Hierarchy Construction Schemes within the Scale Set Framework

Jean-Hugues PRUVOT, Luc BRUN

GreyC Laboratory, Image Team CNRS UMR 6072 ENSICAEN

6th IAPR -TC-15 Workshop on Graph-based Representations in Pattern Recognition

Outline

Outline

Introduction

2 The Scale Set Framework

- The Causality principle
- Optimal Cuts

3 Merging Heuristics

- Sequential Merging
- Parallel Merging

Conclusion and Outlooks

Introduction

Introduction

2 approaches for Segmentation

- Segmentation \Rightarrow Horowitz[1976] with a predicate P
 - split/merge while an homogeneity criteria
 - only a local criteria
- The use of energy minimisation scheme within the region based segmentation framework
 - Level-Set, Bayesian, Min-cut / N-Cut, Minimum Description Length
 - allows to define criteria which should be globally optimised over a partition
 - allows an objective evaluation the segmentations
 - Level-Set \Rightarrow minimisation for one scale parameter λ

Level Set / N-Cut / MDL ⇒ local minimum in a full search space

Principle

minimize an energy partition E(P) :
 (E(P) is supposed to be an Affine Separable Energy (ASE)

Energy for each region R_i (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$: internal region energy (fit to data)

 $C(R_i)$: complexity energy (regularization term)

l : scale parameter

- Guigues approach
 - global minimum in a narrow search space
 - bottom-up approach
 - provides the optimal partition for each value of a scale parameter $\lambda \in \mathbb{R}^+$

Principle

minimize an energy partition E(P):
 (E(P) is supposed to be an Affine Separable Energy (ASE))

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$: internal region energy (fit to data) $C(R_i)$: complexity energy (regularization term)

- Guigues approach
 - global minimum in a narrow search space
 - bottom-up approach
 - provides the optimal partition for each value of a scale parameter $\lambda \in \mathbb{R}^+$

Principle

minimize an energy partition E(P) :
 (E(P) is supposed to be an Affine Separable Energy (ASE))

Energy for each region R_i (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

 $D(R_i)$: internal region energy (fit to data) $C(R_i)$: complexity energy (regularization term) λ : scale parameter

- Guigues approach
 - global minimum in a narrow search space
 - bottom-up approach
 - provides the optimal partition for each value of a scale parameter $\lambda \in \mathbb{R}^+$

Principle

- minimize an energy partition E(P) :
 - (E(P) is supposed to be an Affine Separable Energy (ASE))
 - Energy for each region R_i (weighted sum of 2 terms) :

$$E(R) = \sum_{R_i \in R} D(R_i) + \lambda C(R_i)$$

- $D(R_i)$: internal region energy (fit to data)
- $C(R_i)$: complexity energy (regularization term)
- λ : scale parameter

used energy

Energy $E_{\lambda}(P) = \lambda C(P) + D(P)$ affine energy

- D : internal energy (fit to data) :
 - squared error :
 - $SE(R) = \sum_{i \in R} \|c_i \mu_R\|^2$
 - \Rightarrow minimal if each region is a pixel

• C : energy of complexity (regularisation term) :

total length of the boundaries

 \Rightarrow low if the partition is composed of few regions

Causality principle

- introduced by Witkin in 1984
 - coherent structures are present at different scales in an image

• $\forall (\lambda_1, \lambda_2) \in \mathbb{R}^{+2}$ with $\lambda_2 \leq \lambda_1 \Rightarrow P_{\lambda_1}$ can be deduced from P_{λ_2} by regions merging

J.H. PRUVOT, L.BRUN (GreyC)

Scale Set representation for image segmentation

Causality principle

- Conditions on energy $E_{\lambda}(P) = \lambda C(P) + D(P)$
 - $P_{\lambda}(I)$: partition which minimize $E_{\lambda}(I)$
 - if P_{λ} is causal, $H = \{P_{\lambda}(I), \lambda \in \mathbb{R}^+\}$ is a hierarchy.

• Guigues \Rightarrow if C is sub-additive then P is causal

- C sub-additive $\iff C(R_1 \cup R_2) \le C_{R_1} + C_{R_2}$
- natural condition in segmentation task ($MDL \Rightarrow$ less parameters to describe the union of 2 regions than 2 regions)

The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

start from an initial segmentation

The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

• built a region adjacency graph (RAG)

The Scale Set Framework The Causality principle

Construction of the initial hierarchy2

scale-climbing

- For each region compute
 - the internal energy $D(R_i)$
 - the complexity energy $C(R_i)$

Construction of the initial hierarchy2

scale-climbing

• Compute, for any couple of adjacent regions, the scale of appearance λ_{app} . λ_{app} depicts the minimum value, from which , merging those regions, contributes to less increase the global energy defined on the partition.

Construction of the initial hierarchy2

scale-climbing

•
$$\begin{array}{l} E_A(\lambda) + E_B(\lambda) = \lambda(C_A + C_B) + (D_A + D_B) \\ E_{A\cup B}(\lambda) = \lambda C_{A\cup B} + D_{A\cup B} \end{array} \Big\} \lambda_{app}(A \cup B) = \frac{D_A + D_B - D_{A\cup B}}{C_B + C_A - C_{A\cup B}} \end{array}$$

- iterating this process we get a serial of λ_{app} providing a set of optimal cut whitin H
- energy of the optimal cuts within this global hierarchy is then depicted by a concave piecewise function

Construction of the initial hierarchy

Cuts

Optimal Cuts

Optimal Cut

Briefly

• provide all solutions for any λ

Optimal Cuts

Optimal Cut

Briefly

- provide all solutions for any λ
- the given solutions

are optimal within the hierarchy corresponding to a narrow search space Partitions remains stable on whole intervals

J.H. PRUVOT, L.BRUN (GreyC)

Impact of the search space

Hierarchy importance

- the research space used in this framework is restricted to the initial hierarchy H
 - construction scheme is of a crucial importance for the optimal partitions within *H* built in the following steps

Impact of the search space

Hierarchy importance

- the research space used in this framework is restricted to the initial hierarchy *H*
 - construction scheme is of a crucial importance for the optimal partitions within H built in the following steps

compromise between energy/time

- sequential merging
- parallel merging

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

- to increasing the search space we allow more than 2 regions merging together
 - we consider for each region R of P, its set V(R) defined as $\{R\}$ union its set of neighbours and the set $\mathcal{P}^*(V(R))$ of all possible subsets of V(R) including R
 - require computing $(2^n 1) \lambda_{app}$ for each node in the RAG :

Multi-Merging

• Using the scale climbing principle, our sequential merging algorithm computes for each region *R* of the partition the minimal scale of appearance of a region *R^W*

$$\lambda^{+}_{min}(R) = \arg \min_{W \in \mathcal{P}^{*}(V(R))} \frac{D(R^{W}) - D(W)}{C(W) - C(R^{W})}$$

- complexity is bounded by O(|V|2^k)
 where |V| denotes the number of vertices (i.e. regions)
 and k represents the maximal vertices's degree of G
 - may induce important execution time
 - +the cardinal of the subset of regions to be merge may be bounded (by
 - 5) without altering significantly the energy of optimal cuts

Data Set

Natural images database

- All experiments where performed on 100 natural images of the Berkeley database
- The Berkeley Segmentation Dataset and Benchmark
- available online at

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Merging Heuristics Seque

Sequential Merging

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merge algorithms

- 2 algorithms based on the notion of maximal matching
- using the same approach as [Haxhimusa]
 - \Rightarrow Maximal Independent Set on the set of edges of the graph

parallel merging

Algos MM et MM¹

- MM
- + good decimation ratio
- detected minima \Rightarrow less and less significant as the iterations progress.
- we thus propose an alternative solution MM¹
- $\bullet \Rightarrow$ only contract at each step edges selected at the first iteration
- ⇒ can be seen as a combination of the method proposed by [Haxhimusa2003] and the stochastic decimation process of [Jolion2001]
 - + merge immediately only vertices corresponding to local minima.
 - + mean decimation ratio equal to 1.73 on the 100 images of the Berkeley database (comparable to the 2.0 obtained by Haxhimusa)
 - + improve the energy of optimal cuts.

parallel merging

mean energy and execution times

AJOUTER D'AUTRES RESULTATS

19/22

Conclusion

Conclusion

We presented different heuristics to build such hierarchies

- sequential ones whose energy is closed from lower bound.
- parallel ones providing greater energies but require less execution time (even on sequential machine)

mean energy and execution times

J.H. PRUVOT, L.BRUN (GreyC)

Conclusion and Outlooks

Thanks for your attention.

Conclusion and Outlooks

End

 SM^5

= 0.6

= 0.2

= 0.4

= 0.4 $\lambda = 0.2$ J.H. PRUVOT, L.BRUN (GreyC)

= 0.8Scale Set representation for image segmentation

GbR2007 - 2007-6-11 22/22

=

