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Abstract. Segmentation algorithms based on an energy minimisatzonework

often depend on a scale parameter which balances a fit to mdia r@egularising
term. Irregular pyramids are defined as a stack of graphsessively reduced.
Within this framework, the scale is often defined implicitlg the height in the
pyramid. However, each level of an irregular pyramid canusatally be readily
associated to the global optimum of an energy or a globarosit on the base
level graph. This last drawback is addressed by the scafease¢work designed
by Guigues. The methods designed by this author allow talbihlierarchy and to
design cuts within this hierarchy which globally minimise energy. This paper
studies the influence of the construction scheme of thealriiierarchy on the
resulting optimal cuts. We propose one sequential and oradlglamethod with

two variations within both. Our sequential methods providetitions near an
energy lower bound defined in this paper. Parallel methagisime less execution
times than the sequential method of Guigues even on seglergchines.

1 Introduction

Despite much #orts and significant progresses in recent years, image segtiosn
remains a notoriously challenging computer vision problii:usually a preliminary
step towards image interpretation and plays a major roleainynapplications.

The use of an energy minimisation scheme within the regisethaegmentation
framework allows to define criteria which should be globalptimised over a parti-
tion. Several types of methods such as the Level[3et [1], theeSlan [P], the min-
imum description Iength[[S] and the minimal CLH [4] framek®rare based on this
approach. Within these frameworks the energy of a parti#da usually defined as
E.(P) = D(P) + AC(P) whereD andC denote respectively the fit to data and the
regularising term. The enerdy,(P) corresponds to the Lagrangian of the constraint
problem: minimiseD(P) subject toC(P) < e. Wheree is a function of. Under large
assumptions, minimising,(P) is also equivalent to the dual problem: minim{S&P)
subject toD(P) < €', wheree’ is also a function oft. Thereforet may be interpreted as
the amount of freedom allowed to minimiBe(D(P) < ¢’) while keepingC as low as
possible. Since’ is a growing function oft, asA is growing, the constraint o is more
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and more relaxed while the importance of the t&ris getting more and more impor-
tant. This parametet may thus be interpreted assaale parametewhich represents
the relative weighting between the two energy terms.

In many approaches the parameieis fixed experimentally and a minimisation
algorithm determines for a value #fa locally optimal partition from the s@tof all the
possible partitions on imade A sequence oft may also be defined a priori in order to
compute the optimal partition on each sampled valwe[ﬁ].

The scale set framework proposed by Guigtﬂas [5] is based dfeasht approach.
Instead of performing the minimisation scheme on the whetl sf possible partitions
of animagd, Guigues proposes to restrict the search on a hieraiicie advantages
of this approach are twofold: firstly as shown by Guigues tbéally optimal partition
on H may be found #iciently while the search on the whole &bf partitions only
provides local minima. Secondly, Guigues shown that if thergy satisfies some ba-
sic properties, the whole set of solutions ldrwhen A describeR+ corresponds to a
sequence of increasing cuts within the hierarehlgereby providing a contiguous rep-
resentation of the solutions for the parameteA method to build the hierarchiy has
been proposed by Guigues. Since the research space usedjoe&is restricted to the
initial hierarchyH the construction scheme of this hierarchy is of crucial intgnace
for the optimal partitionsvithin H built in the second step.

This paper explores flerent heuristics to build the initial hierarchy. These ligur
tics represent dierent compromises between the energy of the final partinodsthe
execution times. We first present in Sectidn 2 the scale aatéwork. The dierent
heuristics are then presented in Secfion 3. These hesristicevaluated and compared
to the method of Guigues in Sectifln 4.

2 The Scale Set framework

Given an imagé and two partitiond® andQ on |, we will say thatP is finer thanQ

(or Q is coarser thef®) iff Q may be deduced frorR by merging operations. This re-
lationship is denoted blP<Q. Let us now consider a theoretic segmentation algorithm
P, parametrised by. We will say thatP is anunbiased multi-scale segmentatialgo-
rithm iff for any couple {1, 12) such thafl; < A5, and any imageé, P,, (1)P,,(1). If P,

is an unbiased multi-scale segmentation algoritRpgl) increases according tband

the setH = [+ Pa(l) defines a hierarchy as an union of nested partitions. Nate th
the sefP of partitions onl being finite,H must be also finite.

Unbiased multi-scale segmentation algorithms follow al Webwn causal princi-
pal: increasing the scale of observation should not create information. In other
words any phenomenon observed at one scale should be causéjebts defined at
finer scales. In our framework, increasing the scale shoaldmeate new contours.

The family of energies considered by Guigues correspondbhecset of Afine
Separable Energies (ASE) which can be written for any pamt® of | in n regions
{Ry,...,Ry} as:

E(P) = D(P) + AC(P) = ) | D(R) +1 ) C(R) = ) D(R) + AC(R)
i=1 i=1 i=1
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Let us consider a hierarchy and the sequenc€{(H)) .z of optimal cuts within
H. The approach of Guigues is based on the following resuli; (P) is an ASE and if
C.(P) is decreasing withii:

Y(P,Q eP P<Q= C(P)>C(Q)

then the sequenc€{(H)).cr+ is an unbiased multi-scale segmentation. The union of
all (Ci(H)).er+ defines thus a new hierarchy withih. The tree corresponding to the
hierarchical structure df) ez C;(H) may be deduced frordl by merging with their
fathers all the nodes which do not belong to any optimal ddtde that an equivalent
result may be obtained if no condition is imposedtbut if D is increasing according

to 4.

The restriction by Guigues of the research space to a htgranay thus be justified
by the fact that the set of partitions produced by any unkliasealti-scale segmentation
algorithm describes a hierarchy. Conversely, given a hibseH, if the energyE, is
an ASE with a decreasing ter@the sequence of optimal cuts Hf according toE,:
(Ci(H))acr+ is an unbiased multi-scale segmentation algorithm.

Given a partitionP € P, the decrease df may be equivalently expressed as a
sub-additivity relationship:

Y(R R) e P|Risadjacentti C(RUR) < C(R)+C(R) Q)

Note that the sub-additivity of the regularising te@in common is many applica-
tions. For example, i€ is proportional to some quantity summed up along contduirs,
is sub-additive due to the removal of the common boundagésden the two merged
regions. Moreover, the teri®@ may be interpreted within the Minimum Description
Length framework [[B] as the amount of information requiredencode a partition.
Therefore, one can expeCtto decrease when the partition gets coarser.

Given a hierarch, the sequence of optimal cu(H) within H has to be com-
puted. Let us consider one regiBrat the second level of the hierarchy (computed from
the base) and its set of s08§ . . ., Sh. Let us additionally consider the tré&R) rooted
at R within H (Fig. E(a)). SinceR is a level 2 node, the hierarchy(R) allows only
two cuts: one encoding the partiti®h made of the sons & whose energy is equal to
E.(P1) = XL, D(Si)+4 X, C(Si) and one encoding the partitiéh reduced to the sin-
gle regionR. The energy oP; is equal toE,(P,) = D(R) + AC(R). Due to the sub addi-
tivity of C we have),! ; C(R) > C(R). Therefore, using the linear expressiorEn{P1)
andE,(P,) in 4, if 3L, D(Si) < D(R) the lineE,(P1) = XL, D(Si) + 1YL, C(R) is
below the lineE,(P,) = D(R) + AC(R) until a valuei*(R) of A for which the two lines
cross(Fig[ll(b)). I3, D(Si) > D(R), E.(P») is always greater or equal #,(P,) in
which case we set*(R) to 0. Therefore, in both cases the partiti®nis associated to
a lower energy thaR, for 4 = 0 until 2 = 27 (R). Above this value the partitioR> is
associated to the lowest energy. In terms of optimal ¢itgorresponds to the optimal
cut of H(R) until 27(R) andP;, is the optimal cut above this vaIue(FE;. 1(c)). The value
A*(R) is called thescale of appearancaf the regionR.

Guigues shown that the above process may be generalised whttie tree. Each
node ofH is then valuated by a scale of appearance. Some of the nodésntdy
get a greater scale of appearance than their father. Suasrdmnot belong to any
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Ea(P) N E(C}) -
R E,(Py) = D(R) + IC(R) |
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H(R) Ex(P2) E.(Ci(H(R)

Fig.1. (a) a nodeR of the hierarchy whose sonSs, ..., S,} correspond to initial re-
gions. (b) the energies of the partitions associatdland{S,, .. ., S,} plotted as func-
tions of 1. (¢) the energy of the optimal cuts withif(R) (a). (d) an example of concave
piecewise linear function encoding the energy of the ogtouts within a global hier-
archyH.

optimal cut and are removed frohh during a cleaning step which merges them with
their fathers. Each node of the resulting hierarchy belongs to an optimal cut from
A = A*(R) until the scale of appearance of its fathe(# (R)), where¥ (R) denotes the
father ofRin H. The valuel*(R) may be set for each node of the tree using a bottom-up
process. The optimal c@;(H) for a given value oft may then be determined using

a top-down process which selects in each branch of the teefirh node with a scale

of appearance lower thah The set of selected nodes constitutes a cut offhich

is optimal by construction according &,. The functionE,(C;(H)) corresponds to a
concave piecewise linear function whose each linear int@orresponds to the energy
of an optimal cut withirH (Fig. [i(d)).

Given a hierarchyH and the functiorg,(C’(H)) encoding the energy of the se-
quence of optimal cuts, the optimality éf may be measured as the area under the
curveE,(C;(H)) for a given range of scales or as the area of the suda(tég. E(d))
betweenE,(C;(H)) and the energy of the coarsest &{(Pmay). WherePnyax denote
the partition composed of a single region encoding the whnbge. We propose in
Section|]4 an alternative measure of the quality of a hiesavdhich allows to reduce
the influence of the initial image.

Guigues proposed to build a hierardHyby using an initial partitiorPy and a strat-
egy called thescale climbingThis strategy merges at each step the two adjacent regions
RandR’ such that:

D(RUR)-D(R)-D(R) _ min D(R1UR;) — D(Ry1) — D(Rz)
C(R +C(R)-C(RUR) _ (RuRP Ri-R C(R1) + C(Ry) — C(Ry U R(22))

I(RUR) =

whereP denotes the current partition aRd ~ R, indicates thaR; andR; are adjacent
in P.
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This process merges thus at each step the two regions whasewould appear
at the lowest scale. Such a construction scheme is coherénthe further processes
applied on the hierarchy. However, there is no evidencelteatesulting hierarchy may
be optimal according to any of the previously mentioneckdat We indeed show in the
next section that other construction schemes of a hierarayylead to lower energies.

3 Construction of theinitial hierarchy

Many energies have been designed in order to encdikrelit types of homogeneity
criteria (piecewise constar{[B,6], linear or Polynomf@l yariations,. ..). This paper
being devoted to the construction schemes of the hieravahyestrict our topic to the
piecewise constant model described by Leclﬂc [3] and Mudhémd Shah|]6]. The
energy of this model may be written as:

EA(P) = D(P) + AC(P) = > SER) + AI5(R)| (3)
i=1

whereP = {Ry, ..., Ry} represents the partition of the image#{(R) = ¥ ,r1ICp — urll?
is the squared error of regid® and|5(R)| is the total length of its boundaries.

Within the Minimum Description Length framework ER)) may be understood
as the amount of information required to encode the deviaifadhe data against the
model, while|5(R))| is proportional to the amount of information required to ethe
the shape of the model. Within the statistical framework, $huared error may also
be understood as the log of the probability that the regidisfees the model (i.e. is
constant) using a Gaussian assumption Wh{l& )| is a regularising term.

Our approach follows the scale climbing strategy propose@iigues (equatioﬂ 2).
Given a setV of regions within a partitio® we thus consider the scale of appearance
of the regionR defined as the union of the regionswh The heuristics below use this
basic approach butfier on the set8V which are considered and on the ordering of the
merge operations.

3.1 Sequential Merging

Given a current partitiof, let us consider for each regiéhof P, its setV(R) defined
as{R} union its set of neighbours and the $&(V(R)) of all possible subsets &(R)
including R. Each subsetv € £*(V(R)) encodes a possible merging of the regin
with at least one of its neighbour. Let us denoteRYy = ( Jrw R the region formed

by the union of the regions iW. Note that the regioR" is connected sincB belongs

to W and all the regions d#V are adjacent t&R. Let us additionally consider the two
partitions ofRV: Pgw = {R"} andPy = W. The energies associated to these partitions
are respectively equal 8, (Prv) = D(RV) + AC(RV) and:

Ei(Pw) = D(W) + AC(W) = > DR)+41 ), C(R)
ReW ReW

whereD(W) andC(W) denote respectively the fit to data and the regularisingsesf
the partitionPyy.
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SinceC is sub additive (equatiqﬂ 1) we ha@W) > C(RV). The energyE,(Pw) is
thus lower thark,;(Pgrw) until a valuet* (RV) called the scale of appearanceR3f (Sec-
tion f}). Using the scale climbing principle, our sequentiaiging algorithm computes
for each regiorR of the partition the minimal scale of appearance of a re§¥n

D(RY) - D(W)
C(W) - C(RY)
the setW € £*(V(R)) which realises the min is denot®d,in(R).
Given the quantitied; . (R) andWin(R), our sequential algorithm iterates the fol-
lowing steps:

Amin(R) = argminpep- (v(r))

Let P denotes the current partition initialised with an initialrfition Po,
For each regioR of P computet®. (R) andWpin(R)

min
ComputeRnin = argmingepA*: (R) and merge all the regions Wimin(Rmin)-
If more than one region remains go to p 2,
Output the final hierarchid encoding the sequence of merge operations.

arwbnE

This algorithm performs thus one merge operation at eaghdaftéhe algorithm.
Note that all the regions dfqmin(Rmin) are adjacent t&myin. Therefore, within the irreg-
ular pyramid framework, the merge operation may be encogleddmntraction kernel
of depth one composed of a single tree whose root is equlitoThe computation of
Atin(R) for each regiorR of the partition requires to traverg® (V(R)) whose cardinal
is equal to ¥®-1 Therefore, if the partition is encoded by a graph= (V, E), the
complexity of each step of our algorithm is bounded(jV|2") where|V| denotes the
number of vertices (i.e. the number of regions) &mdpresents the maximal vertices’s
degree ofs. The cardinal ol is decreased biVmin(Rnin)| — 1 at each iteration. Since
[Whin(Rmin)| is at least equal to 2, the cardinal éfdecreases by at least 1. The com-
putation ofa’; (R) for each regiorR of the partition may induce important execution
times when the degree of the vertices of the graph is impbrtiowever, experiments
presented in Secticﬁh 4 show that the cardinal of the subéet$*(R) may be bounded
without altering significantly the energy of the optimalgutet us finally note that this
algorithm includes the scale climbing approach proposddiigues. Indeed, the merge
operations studied by Guigues (Secﬂ)n 2) correspond teubset®V € £*(V(R)) with
|[W| = 2 which are considered by our algorithm.

3.2 Paralle Mergealgorithm

Our parallel merge algorithm is based on the notion of makimatching. A set of
edgeaM of a graphG = (V, E) is called a maximal matching if each vertex®fs inci-
dentto at most one edge Bfand if M is maximal according to this property. Moreover,
we would like to design a maximal matchiiysuch that the scale of appearance of the
regions produced by the contractionMfis as low as possible. Let us denotes),

the two vertices incident ta Using the same approach as in Se 3.1 we associate to
each edge of the graph the scale of appearanté(e)) (equatiorﬂZ) of the regioR®
defined as the union of the regions encoded by the two veiticetent toe. Following,

the same approach as Haxhimuﬂa [7] we define our maximal mgtels a Maximal
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Independent Set on the set of edges of the graph. The itenatacess which builds
the maximal independent set selects at each step edges atalseof appearance is
locally minimal. This process may be formulated thanks to beolean variablep and

g attached to each edge such that:

{pé = A7(8) = Minoer@{"(€)} _ . [PE™ = PV (d A 27(8) = Minge g g (4 (€)))
s = Neer(e Py g5t = Neere plér+l

(4)
whererl"(€) denotes the neighbourhood of the eeégad is defined a5(e) = {ej U {€ €
El(e) N () # 0}.

This iterative process stops when no change occurs betweeitdrations. Ifn
denotes the final iteration, the set of edges suchghisttrue defines a maximal match-
ing [E] M which encodes the set of edges to be contracted. Moreoeesetiof selected
edges corresponds to local minima according to the scalepgfaaanca™*(e). Roughly
speaking ifA* (e) is understood as a merge score, one edge between two gaviltbe
marked @ = true) at iterationk, if among all the remaining possible merge operations
involving these two vertices, the one involving them is three avith the best merge
score. Note that the construction of a maximal matching Iy tre first step of the
method of Haxhimusa which completes this maximal matchingrider to get a deci-
mation ratio of order 2. The restriction of our method to a m&t matching allows to
restrict the merge operations to edges which become looptlynal at a given iteration.
We thus favour the energy criterion against the reductiotofaAs shown by Bield|]8],
the reduction factor in terms of edges induced by the use odvdinral matching is a
least equal to % wherek is the maximal vertex’s degree of the graph. The edge’s
decimation ratio may thus be very low for graphs with impotteertices’s degrees.
Nevertheless, experiments performed on 100 natural imafgbe Berkeley database
shown that the mean vertex’s decimation ratio betweendemelthis database is equal
to 1.73 which is comparable to the®decimation ratio obtained by Haxhimusa.

The local minima selected in equatiﬂn 4 are computed on dsitrg sets along the
iterations in order to complete the maximal matching. We tteus consider that the
detected minima are less and less significants as the desaprogress. We thus pro-
pose an alternative solution which consists in contractingach step only the edges
selected at the first iteratiopj = true). These edges correspond to minima computed
on the whole neighbourhood of each edge. This method mayderstood as a combi-
nation of the method proposed by HaxhimLBa [7] and the sttichdecimation process
of Jolion [9] which consists in merging immediately verceorresponding to local
minima.

4 Experiments

The diferent heuristics presented in this paper have been evdloat¢he Berkeley
database. The evaluated heuristics include our parallejerteeuristic based on a max-
imal matching (MM) and the variation of this methdd1*) which merges at each step

L available at httgtwww.eecs.berkeley.efResearchProjectsCSvisiorybsdg
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L% LT L

1=02 aA2=04 21=06 1=08

Fig.2. Partitions of the mushroom and the fisherman imagesfigrdnt scales. Each
line of the array corresponds to an heuristic whose acrosymdicated on the first
column.

the edges selected during the first iteration (Sen B/@)also evaluated our sequen-
tial method (SM) and two variations of this method: the fistiation S M), considers
for each regiorR of the partition the subsets of cardinal 2\(fR). This method corre-
sponds to the heuristic proposed by Guigues. We also eealaatintermediate method
(S MP) which restricts the cardinal of the subset&/¢R) includingRto an upper thresh-
old fixed to five in these experiments. All the experimentsehased an initial partition
obtained by a Watershed aIgorithEl[lO].

Fig.E shows 5 optimal cuts obtained for increasing values of the Mushroom
and Fisherman images of the Berkeley databa%&e heuristics used to build the hier-
archies are displayed on the first column of [f}g. 2. The oajimages are displayed in

Fig.B(a).

1 Color plates are available at the following url: httpww.greyc.ensicaen/fjhpruvoyCut/
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(a) Execution time (b) EA(C;(H)) (c) Energy’s
Bounds

Fig. 3. (a) execution times of the fierent heuristics on the Mushroom image (Fﬂg. 2)
using an initial partition with a varying number of regiofis) mean energies of optimal
cuts obtained by our heuristics on the Berkeley databasko(mds of the optimal cut’s
energies.

Fig. B(a) shows the influence of the number of initial regionghe execution time.
These curves have been obtained on the Mushroom image \flighedit initial parti-
tions obtained by varying the smoothing parameter of thdigra within our Watershed
algorithm.

Fig. B(b) allows to compare the performance of each heastithe whole Berke-
ley database. However, a direct comparison of the energigsned by the dierent
heuristics on dterent images would be meaningless since the shape of thédiunc
E.(C;(H)) depends both of the intrinsic performances of the hearisted to buildH
and of the imagé on whichH has been built. We have thus to normalise the energies
E.(C;(H)) produced by the dierent heuristics before any comparison.

Given a hierarchyH, sinceC’(H) is an unbiased multi-scale segmentation (Sec-
t|on E) the hierarchyd obtained by each of our methods may be associated to a value

At above which the optimal partitioBmayx is reduced to a single region encoding the
whole image. The energy &axis defined asE,(Pmay = D) + AC, whereD, = SK]I)
denotes the global image’s squared error @nd= |5(1)| the perimeter of the image.
Since the energy of the optimal cuEs(C;(H)) of a hierarchyH is a piecewise linear
concave function of,, the functionE,(C(H)) is below the energ§,(Pmay associated
to the coarser part|t|on(F|| 3(c)). MoreoverH§ denotes the initial partition, the two
points (Q Eo(Po)) and @max Ea,..(Pmax) belong to the curve. Thereforg, (C;(H))
being concave, it should be above the line connecting thesepbints. Finally, the
line connecting (00) to (Amax Ea,,..(Pmax) being below the line joining (@Ey(Py)) and
(Amax Eiqa(Pmay) we have for any hierarchiy and any scala (Fig. B(c)):

A
T Etno(Pra) < Ex(Ci(H)) < Ex(Pra)
ma
We obtain from this last inequality and after some calcuhesfollowing equation:
-1 E.(C:(H ,
VAeR+ x <1+ < B ))slwnhxﬁz 1 andE|=A%)éCI (5)
|

1+ X,{E| - E/l(Pmax) /1max
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(a) Original Images (b) D(R) = (c) DR =
SHR) SHR)(1 +
f(5a®)

Fig.4. (a) Original images. (b) and (c), partitions of the tower gaduilt with a same
heuristic(SM) at a same normalised scale £ .8) but with energies defined using two
different fit to data terms. (b) is defined using the squared BX{Ry = S ER) while (c)

is defined using the formula defined by equaﬁbn 6.

Therefore, using the normalised enerEd(anE:;) and the normalised scalg = -2

/1ma><'
any curve% lies in the upper left part of the unit cube [J°. Note that this result

is valid for én?ahierarchy*l and thus any heuristic.

Using our piecewise constant model (equaﬁbn 3), the enBf@¥may is roughly
equal to the squared error of the image for small values afid may be interpreted
as the global variation of the image. The normalised enellgwa thus to reduce the
influence of the global variation of the images on the energl/ta compare energies
computed with a same heuristic but oiffeient images. Note however, that the use of
the normalised scale, = ﬁ discards the absolute value 4.y We thus do not take
into account the range of scales for which the optimal cubisraduced to the trivial
partition Pnax However, the absolute value of,« varies according to each image and
each heuristics. The normalised scale allows thus to retih@afluence of the image.
Moreover, our experiments shown thus that for each image disterent heuristics
obtain closelmax values.

Fig. B(b) represents for each value xf and each heuristic, the mean value of
the normalised energ%% computed on the whole set of images of the Berckley
database.

As shown in Figﬂa(b) the energy of the optimal cuts obtainethieyheuristidiM*
(—a-) is lower than the one obtained by the maximal matching k&ar¢- e —). This
result is confirmed by Figl] 2 (linesIM and MM?) where the heuristi®M removes
more details of the mushroom at a given scale. This resultrimected to the greater
decimation ratio of theMM heuristic. TheMM heuristic merges at each step regions
with important scale of appearance without consideringoregwhich may appear at
further steps. The algorithmigM and MM? induce equivalent execution times on a
sequential machine. The execution times of the metdd! (—a—) are overlayed by
the ones of the methddM (- e -) in Fig. B(a) due to the vertical scale of this figure.

The subjective quality of the partitions obtained by theristics MM?! andS M
(Fig.[2) seems roughly similar. We can notice that the héarldM* seems to produce
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slightly coarser partitions at each scale. However, camnsid Fig.@(b), the optimal
energy obtained by the heurisGcM (-o0-) are lower than the one obtained MM*
(-a-). Note that the heuristiMM* produces lower execution times th&m? even on
a sequential machine(Fiﬂ. 3(a)).

As shown by Fig|:|3(b) the optimal energies produced by theist#uS M (- + -)
are always below the one produced by the heurBti (-o-). Note that, the curve
(- + -) is close to the diagonal of the square I{¥. This last point indicates that on
most of the images of the Berkeley database the hierarctodsiped by th& Mheuris-
tic provide optimal cuts whose normalised energy is closechfthe lower bound of the
optimal cut’s energies (equati& 5). This result is confulrbg Fig.ﬂE where the heuris-
tic S M preserves more details of the image at each scale. HowbeengeuristicS M
is the one which requires the more important execution tiomea sequential machine
(Fig. B(@)).

The heuristicS MP may be understood as a compromise betw@éft andS M. As
shown by Fig[|3(b) the optimal energies obtained by the k8B M (wm) are close to
the one obtain by M(- + —) and below the one obtained ®M(-o-). Moreover, as
shown by Fig[B(a), the execution times requiredyP are between the one required
by the heuristic§ M? andS M. Finally, the partitions obtained by tig&MP heuristic in
Fig.[2 are closed from the one obtained by the heur&tit

Fig.@ shows results obtained using an other fit to data @itdvased on the intu-
itive notion of contrast. The basic idea of this criteri@][&?tates that a region should
have a higher contrast with its neighbours (called exteroatrast) than within its even-
tual subparts (called internal contrast). Let us deno®dihe mean gradient computed
along the contour associated to an edgehe internal and external contrasts of a region
R are then respectively defined BE(R) = maXxeccr Ge aNdEX(R) = MiNecgjve,e)Ge-
Where CC(R) denotes the set of edges which have been contracted to definel
e € E|v € ((e) denotes the set of edges incidenvt®ur new energy combines the con-
trast and the squared error criteria as follows:

Int(R)
EXY(R)

n

EP)= ) SER)(L+ 1 Gy ||+ AR ©)
i=1

wheref() denotes a sigmoid function.

A contrasted region will thus have a low ratio between iteiinal and external con-
trast. Conversely, a poorly contrasted region may have a €iata term close to twice
its squared error. As shown by F@. 3(b) and (c) this energgdes highly contrasted
regions. For example, the cloud merged with the sky in Big) Bfmains in Fig[|3(c).
Moreover, experiments not reported here, shown us thataime gype of discussion
about the advantages and drawbacks of tieint heuristics may be conducted on
this new energy with the same conclusions.

5 Conclusion

The Scale Set framework is based on two steps: the deteionirdta hierarchy accord-
ing to an energy criterion and the determination of optimasavithin this hierarchy.
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We have presented in this article parallel and sequentiaistecs to build such hierar-
chies. The normalised energy of the optimal cuts, assatiaith these hierarchy are
bounded bellow by the diagonal of the unit squarel]&. Our experimental results sug-
gest that our sequential heurisgdV provides hierarchies whose normalised energies
are closed from this lower bound. This methods may howe\grire important exe-
cution times. We thus propose an alternative heuristicighog lower execution time
at the price of generally slightly higher optimal cut’s egies. Our parallel methods
provide greater energies than the one produced by Guighesisstic. However, these
methods require less execution times even on sequenti&lingac

Hierarchies encoding a sequence of optimal cuts are uscathposed of a lower
number of levels and regions than the initial hierarchig by our merge heuristics.
In the future, we would like to use these hierarchies of oatiouts in order to match
two hierarchies encoding the content of two images sharsigraficant part of a same
scene.
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