇒ Pλ1 can be deduced from Pλ2 by

regions merging
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The Scale Set Framework The Causality principle

The Scale Set Framework

Causality principle

Conditions on energy Eλ(P) = λC(P) + D(P)
I Pλ(I) : partition which minimize Eλ(I)
I if Pλ is causal , H = {Pλ(I), λ ∈ R+} is a hierarchy.

Guigues⇒ if C is sub-additive then P is causal
I C sub-additive⇐⇒ C(R1 ∪ R2) ≤ CR1 + CR2

I natural condition in segmentation task ( MDL⇒ less parameters to
describe the union of 2 regions than 2 regions)
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The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

start from an initial segmentation
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The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

built a region adjacency graph (RAG)
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The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

For each region compute

I the internal energy D(Ri)
I the complexity energy C(Ri)
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The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

Compute, for any couple of adjacent regions, the scale of appearance λapp .
λapp depicts the minimum value, from which , merging those regions,
contributes to less increase the global energy defined on the partition.
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The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

EA (λ) + EB(λ) = λ(CA + CB) + (DA + DB)
EA∪B(λ) = λCA∪B + DA∪B

}
λapp(A ∪ B) = DA +DB−DA∪B

CB+CA−CA∪B

iterating this process we get a serial of λapp providing a set of optimal cut
whitin H

energy of the optimal cuts within this global hierarchy is then depicted by a
concave piecewise function
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The Scale Set Framework Optimal Cuts

Construction of the initial hierarchy

Cuts
For a given λ, we retrieve the optimal partition within H
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The Scale Set Framework Optimal Cuts

Optimal Cut

Briefly

provide all solutions for any λ

the given solutions

I are optimal within the
hierarchy
corresponding to a
narrow search space

I Partitions remains
stable on whole
intervals
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Merging Heuristics Sequential Merging

Impact of the search space

Hierarchy importance
the research space used in this framework is restricted to the initial
hierarchy H

I construction scheme is of a crucial importance for the optimal
partitions within H built in the following steps
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Merging Heuristics Sequential Merging

Impact of the search space

Hierarchy importance
the research space used in this framework is restricted to the initial
hierarchy H

I construction scheme is of a crucial importance for the optimal
partitions within H built in the following steps

compromise between energy/time
sequential merging

parallel merging
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Merging Heuristics Sequential Merging

sequential merging

Multi-Merging
to increasing the search space we allow more than 2 regions merging
together

I we consider for each region R of P, its set V(R) defined as {R} union
its set of neighbours and the set P∗(V(R)) of all possible subsets of
V(R) including R

I require computing (2n − 1) λapp for each node in the RAG :
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Merging Heuristics Sequential Merging

sequential merging

Multi-Merging
Using the scale climbing principle, our sequential merging algorithm
computes for each region R of the partition the minimal scale of
appearance of a region RW

λ+min(R) = arg minW∈P∗(V(R))
D(RW ) − D(W)

C(W) − C(RW )

complexity is bounded by O(|V |2k )
where |V | denotes the number of vertices (i.e. regions)
and k represents the maximal vertices’s degree of G

I - may induce important execution time
I +the cardinal of the subset of regions to be merge may be bounded (by

5) without altering significantly the energy of optimal cuts
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Merging Heuristics Sequential Merging

sequential merging

mean energy and execution times
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Merging Heuristics Sequential Merging

Data Set

Natural images database

All experiments where performed on 100 natural images of the
Berkeley database

The Berkeley Segmentation Dataset and Benchmark

available online at
http ://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

J.H. PRUVOT, L.BRUN (GreyC) Scale Set representation for image segmentation GbR2007 - 2007-6-11 14 / 22



Merging Heuristics Sequential Merging

SM2

SM

SM5

image λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
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Merging Heuristics Sequential Merging

SM2

SM

SM5

original image λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
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Merging Heuristics Parallel Merging

parallel merge algorithms

parallel merge

2 algorithms based on the notion of maximal matching

using the same approach as [Haxhimusa]
⇒ Maximal Independent Set on the set of edges of the graph
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Merging Heuristics Parallel Merging

parallel merging

Algos MM et MM1

MM
I + good decimation ratio
I - detected minima⇒ less and less significant as the iterations

progress.

we thus propose an alternative solution MM1

⇒ only contract at each step edges selected at the first iteration
⇒ can be seen as a combination of the method proposed by
[Haxhimusa2003] and the stochastic decimation process of
[Jolion2001]

I + merge immediately only vertices corresponding to local minima.
I + mean decimation ratio equal to 1.73 on the 100 images of the

Berkeley database (comparable to the 2.0 obtained by Haxhimusa)
I + improve the energy of optimal cuts.
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Merging Heuristics Parallel Merging

parallel merging

mean energy and execution times
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Merging Heuristics Parallel Merging

MM

MM1

λ = 0.2 = 0.4 = 0.6 = 0.8 = 0.2 = 0.4 = 0.6 = 0.8

AJOUTER D’AUTRES RESULTATS
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Conclusion and Outlooks

Conclusion

Conclusion
We presented different heuristics to build such hierarchies

I sequential ones whose energy is closed from lower bound.
I parallel ones providing greater energies but require less execution time

(even on sequential machine)

mean energy and execution times
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Conclusion and Outlooks

Thanks for your attention.
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End

MM

MM1

SM2

SM

SM5

λ = 0.2 = 0.4 = 0.6 = 0.8 = 0.2 = 0.4 = 0.6 = 0.8
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