## Hierarchy Construction Schemes within the Scale Set Framework

### Jean-Hugues PRUVOT, Luc BRUN

GreyC Laboratory, Image Team CNRS UMR 6072 ENSICAEN

6th IAPR -TC-15 Workshop on Graph-based Representations in Pattern Recognition



Outline

### Outline

### Introduction

### 2 The Scale Set Framework

- The Causality principle
- Optimal Cuts

### 3 Merging Heuristics

- Sequential Merging
- Parallel Merging

### Conclusion and Outlooks

Introduction

### Introduction

#### 2 approaches for Segmentation

- Segmentation  $\Rightarrow$  Horowitz[1976] with a predicate P
  - split/merge while an homogeneity criteria
  - only a local criteria
- The use of energy minimisation scheme within the region based segmentation framework
  - Level-Set, Bayesian, Min-cut / N-Cut, Minimum Description Length
  - allows to define criteria which should be globally optimised over a partition
  - allows an objective evaluation the segmentations
  - Level-Set  $\Rightarrow$  minimisation for one scale parameter  $\lambda$

Level Set / N-Cut / MDL ⇒ local minimum in a full search space

#### **Principle**

minimize an energy partition E(P) :
 (E(P) is supposed to be an Affine Separable Energy (ASE)

Energy for each region R<sub>i</sub> (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$  : internal region energy (fit to data)

 $C(R_i)$  : complexity energy (regularization term)

l : scale parameter

- Guigues approach
  - global minimum in a narrow search space
  - bottom-up approach
  - provides the optimal partition for each value of a scale parameter  $\lambda \in \mathbb{R}^+$

### Principle

minimize an energy partition E(P):
 (E(P) is supposed to be an Affine Separable Energy (ASE))

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$  : internal region energy (fit to data)  $C(R_i)$  : complexity energy (regularization term)

- Guigues approach
  - global minimum in a narrow search space
  - bottom-up approach
  - provides the optimal partition for each value of a scale parameter  $\lambda \in \mathbb{R}^+$

### Principle

minimize an energy partition E(P) :
 (E(P) is supposed to be an Affine Separable Energy (ASE) )

Energy for each region  $R_i$  (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$ : internal region energy (fit to data)  $C(R_i)$ : complexity energy (regularization term)  $\lambda$ : scale parameter

- Guigues approach
  - global minimum in a narrow search space
  - bottom-up approach
  - provides the optimal partition for each value of a scale parameter  $\lambda \in \mathbb{R}^+$

### Principle

- minimize an energy partition E(P) :
  - (E(P) is supposed to be an Affine Separable Energy (ASE))
    - Energy for each region  $R_i$  (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

- $D(R_i)$  : internal region energy (fit to data)
- $C(R_i)$  : complexity energy (regularization term)
- $\lambda$  : scale parameter

### used energy

### Energy $E_{\lambda}(P) = \lambda C(P) + D(P)$ affine energy

- D : internal energy (fit to data) :
  - squared error :
  - $SE(R) = \sum_{i \in R} \|c_i \mu_R\|^2$
  - $\Rightarrow$  minimal if each region is a pixel

### • C : energy of complexity (regularisation term) :

total length of the boundaries

 $\Rightarrow$  low if the partition is composed of few regions

#### **Causality principle**

- introduced by Witkin in 1984
  - coherent structures are present at different scales in an image



•  $\forall (\lambda_1, \lambda_2) \in \mathbb{R}^{+2}$  with  $\lambda_2 \leq \lambda_1 \Rightarrow P_{\lambda_1}$  can be deduced from  $P_{\lambda_2}$  by regions merging

J.H. PRUVOT, L.BRUN (GreyC)

Scale Set representation for image segmentation

### **Causality principle**

- Conditions on energy  $E_{\lambda}(P) = \lambda C(P) + D(P)$ 
  - $P_{\lambda}(I)$  : partition which minimize  $E_{\lambda}(I)$
  - if  $P_{\lambda}$  is causal,  $H = \{P_{\lambda}(I), \lambda \in \mathbb{R}^+\}$  is a hierarchy.

### • Guigues $\Rightarrow$ if C is sub-additive then P is causal

- C sub-additive  $\iff C(R_1 \cup R_2) \le C_{R_1} + C_{R_2}$
- natural condition in segmentation task (  $MDL \Rightarrow$  less parameters to describe the union of 2 regions than 2 regions)

The Scale Set Framework The Causality principle

### **Construction of the initial hierarchy2**

#### scale-climbing

start from an initial segmentation



The Scale Set Framework The Causality principle

### **Construction of the initial hierarchy2**

#### scale-climbing

• built a region adjacency graph (RAG)



The Scale Set Framework The Causality principle

## **Construction of the initial hierarchy2**

#### scale-climbing

- For each region compute
  - the internal energy  $D(R_i)$
  - the complexity energy  $C(R_i)$



## **Construction of the initial hierarchy2**

#### scale-climbing

• Compute, for any couple of adjacent regions, the scale of appearance  $\lambda_{app}$ .  $\lambda_{app}$  depicts the minimum value, from which , merging those regions, contributes to less increase the global energy defined on the partition.



### **Construction of the initial hierarchy2**

#### scale-climbing

• 
$$\begin{array}{l} E_A(\lambda) + E_B(\lambda) = \lambda(C_A + C_B) + (D_A + D_B) \\ E_{A\cup B}(\lambda) = \lambda C_{A\cup B} + D_{A\cup B} \end{array} \Big\} \lambda_{app}(A \cup B) = \frac{D_A + D_B - D_{A\cup B}}{C_B + C_A - C_{A\cup B}} \end{array}$$

- iterating this process we get a serial of λ<sub>app</sub> providing a set of optimal cut whitin H
- energy of the optimal cuts within this global hierarchy is then depicted by a concave piecewise function



### Construction of the initial hierarchy

#### **Cuts**



### Construction of the initial hierarchy

#### **Cuts**



### Construction of the initial hierarchy

#### **Cuts**



### Construction of the initial hierarchy

#### **Cuts**



### Construction of the initial hierarchy

#### **Cuts**



### Construction of the initial hierarchy

#### **Cuts**



#### **Optimal Cuts**

## **Optimal Cut**



#### **Briefly**

#### • provide all solutions for any $\lambda$

#### **Optimal Cuts**

## **Optimal Cut**



#### **Briefly**

- provide all solutions for any  $\lambda$
- the given solutions

are optimal within the hierarchy corresponding to a narrow search space Partitions remains stable on whole intervals

J.H. PRUVOT, L.BRUN (GreyC)

### Impact of the search space

#### **Hierarchy importance**

- the research space used in this framework is restricted to the initial hierarchy H
  - construction scheme is of a crucial importance for the optimal partitions within *H* built in the following steps

### Impact of the search space

#### **Hierarchy importance**

- the research space used in this framework is restricted to the initial hierarchy *H* 
  - construction scheme is of a crucial importance for the optimal partitions within H built in the following steps

#### compromise between energy/time

- sequential merging
- parallel merging

- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



- to increasing the search space we allow more than 2 regions merging together
  - we consider for each region R of P, its set V(R) defined as  $\{R\}$  union its set of neighbours and the set  $\mathcal{P}^*(V(R))$  of all possible subsets of V(R) including R
    - require computing  $(2^n 1) \lambda_{app}$  for each node in the RAG :



### **Multi-Merging**

• Using the scale climbing principle, our sequential merging algorithm computes for each region *R* of the partition the minimal scale of appearance of a region *R<sup>W</sup>* 

$$\lambda^{+}_{min}(R) = \arg \min_{W \in \mathcal{P}^{*}(V(R))} \frac{D(R^{W}) - D(W)}{C(W) - C(R^{W})}$$

- complexity is bounded by O(|V|2<sup>k</sup>)
  where |V| denotes the number of vertices (i.e. regions)
  and k represents the maximal vertices's degree of G
  - may induce important execution time
  - +the cardinal of the subset of regions to be merge may be bounded (by
    - 5) without altering significantly the energy of optimal cuts





### Data Set

#### Natural images database

- All experiments where performed on 100 natural images of the Berkeley database
- The Berkeley Segmentation Dataset and Benchmark
- available online at

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/



#### Merging Heuristics Seque

#### Sequential Merging





## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
  - $\Rightarrow$  Maximal Independent Set on the set of edges of the graph



## parallel merging

### Algos MM et MM<sup>1</sup>

- MM
- + good decimation ratio
- detected minima  $\Rightarrow$  less and less significant as the iterations progress.
- we thus propose an alternative solution MM<sup>1</sup>
- $\bullet \Rightarrow$  only contract at each step edges selected at the first iteration
- ⇒ can be seen as a combination of the method proposed by [Haxhimusa2003] and the stochastic decimation process of [Jolion2001]
  - + merge immediately only vertices corresponding to local minima.
  - + mean decimation ratio equal to 1.73 on the 100 images of the Berkeley database (comparable to the 2.0 obtained by Haxhimusa)
  - + improve the energy of optimal cuts.

### parallel merging

#### mean energy and execution times





#### AJOUTER D'AUTRES RESULTATS

19/22

## Conclusion

#### Conclusion

### We presented different heuristics to build such hierarchies

- sequential ones whose energy is closed from lower bound.
- parallel ones providing greater energies but require less execution time (even on sequential machine)

#### mean energy and execution times



J.H. PRUVOT, L.BRUN (GreyC)

Conclusion and Outlooks

# Thanks for your attention.

Conclusion and Outlooks

### End











 $SM^5$ 



= 0.6

















= 0.2



= 0.4



= 0.4  $\lambda = 0.2$ J.H. PRUVOT, L.BRUN (GreyC)

= 0.8Scale Set representation for image segmentation

GbR2007 - 2007-6-11 22/22



=







