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Abstract. Segmentation algorithms based on an energy minimisation framework
often depend on a scale parameter which balances a fit to data and a regularising
term. Irregular pyramids are defined as a stack of graphs successively reduced.
Within this framework, the scale is often defined implicitlyas the height in the
pyramid. However, each level of an irregular pyramid can notusually be readily
associated to the global optimum of an energy or a global criterion on the base
level graph. This last drawback is addressed by the scale setframework designed
by Guigues. The methods designed by this author allow to build a hierarchy and to
design cuts within this hierarchy which globally minimise an energy. This paper
studies the influence of the construction scheme of the initial hierarchy on the
resulting optimal cuts. We propose one sequential and one parallel method with
two variations within both. Our sequential methods providepartitions near an
energy lower bound defined in this paper. Parallel methods require less execution
times than the sequential method of Guigues even on sequential machines.

1 Introduction

Despite much efforts and significant progresses in recent years, image segmentation
remains a notoriously challenging computer vision problem. It’s usually a preliminary
step towards image interpretation and plays a major role in many applications.

The use of an energy minimisation scheme within the region based segmentation
framework allows to define criteria which should be globallyoptimised over a parti-
tion. Several types of methods such as the Level set [1], the Bayesian [2], the min-
imum description length [3] and the minimal cut [4] frameworks are based on this
approach. Within these frameworks the energy of a partitionP is usually defined as
Eλ(P) = D(P) + λC(P) whereD andC denote respectively the fit to data and the
regularising term. The energyEλ(P) corresponds to the Lagrangian of the constraint
problem: minimiseD(P) subject toC(P) ≤ ǫ. Whereǫ is a function ofλ. Under large
assumptions, minimisingEλ(P) is also equivalent to the dual problem: minimiseC(P)
subject toD(P) ≤ ǫ′, whereǫ′ is also a function ofλ. Thereforeλmay be interpreted as
the amount of freedom allowed to minimiseD (D(P) ≤ ǫ′) while keepingC as low as
possible. Sinceǫ′ is a growing function ofλ, asλ is growing, the constraint onD is more
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and more relaxed while the importance of the termC is getting more and more impor-
tant. This parameterλ may thus be interpreted as ascale parameterwhich represents
the relative weighting between the two energy terms.

In many approaches the parameterλ is fixed experimentally and a minimisation
algorithm determines for a value ofλ a locally optimal partition from the setP of all the
possible partitions on imageI . A sequence ofλ may also be defined a priori in order to
compute the optimal partition on each sampled value ofλ [5].

The scale set framework proposed by Guigues [5] is based on a different approach.
Instead of performing the minimisation scheme on the whole setP of possible partitions
of an imageI , Guigues proposes to restrict the search on a hierarchyH. The advantages
of this approach are twofold: firstly as shown by Guigues the globally optimal partition
on H may be found efficiently while the search on the whole setP of partitions only
provides local minima. Secondly, Guigues shown that if the energy satisfies some ba-
sic properties, the whole set of solutions onH whenλ describesR+ corresponds to a
sequence of increasing cuts within the hierarchyH hereby providing a contiguous rep-
resentation of the solutions for the parameterλ. A method to build the hierarchyH has
been proposed by Guigues. Since the research space used by Guigues is restricted to the
initial hierarchyH the construction scheme of this hierarchy is of crucial importance
for the optimal partitionswithin H built in the second step.

This paper explores different heuristics to build the initial hierarchy. These heuris-
tics represent different compromises between the energy of the final partitionsand the
execution times. We first present in Section 2 the scale set framework. The different
heuristics are then presented in Section 3. These heuristics are evaluated and compared
to the method of Guigues in Section 4.

2 The Scale Set framework

Given an imageI and two partitionsP andQ on I , we will say thatP is finer thanQ
(or Q is coarser thenP) iff Q may be deduced fromP by merging operations. This re-
lationship is denoted byPEQ. Let us now consider a theoretic segmentation algorithm
Pλ parametrised byλ. We will say thatP is anunbiased multi-scale segmentationalgo-
rithm iff for any couple (λ1, λ2) such thatλ1 ≤ λ2, and any imageI , Pλ1(I )EPλ2(I ). If Pλ
is an unbiased multi-scale segmentation algorithm,Pλ(I ) increases according toλ and
the setH =

⋃

λ∈R+ Pλ(I ) defines a hierarchy as an union of nested partitions. Note that
the setP of partitions onI being finite,H must be also finite.

Unbiased multi-scale segmentation algorithms follow a well known causal princi-
pal: increasing the scale of observation should not create new information. In other
words any phenomenon observed at one scale should be caused by objects defined at
finer scales. In our framework, increasing the scale should not create new contours.

The family of energies considered by Guigues corresponds tothe set of Affine
Separable Energies (ASE) which can be written for any partition P of I in n regions
{R1, . . . ,Rn} as:

E(P) = D(P) + λC(P) =
n

∑

i=1

D(Ri) + λ
n

∑

i=1

C(Ri) =
n

∑

i=1

D(Ri) + λC(Ri)
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Let us consider a hierarchyH and the sequence (C∗
λ
(H))λ∈R+ of optimal cuts within

H. The approach of Guigues is based on the following result: IfEλ(P) is an ASE and if
Cλ(P) is decreasing withinP:

∀(P,Q) ∈ P P⊳Q⇒ C(P) > C(Q)

then the sequence (C∗
λ
(H))λ∈R+ is an unbiased multi-scale segmentation. The union of

all (C∗
λ
(H))λ∈R+ defines thus a new hierarchy withinH. The tree corresponding to the

hierarchical structure of
⋃

λ∈R+C∗
λ
(H) may be deduced fromH by merging with their

fathers all the nodes which do not belong to any optimal cuts.Note that an equivalent
result may be obtained if no condition is imposed toC but if D is increasing according
to λ.

The restriction by Guigues of the research space to a hierarchy may thus be justified
by the fact that the set of partitions produced by any unbiased multi-scale segmentation
algorithm describes a hierarchy. Conversely, given a hierarchy H, if the energyEλ is
an ASE with a decreasing termC the sequence of optimal cuts ofH according toEλ:
(C∗
λ
(H))λ∈R+ is an unbiased multi-scale segmentation algorithm.
Given a partitionP ∈ P, the decrease ofC may be equivalently expressed as a

sub-additivity relationship:

∀(R,R′) ∈ P | R is adjacent toR′ C(R∪ R′) < C(R) +C(R′) (1)

Note that the sub-additivity of the regularising termC in common is many applica-
tions. For example, ifC is proportional to some quantity summed up along contours,C
is sub-additive due to the removal of the common boundaries between the two merged
regions. Moreover, the termC may be interpreted within the Minimum Description
Length framework [3] as the amount of information required to encode a partition.
Therefore, one can expectC to decrease when the partition gets coarser.

Given a hierarchyH, the sequence of optimal cutsC∗
λ
(H) within H has to be com-

puted. Let us consider one regionRat the second level of the hierarchy (computed from
the base) and its set of sonsS1, . . . ,Sn. Let us additionally consider the treeH(R) rooted
at R within H (Fig. 1(a)). SinceR is a level 2 node, the hierarchyH(R) allows only
two cuts: one encoding the partitionP1 made of the sons ofRwhose energy is equal to
Eλ(P1) =

∑n
i=1 D(Si)+λ

∑n
i=1 C(Si) and one encoding the partitionP2 reduced to the sin-

gle regionR. The energy ofP2 is equal toEλ(P2) = D(R)+ λC(R). Due to the sub addi-
tivity of C we have

∑n
i=1 C(Ri) > C(R). Therefore, using the linear expression ofEλ(P1)

andEλ(P2) in λ, if
∑n

i=1 D(Si) < D(R) the lineEλ(P1) =
∑n

i=1 D(Si) + λ
∑n

i=1 C(Ri) is
below the lineEλ(P2) = D(R) + λC(R) until a valueλ+(R) of λ for which the two lines
cross(Fig. 1(b)). If

∑n
i=1 D(Si) ≥ D(R), Eλ(P2) is always greater or equal toEλ(P1) in

which case we setλ+(R) to 0. Therefore, in both cases the partitionP1 is associated to
a lower energy thanP2 for λ = 0 until λ = λ+(R). Above this value the partitionP2 is
associated to the lowest energy. In terms of optimal cuts,P1 corresponds to the optimal
cut of H(R) until λ+(R) andP2 is the optimal cut above this value(Fig. 1(c)). The value
λ+(R) is called thescale of appearanceof the regionR.

Guigues shown that the above process may be generalised to the whole tree. Each
node ofH is then valuated by a scale of appearance. Some of the nodes ofH may
get a greater scale of appearance than their father. Such nodes do not belong to any
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Fig. 1. (a) a nodeR of the hierarchy whose sons{S1, . . . ,Sn} correspond to initial re-
gions. (b) the energies of the partitions associated toRand{S1, . . . ,Sn} plotted as func-
tions ofλ. (c) the energy of the optimal cuts withinH(R) (a). (d) an example of concave
piecewise linear function encoding the energy of the optimal cuts within a global hier-
archyH.

optimal cut and are removed fromH during a cleaning step which merges them with
their fathers. Each nodeR of the resulting hierarchy belongs to an optimal cut from
λ = λ+(R) until the scale of appearance of its fatherλ+(F (R)), whereF (R) denotes the
father ofR in H. The valueλ+(R) may be set for each node of the tree using a bottom-up
process. The optimal cutC∗

λ
(H) for a given value ofλ may then be determined using

a top-down process which selects in each branch of the tree the first node with a scale
of appearance lower thanλ. The set of selected nodes constitutes a cut ofH which
is optimal by construction according toEλ. The functionEλ(C∗λ(H)) corresponds to a
concave piecewise linear function whose each linear interval corresponds to the energy
of an optimal cut withinH (Fig. 1(d)).

Given a hierarchyH and the functionEλ(C∗λ(H)) encoding the energy of the se-
quence of optimal cuts, the optimality ofH may be measured as the area under the
curveEλ(C∗λ(H)) for a given range of scales or as the area of the surfaceA (Fig. 1(d))
betweenEλ(C∗λ(H)) and the energy of the coarsest cutEλ(Pmax). WherePmax denote
the partition composed of a single region encoding the wholeimage. We propose in
Section 4 an alternative measure of the quality of a hierarchy which allows to reduce
the influence of the initial image.

Guigues proposed to build a hierarchyH by using an initial partitionP0 and a strat-
egy called thescale climbing. This strategy merges at each step the two adjacent regions
R andR′ such that:

λ+(R∪R′) =
D(R∪ R′) − D(R) − D(R′)
C(R) +C(R′) −C(R∪ R′)

= min
(R1,R2)∈P2,R1∼R2

D(R1 ∪ R2) − D(R1) − D(R2)
C(R1) +C(R2) −C(R1 ∪ R2)

(2)
whereP denotes the current partition andR1 ∼ R2 indicates thatR1 andR2 are adjacent
in P.
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This process merges thus at each step the two regions whose union would appear
at the lowest scale. Such a construction scheme is coherent with the further processes
applied on the hierarchy. However, there is no evidence thatthe resulting hierarchy may
be optimal according to any of the previously mentioned criteria. We indeed show in the
next section that other construction schemes of a hierarchymay lead to lower energies.

3 Construction of the initial hierarchy

Many energies have been designed in order to encode different types of homogeneity
criteria (piecewise constant [3,6], linear or Polynomial [3] variations,. . . ). This paper
being devoted to the construction schemes of the hierarchy,we restrict our topic to the
piecewise constant model described by Leclerc [3] and Mumford and Shah [6]. The
energy of this model may be written as:

Eλ(P) = D(P) + λC(P) =
n

∑

i=1

SE(Ri) + λ|δ(Ri)| (3)

whereP = {R1, . . . ,Rn} represents the partition of the image,SE(Ri) =
∑

p∈R ‖cp − µR‖
2

is the squared error of regionRi and|δ(Ri)| is the total length of its boundaries.
Within the Minimum Description Length framework,S E(Ri) may be understood

as the amount of information required to encode the deviation of the data against the
model, while|δ(Ri)| is proportional to the amount of information required to encode
the shape of the model. Within the statistical framework, the squared error may also
be understood as the log of the probability that the region satisfies the model (i.e. is
constant) using a Gaussian assumption while|δ(Ri)| is a regularising term.

Our approach follows the scale climbing strategy proposed by Guigues (equation 2).
Given a setW of regions within a partitionP we thus consider the scale of appearance
of the regionR defined as the union of the regions inW. The heuristics below use this
basic approach but differ on the setsW which are considered and on the ordering of the
merge operations.

3.1 Sequential Merging

Given a current partitionP, let us consider for each regionR of P, its setV(R) defined
as{R} union its set of neighbours and the setP∗(V(R)) of all possible subsets ofV(R)
including R. Each subsetW ∈ P∗(V(R)) encodes a possible merging of the regionR
with at least one of its neighbour. Let us denote byRW =

⋃

R′∈W R′ the region formed
by the union of the regions inW. Note that the regionRW is connected sinceR belongs
to W and all the regions ofW are adjacent toR. Let us additionally consider the two
partitions ofRW: PRW = {RW} andPW = W. The energies associated to these partitions
are respectively equal toEλ(PRW) = D(RW) + λC(RW) and:

Eλ(PW) = D(W) + λC(W) =
∑

R′∈W

D(R′) + λ
∑

R′∈W

C(R′)

whereD(W) andC(W) denote respectively the fit to data and the regularising terms of
the partitionPW.
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SinceC is sub additive (equation 1) we haveC(W) > C(RW). The energyEλ(PW) is
thus lower thanEλ(PRW) until a valueλ+(RW) called the scale of appearance ofRW (Sec-
tion 2). Using the scale climbing principle, our sequentialmerging algorithm computes
for each regionR of the partition the minimal scale of appearance of a regionRW:

λ+min(R) = argminW∈P∗(V(R))
D(RW) − D(W)
C(W) −C(RW)

the setW ∈ P∗(V(R)) which realises the min is denotedWmin(R).
Given the quantitiesλ+min(R) andWmin(R), our sequential algorithm iterates the fol-

lowing steps:

1. LetP denotes the current partition initialised with an initial partition P0,
2. For each regionR of P computeλ+min(R) andWmin(R)
3. ComputeRmin = argminR∈Pλ

+
min(R) and merge all the regions ofWmin(Rmin).

4. If more than one region remains go to step 2,
5. Output the final hierarchyH encoding the sequence of merge operations.

This algorithm performs thus one merge operation at each step of the algorithm.
Note that all the regions ofWmin(Rmin) are adjacent toRmin. Therefore, within the irreg-
ular pyramid framework, the merge operation may be encoded by a contraction kernel
of depth one composed of a single tree whose root is equal toRmin. The computation of
λ+min(R) for each regionR of the partition requires to traverseP∗(V(R)) whose cardinal
is equal to 2|V(R)|−1. Therefore, if the partition is encoded by a graphG = (V,E), the
complexity of each step of our algorithm is bounded byO(|V|2k) where|V| denotes the
number of vertices (i.e. the number of regions) andk represents the maximal vertices’s
degree ofG. The cardinal ofV is decreased by|Wmin(Rmin)| − 1 at each iteration. Since
|Wmin(Rmin)| is at least equal to 2, the cardinal ofV decreases by at least 1. The com-
putation ofλ+min(R) for each regionR of the partition may induce important execution
times when the degree of the vertices of the graph is important. However, experiments
presented in Section 4 show that the cardinal of the subsetsW ∈ P∗(R) may be bounded
without altering significantly the energy of the optimal cuts. Let us finally note that this
algorithm includes the scale climbing approach proposed byGuigues. Indeed, the merge
operations studied by Guigues (Section 2) correspond to thesubsetsW ∈ P∗(V(R)) with
|W| = 2 which are considered by our algorithm.

3.2 Parallel Merge algorithm

Our parallel merge algorithm is based on the notion of maximal matching. A set of
edgesM of a graphG = (V,E) is called a maximal matching if each vertex ofG is inci-
dent to at most one edge ofM and if M is maximal according to this property. Moreover,
we would like to design a maximal matchingM such that the scale of appearance of the
regions produced by the contraction ofM is as low as possible. Let us denote byι(e),
the two vertices incident toe. Using the same approach as in Section 3.1 we associate to
each edgeeof the graph the scale of appearanceλ+(ι(e)) (equation 2) of the regionRι(e)

defined as the union of the regions encoded by the two verticesincident toe. Following,
the same approach as Haxhimusa [7] we define our maximal matching as a Maximal
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Independent Set on the set of edges of the graph. The iterative process which builds
the maximal independent set selects at each step edges whosescale of appearance is
locally minimal. This process may be formulated thanks to two boolean variablesp and
q attached to each edge such that:

{

p1
e = λ

+(e) = mine′∈Γ(e){λ
+(e′)}

q1
e =

∧

e′∈Γ(e) p1
e′

and















pk+1
e = pk

e ∨
(

qk
e ∧ λ

+(e) = mine′∈Γ(e) | qk
e′
{λ+(e′)}

)

qk+1
e =

∧

e′∈Γ(e) pk+1
e′

(4)
whereΓ(e) denotes the neighbourhood of the edgeeand is defined asΓ(e) = {e} ∪ {e′ ∈
E|ι(e) ∩ ι(e′) , ∅}.

This iterative process stops when no change occurs between two iterations. Ifn
denotes the final iteration, the set of edges such thatpn

e is true defines a maximal match-
ing [7] M which encodes the set of edges to be contracted. Moreover, the set of selected
edges corresponds to local minima according to the scale of appearanceλ+(e). Roughly
speaking ifλ+(e) is understood as a merge score, one edge between two vertices will be
marked (pk

e = true) at iterationk, if among all the remaining possible merge operations
involving these two vertices, the one involving them is the one with the best merge
score. Note that the construction of a maximal matching is only the first step of the
method of Haxhimusa which completes this maximal matching in order to get a deci-
mation ratio of order 2. The restriction of our method to a maximal matching allows to
restrict the merge operations to edges which become locallyoptimal at a given iteration.
We thus favour the energy criterion against the reduction factor. As shown by Bield [8],
the reduction factor in terms of edges induced by the use of a maximal matching is a
least equal to 2k−1

2k−1 wherek is the maximal vertex’s degree of the graph. The edge’s
decimation ratio may thus be very low for graphs with important vertices’s degrees.
Nevertheless, experiments performed on 100 natural imagesof the Berkeley database1

shown that the mean vertex’s decimation ratio between levels on this database is equal
to 1.73 which is comparable to the 2.0 decimation ratio obtained by Haxhimusa.

The local minima selected in equation 4 are computed on decreasing sets along the
iterations in order to complete the maximal matching. We canthus consider that the
detected minima are less and less significants as the iterations progress. We thus pro-
pose an alternative solution which consists in contractingat each step only the edges
selected at the first iteration (p1

e = true). These edges correspond to minima computed
on the whole neighbourhood of each edge. This method may be understood as a combi-
nation of the method proposed by Haxhimusa [7] and the stochastic decimation process
of Jolion [9] which consists in merging immediately vertices corresponding to local
minima.

4 Experiments

The different heuristics presented in this paper have been evaluated on the Berkeley
database. The evaluated heuristics include our parallel merge heuristic based on a max-
imal matching (MM) and the variation of this method(MM1) which merges at each step

1 available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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MM

MM1

S M2

SM

S M5

λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8

Fig. 2. Partitions of the mushroom and the fisherman images at different scales. Each
line of the array corresponds to an heuristic whose acronym is indicated on the first
column.

the edges selected during the first iteration (Section 3.2).We also evaluated our sequen-
tial method (SM) and two variations of this method: the first variation (S M2), considers
for each regionR of the partition the subsets of cardinal 2 ofV(R). This method corre-
sponds to the heuristic proposed by Guigues. We also evaluated an intermediate method
(S M5) which restricts the cardinal of the subsets ofV(R) includingR to an upper thresh-
old fixed to five in these experiments. All the experiments have used an initial partition
obtained by a Watershed algorithm [10].

Fig. 2 shows 5 optimal cuts obtained for increasing values ofλ on the Mushroom
and Fisherman images of the Berkeley database1 . The heuristics used to build the hier-
archies are displayed on the first column of Fig. 2. The original images are displayed in
Fig. 4(a).

1 Color plates are available at the following url: http://www.greyc.ensicaen.fr/∼jhpruvot/Cut/
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(a) Execution time (b) Eλ(C∗λ(H))

-

6

�
�
��
  

λmax

Eλmax(Pmax)

Eλ (Pmax)

E0(P0)

Eλ (C∗ (H))

λ

(c) Energy’s
Bounds

Fig. 3. (a) execution times of the different heuristics on the Mushroom image (Fig. 2)
using an initial partition with a varying number of regions.(b) mean energies of optimal
cuts obtained by our heuristics on the Berkeley database. (c) bounds of the optimal cut’s
energies.

Fig. 3(a) shows the influence of the number of initial regionson the execution time.
These curves have been obtained on the Mushroom image with different initial parti-
tions obtained by varying the smoothing parameter of the gradient within our Watershed
algorithm.

Fig. 3(b) allows to compare the performance of each heuristic on the whole Berke-
ley database. However, a direct comparison of the energies obtained by the different
heuristics on different images would be meaningless since the shape of the function
Eλ(C∗λ(H)) depends both of the intrinsic performances of the heuristic used to buildH
and of the imageI on whichH has been built. We have thus to normalise the energies
Eλ(C∗λ(H)) produced by the different heuristics before any comparison.

Given a hierarchyH, sinceC∗
λ
(H) is an unbiased multi-scale segmentation (Sec-

tion 2), the hierarchyH obtained by each of our methods may be associated to a value
λH

max above which the optimal partitionPmax is reduced to a single region encoding the
whole image. The energy ofPmax is defined as:Eλ(Pmax) = DI +λCI whereDI = SE(I )
denotes the global image’s squared error andCI = |δ(I )| the perimeter of the image.
Since the energy of the optimal cutsEλ(C∗λ(H)) of a hierarchyH is a piecewise linear
concave function ofλ, the functionEλ(C∗λ(H)) is below the energyEλ(Pmax) associated
to the coarser partition(Fig. 3(c)). Moreover, ifP0 denotes the initial partition, the two
points (0,E0(P0)) and (λmax,Eλmax(Pmax)) belong to the curve. Therefore,Eλ(C∗λ(H))
being concave, it should be above the line connecting these two points. Finally, the
line connecting (0, 0) to (λmax,Eλmax(Pmax)) being below the line joining (0,E0(P0)) and
(λmax,Eλmax(Pmax)) we have for any hierarchyH and any scaleλ (Fig. 3(c)):

λ

λmax
Eλmax(Pmax) ≤ Eλ(C∗λ(H)) ≤ Eλ(Pmax)

We obtain from this last inequality and after some calculus the following equation:

∀λ ∈ R+ xλ ≤ 1+
xλ − 1

1+ xλEI
≤

Eλ(C∗λ(H))

Eλ(Pmax)
≤ 1 with xλ =

λ

λmax
andEI =

λmaxCI

DI
(5)
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(a) Original Images (b) D(R) =

SE(R)
(c) D(R) =

S E(R)(1 +

f ( Int(R)
Ext(R) )

Fig. 4. (a) Original images. (b) and (c), partitions of the tower image built with a same
heuristic(SM) at a same normalised scale (xλ = .8) but with energies defined using two
different fit to data terms. (b) is defined using the squared errorD(R) = S E(R) while (c)
is defined using the formula defined by equation 6.

Therefore, using the normalised energy,
Eλ (C∗λ(H))
Eλ(Pmax)

and the normalised scalexλ = λ
λmax

,

any curve
Eλ(C∗λ (H))
Eλ (Pmax)

lies in the upper left part of the unit cube [0, 1]2. Note that this result
is valid for any hierarchyH and thus any heuristic.

Using our piecewise constant model (equation 3), the energyEλ(Pmax) is roughly
equal to the squared error of the image for small values ofλ and may be interpreted
as the global variation of the image. The normalised energy allows thus to reduce the
influence of the global variation of the images on the energy and to compare energies
computed with a same heuristic but on different images. Note however, that the use of
the normalised scalexλ = λ

λmax
discards the absolute value ofλmax. We thus do not take

into account the range of scales for which the optimal cut is not reduced to the trivial
partitionPmax. However, the absolute value ofλmax varies according to each image and
each heuristics. The normalised scale allows thus to removethe influence of the image.
Moreover, our experiments shown thus that for each image, our different heuristics
obtain closeλmax values.

Fig. 3(b) represents for each value ofxλ and each heuristic, the mean value of
the normalised energy

Eλ(C∗λ (H))
Eλ (Pmax)

computed on the whole set of images of the Berckley
database.

As shown in Fig 3(b) the energy of the optimal cuts obtained bythe heuristicMM1

(−N−) is lower than the one obtained by the maximal matching heuristic (− • −). This
result is confirmed by Fig. 2 (linesMM andMM1) where the heuristicMM removes
more details of the mushroom at a given scale. This result is connected to the greater
decimation ratio of theMM heuristic. TheMM heuristic merges at each step regions
with important scale of appearance without considering regions which may appear at
further steps. The algorithmsMM and MM1 induce equivalent execution times on a
sequential machine. The execution times of the methodMM1 (−N−) are overlayed by
the ones of the methodMM (− • −) in Fig. 3(a) due to the vertical scale of this figure.

The subjective quality of the partitions obtained by the heuristics MM1 andS M2

(Fig. 2) seems roughly similar. We can notice that the heuristic MM1 seems to produce
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slightly coarser partitions at each scale. However, considering Fig. 3(b), the optimal
energy obtained by the heuristicS M2 (−�−) are lower than the one obtained byMM1

(−N−). Note that the heuristicMM1 produces lower execution times thanS M2 even on
a sequential machine(Fig. 3(a)).

As shown by Fig. 3(b) the optimal energies produced by the heuristic S M (− + −)
are always below the one produced by the heuristicS M2 (−�−). Note that, the curve
(− + −) is close to the diagonal of the square [0, 1]2. This last point indicates that on
most of the images of the Berkeley database the hierarchies produced by theS Mheuris-
tic provide optimal cuts whose normalised energy is closed from the lower bound of the
optimal cut’s energies (equation 5). This result is confirmed by Fig. 2 where the heuris-
tic S M preserves more details of the image at each scale. However, the heuristicS M
is the one which requires the more important execution timeson a sequential machine
(Fig. 3(a)).

The heuristicS M5 may be understood as a compromise betweenS M2 andS M. As
shown by Fig. 3(b) the optimal energies obtained by the heuristicS M5 ( ) are close to
the one obtain byS M(− + −) and below the one obtained byS M2(−�−). Moreover, as
shown by Fig. 3(a), the execution times required byS M5 are between the one required
by the heuristicsS M2 andS M. Finally, the partitions obtained by theS M5 heuristic in
Fig. 2 are closed from the one obtained by the heuristicS M.

Fig. 4 shows results obtained using an other fit to data criterion based on the intu-
itive notion of contrast. The basic idea of this criterion [11] states that a region should
have a higher contrast with its neighbours (called externalcontrast) than within its even-
tual subparts (called internal contrast). Let us denote byGe the mean gradient computed
along the contour associated to an edgee. The internal and external contrasts of a region
R are then respectively defined asInt(R) = maxe∈CC(R)Ge andExt(R) = mine∈E|v∈ι(e)Ge.
WhereCC(R) denotes the set of edges which have been contracted to defineR and
e ∈ E|v ∈ ι(e) denotes the set of edges incident tov. Our new energy combines the con-
trast and the squared error criteria as follows:

Eλ(P) =
n

∑

i=1

S E(Ri)

(

1+ f

(

Int(Ri)
Ext(Ri)

))

+ λ|δ(Ri)| (6)

where f () denotes a sigmoid function.
A contrasted region will thus have a low ratio between its internal and external con-

trast. Conversely, a poorly contrasted region may have a fit to data term close to twice
its squared error. As shown by Fig. 3(b) and (c) this energy favours highly contrasted
regions. For example, the cloud merged with the sky in Fig. 3(b) remains in Fig. 3(c).
Moreover, experiments not reported here, shown us that the same type of discussion
about the advantages and drawbacks of the different heuristics may be conducted on
this new energy with the same conclusions.

5 Conclusion

The Scale Set framework is based on two steps: the determination of a hierarchy accord-
ing to an energy criterion and the determination of optimal cuts within this hierarchy.
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We have presented in this article parallel and sequential heuristics to build such hierar-
chies. The normalised energy of the optimal cuts, associated with these hierarchy are
bounded bellow by the diagonal of the unit square [0, 1]2. Our experimental results sug-
gest that our sequential heuristicS M provides hierarchies whose normalised energies
are closed from this lower bound. This methods may however require important exe-
cution times. We thus propose an alternative heuristic providing lower execution time
at the price of generally slightly higher optimal cut’s energies. Our parallel methods
provide greater energies than the one produced by Guigues’sheuristic. However, these
methods require less execution times even on sequential machine.

Hierarchies encoding a sequence of optimal cuts are usuallycomposed of a lower
number of levels and regions than the initial hierarchies built by our merge heuristics.
In the future, we would like to use these hierarchies of optimal cuts in order to match
two hierarchies encoding the content of two images sharing asignificant part of a same
scene.
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