
HAL Id: hal-00195914
https://hal.science/hal-00195914v2

Preprint submitted on 7 Apr 2009 (v2), last revised 9 Apr 2009 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Simple Stochastic Games with Few Random
Vertices

Hugo Gimbert, Florian Horn

To cite this version:
Hugo Gimbert, Florian Horn. Solving Simple Stochastic Games with Few Random Vertices. 2009.
�hal-00195914v2�

https://hal.science/hal-00195914v2
https://hal.archives-ouvertes.fr

SOLVING SIMPLE STOCHASTIC GAMES

WITH FEW RANDOM VERTICES

HUGO GIMBERT AND FLORIAN HORN

LaBRI, CNRS, Bordeaux, France

e-mail address: hugo.gimbert@labri.fr

CWI, Amsterdam, The Netherlands

e-mail address: f.horn@cwi.nl

Abstract. Simple stochastic games are two-player zero-sum stochastic games with turn-

based moves, perfect information, and reachability winning conditions.

We present two new algorithms computing the values of simple stochastic games. Both

of them rely on the existence of optimal permutation strategies, a class of positional strate-

gies derived from permutations of the random vertices. The “permutation-enumeration”

algorithm performs an exhaustive search among these strategies, while the “permutation-

improvement” algorithm is based on successive improvements, à la Hoffman-Karp.

Our algorithms improve previously known algorithms in several aspects. First they run

in polynomial time when the number of random vertices is fixed, so the problem of solving

simple stochastic games is fixed-parameter tractable when the parameter is the number

of random vertices. Furthermore, our algorithms do not require the input game to be

transformed into a stopping game. Finally, the permutation-enumeration algorithm does

not use linear programming, while the permutation-improvement algorithm may run in

polynomial time.

Introduction

Simple stochastic games (SSGs) are played by two players called Max and Min in a
sequence of steps. The players move a pebble along the edges of a directed graph (V,E)
whose vertices are partionned into three sets: VMax, VMin, and VR. When the pebble is on
a vertex of VMax or VMin, the corresponding player chooses an outgoing edge and moves the
pebble along it. When the pebble is on a vertex of VR (a random vertex), the outgoing
edge is chosen randomly according to a fixed probability distribution. The players have
opposite goals, as Max wants to reach a special sink vertex ⊚ while Min wants to avoid it
forever. An example of SSG is depicted in Figure 1, with vertices of VMax represented as
#’s, vertices of VMin represented as 2’s, and vertices of VR represented as △’s.

SSGs are a natural model of reactive systems. Consider, for example, a hardware
component. It can be modelled as an SSG, whose vertices represent the global states of
the component and the target is some error state to avoid. The nature of a given vertex

2000 ACM Subject Classification: Games, Stochastic Processes.

Key words and phrases: simple stochastic games, algorithm.

This research was partially supported by the french project ANR “DOTS”. The second author held the

tenure of an ERCIM “Alain Bensoussan” fellowship programme.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Gimbert and Horn
Creative Commons

1

2 GIMBERT AND HORN

a b c d

.4
.6

.3

.1

.4 .1

.1

.2
.8

.2
.6

.2

Figure 1: A Simple Stochastic Game

depends on who can influence the immediate evolution of the system: it is a Min vertex if the
software can choose between different options, a Max vertex if there is a (non-deterministic)
input asked from the user, and a random vertex if the evolution depends on a stochastic
environment. An optimal strategy for Min can then be used as the basis for the synthesis
of a “good” driver, i.e. one which minimises the probability of entering the error state
independently of the behaviour of the user.

The main algorithmic problem about SSGs is the computation of values of the vertices
and optimal strategies for the players. This problem was first adressed by Condon, who
showed that deciding whether the value of a vertex is greater than 1

2 belongs to NP and
co-NP [Con92]. Condon’s algorithm guesses non-deterministically the values of vertices,
which are rational numbers of linear size, and checks that they are solutions of some local

optimality equations. This algorithm is correct only for stopping games, where the pebble
reaches either the target or a sink target with probability one, regardless of the players’
strategies. Any SSG can be transformed in polynomial time into a stopping SSG with
(almost) the same values, but it incurs a quadratic blow-up of the size of the game.

Three other algorithms for solving SSGs are presented in [Con93]. The first one com-
putes the values of the vertices using a quadratic program with linear constraints. The
second one computes iteratively from below the values of the vertices, and the third is a
strategy improvement algorithm à la Hoffman-Karp [HK66]. The two latter algorithms,
as the ones recently proposed in [Som05], solve a series of linear programs which could be
of exponential length. Furthermore, solving a linear program requires high-precision arith-
metic, even if it can be done in polynomial time [Kha79, Ren88]. The best randomised

algorithms achieve sub-exponential expected time eO(
√

n) [Lud95, Hal07].
In this paper we present two algorithms computing the values and optimal strategies

in SSGs: the “permutation-enumeration” and the “permutation-improvement” algorithms.
The common basis for both algorithms is that optimal strategies can be looked for in a
subset of the positional strategies called permutation strategies. Permutation strategies are
derived from permutations over the random vertices. In order to find optimal strategies, the
permutation-enumeration algorithm performs an exhaustive search among all permutation
strategies, whereas the permutation-improvement algorithm performs successive improve-
ments of permutation strategies, à la Hoffman-Karp [HK66].

SOLVING SIMPLE STOCHASTIC GAMES... 3

The permutation-enumeration and the permutation-improvement algorithms share two
advantages over existing algorithms. First, they perform much better on SSGs with few
random vertices, as they run in polynomial time when the number of random vertices is
logarithmic in the size of the game: it follows that the problem of solving SSGs is fixed-
parameter tractable when the parameter is the number of random vertices. Second, they
do not rely on the transformation of the input SSG into a stopping SSG, which avoids
the quadratic blow-up of the size of the game. Moreover, the permutation-enumeration
algorithm does not use linear or quadratic programming, (it just computes the solutions
to linear systems) and its worst-case complexity is O

(

|VR|! · (|E| + |δ|)
)

, where |VR| is
the number of random vertices, |E| is the number of edges and |δ| is the maximal bit-
length of transition probabilities. The nominal complexity of the permutation-improvement
algorithm is higher but we do not know any non-trivial lower bound for its complexity: the
permutation-improvement algorithm may actually run in polynomial time.

Outline. In Section 1, we provide formal definitions for SSGs, values and optimal strategies.
We describe then in Section 2 the central notion of permutation strategies. Section 3
presents the permutation-enumeration algorithm, based on the self-consistency and liveness

properties. Section 4 introduces an improvement policy for permutations which leads to the
permutation-improvement algorithm.

1. Simple Stochastic Games

1.1. Plays and strategies. A simple stochastic game is a tuple (V, VMax, VMin, VR, E, δ,⊚),
where (V,E) is a graph, (VMax, VMin, VR) is a partition of V , and ⊚ is a distinguished sink
vertex in V called the target of the game. The transitions from the random vertices are
equipped with probabilities described by the function δ : VR → V → [0, 1], such that for all
v ∈ VR, w ∈ V , δ(v)(w) > 0 ⇒ (v,w) ∈ E, and

∑

w∈V δ(v)(w) = 1.
An infinite play ρ is an infinite sequence ρ0ρ1 · · · ∈ V ω of vertices such that for all

i ∈ N, (ρi, ρi+1) ∈ E. It is winning for Max if there is a i ∈ N such that ρi = ⊚ (as ⊚ is
a sink, it follows that ∀j > i, ρj = ⊚). Otherwise, ρ is winning for Min. A finite play is a
finite prefix of an infinite play.

A (pure) strategy for Max is a mapping σ : V ∗VMax → V such that for each finite play
h = h0 . . . hi ending in a Max vertex, (hi, σ(h)) ∈ E. It is positional if it only depends
on the last vertex of h: σ(h) = σ(hi). A play ρ0ρ1 . . . is consistent with σ if for every i

such that ρi ∈ VMax, ρi+1 = σ(ρ0 . . . ρi). Strategies for Min are defined analogously and are
generally denoted by τ .

1.2. Measures and values. The set of plays is made into a measurable space on the
σ-algebra generated by the canonical projections {Vi}i∈N, where Vi(ρ0ρ1 . . .) = ρi [Bil95].
Once an initial vertex v and two strategies σ and τ for players Max and Min have been
fixed, the probability measure P

σ,τ
v is defined by:

P
σ,τ
v (V0 = v) = 1 ,

P
σ,τ
v (Vi+1 = σ(V0 . . . Vi) | Vi ∈ VMax) = 1 ,

P
σ,τ
v (Vi+1 = τ(V0 . . . Vi) | Vi ∈ VMin) = 1 ,

P
σ,τ
v (Vi+1 | Vi ∈ VR) = δ(Vi)(Vi+1) .

4 GIMBERT AND HORN

The expectation of a real-valued, measurable and bounded function ϕ under P
σ,τ
v is denoted

E
σ,τ
v [ϕ]. We will often use implicitly the following formulae which rule the probabilities and

expectations once a finite prefix h = h0 . . . hi is fixed:

P
σ,τ
v (Γ | V0 . . . Vi = h0 . . . hi) = P

σ[h],τ [h]
hi

(Γ[h]) , (1.1)

E
σ,τ
v [ϕ | V0 . . . Vi = h0 . . . hi] = E

σ[h],τ [h]
hi

[ϕ[h]] , (1.2)

where σ[h](ρ0ρ1 . . .) = σ(h0 . . . hi−1ρ0ρ1 . . .), and τ [h], Γ[h], and ϕ[h] are defined analo-
gously.

If we fix only Max’s strategy σ and the initial vertex v, the target vertex will be reached
with probability at least:

inf
τ

P
σ,τ
v (Reach(⊚)) ,

where Reach(⊚) is the event {∃i ∈ N, Vi = ⊚}. Starting from v, player Max has strategies
that guarantee a winning outcome with a probability greater than:

val∗(v) = sup
σ

inf
τ

P
σ,τ
v (Reach(⊚)) ,

minus ǫ for any ǫ > 0. Symmetrically, Min has strategies that guarantee a winning outcome
with a probability less than:

val∗(v) = inf
τ

sup
σ

P
σ,τ
v (Reach(⊚)) ,

plus ǫ for any ǫ > 0. It is clear that val∗(v) ≤ val∗(v). In the case of SSGs, stronger results
are known:

Theorem 1.1 ([Sha53, Gil57, LL69]). Let G = (V, VMax, VMin, VR, E,⊚, δ) be a SSG. Then,

for any vertex v ∈ V ,

val∗(v) = val∗(v) .

This common value is denoted by val(v). Furthermore, there are positional optimal strategies

for both players, i.e. positional strategies σ# and τ# such that, for any strategies σ and τ :

P
σ,τ#

v (Reach(⊚)) ≤ val(v) ≤ P
σ#,τ
v (Reach(⊚)) .

1.3. Normalised games. A SSG is normalised if the only vertex with value 1 is the target
⊚ and there is only one (sink) vertex ⊗ with value 0. Our motivations for the introduction
of this notion are twofold. First, several proofs are much simpler for normalised games.
Second, any SSG can be reduced to an equivalent normalised game in linear time and the
resulting game is smaller than the original one. This reduction is presented on Figure 2: it
simply consists in merging the region with value one into ⊚ and the region with value zero
into a new sink vertex ⊗.

In the remainder of this article, we assume that we are working on a normalised SSG
G = (V, VMax, VMin, VR, E, δ,⊚,⊗), with k random vertices.

