
HAL Id: hal-00195914
https://hal.science/hal-00195914v1

Preprint submitted on 11 Dec 2007 (v1), last revised 9 Apr 2009 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Simple Stochastic Games with Few Random
Vertices

Hugo Gimbert, Florian Horn

To cite this version:
Hugo Gimbert, Florian Horn. Solving Simple Stochastic Games with Few Random Vertices. 2007.
�hal-00195914v1�

https://hal.science/hal-00195914v1
https://hal.archives-ouvertes.fr

ha
l-

00
19

59
14

, v
er

si
on

 1
 -

 1
1

D
ec

 2
00

7

Solving Simple Stochastic Games

with Few Random Vertices⋆

Hugo Gimbert1 and Florian Horn2

1 LaBRI, Université Bordeaux 1, France
hugo.gimbert@labri.fr

2 LIAFA, Université Paris 7, France
florian.horn@liafa.jussieu.fr

Abstract. We present a new algorithm for solving Simple Stochastic
Games (SSGs). This algorithm is based on an exhaustive search of a
special kind of positional optimal strategies, the f-strategies. The run-
ning time is O(|VR|! · (|V ||E| + |p|)), where |V |, |VR|, |E| and |p| are
respectively the number of vertices, random vertices and edges, and the
maximum bit-length of a transition probability.
Our algorithm improves existing algorithms for solving SSGs in three
aspects. First, our algorithm performs well on SSGs with few random
vertices, second it does not rely on linear or quadratic programming,
third it applies to all SSGs, not only stopping SSGs.

Introduction

Simple Stochastic Games (SSGs for short) are played by two players Max and
Min in a sequence of steps. Players move a pebble along edges of a directed
graph (V, E). There are three type of vertices: VMax is the set of vertices of
player Max, VMin the set of vertices of player Min and VR the set of random
vertices. When the pebble is on a vertex of VMax or VMin, the corresponding
player chooses an outgoing edge and moves the pebble along it. When the pebble
is on a random vertex, the successor is chosen randomly according to some fixed
probability distribution: from vertex v ∈ VR the pebble moves towards vertex
w ∈ V with some probability p(w|v) and the probability that the game stops
is 0, i.e.

∑

w∈V p(w|v) = 1. An SSG is depicted on Figure 1, with vertices of
VMax represented as #, vertices of VMin represented as 2, and vertices of VR

represented as ♦.
Player Max and Min have opposite goals, indeed player Max wants the pebble

to reach a special vertex t ∈ V called the target vertex, if this happens the play
is won by player Max. In the opposite case, the play proceeds forever without
reaching t and is won by player Min. For technical reasons, we assume that t

is a vertex of player Max and is absorbing. Strategies are used by players to
choose their moves, a strategy tells where to move the pebble depending on the
sequence of previous vertices, i.e. the finite path followed by the pebble from

⋆ This research was partially supported by french project ANR ”DOTS”.

α

β

γ

δ ǫ

ζ

a

b

c

d

1 2 3 4 5 t

.3

.7 .4

.6

.3

.1

.4 .1

.1

.2

.8

.2
.6

.2

Fig. 1. A Simple Stochastic Game.

the beginning of the play. The value of a vertex v is the maximal probability
with which player Max can enforce the play to reach the target vertex. When
player Max, respectively player Min, uses an optimal strategy he ensures reaching
the target with a probability greater, respectively smaller, than the value of the
initial vertex. Notions of value and optimal strategies are formally defined in
Section 1.

We are interesting in solving SSGs, that is computing values and optimal
strategies.

Applications. SSGs are a natural model of reactive systems, and algorithms
for solving SSGs may be used for synthesizing controllers of such systems. For
example an hardware component may be modelled as an SSG whose vertices
are the global states of the component, the target is some error state to avoid,
random states are used to model failure probabilities and stochastic behaviours
of the environment, choices of player Min corresponds to actions available to
the software driver and player Max corresponds to non-deterministic behaviour
of the environnment. Then an optimal strategy for player Min in the SSG will
correspond to a software driver minimizing the probability to enter the error
state, whatever be the behaviour of the environnment.

Existing algorithms for solving SSGs. The complexity of solving SSGs was first
considered by Condon [Con92], who proved that deciding whether the value of
an SSG is greater than 1

2 is in NP ∩ co-NP. The algorithm provided in [Con92]
consists in first transforming the input SSG in a stopping SSG where the prob-
ability to reach a sink vertex is 1. The transformation keeps unchanged the fact
that the initial vertex has value strictly greater than 1

2 but induces a quadratic
blowup of the size of the SSG. The algorithm then non-deterministically guesses
the values of vertices, which are rational numbers of linear size, and checks that
these values are the unique solutions of some local optimality equations.

Three other kinds of algorithms for solving SSGs are presented in [Con93].
These algorithms require transformation of the initial SSG into an equivalent
stopping SSG and are based on local optimality equations. First algorithm com-
putes values of vertices using a quadratic program with linear constraints. Second
algorithm computes iteratively from below the values of the SSGs, and the third
is a strategy improvement algorithm à la Hoffman-Karp. These two last algo-
rithms require solving an exponential number of linear programs, as it is the
case for the algorithm recently proposed in [Som05].

Finally, these four algorithms suffer three main drawbacks.
First, these algorithms rely on solving either an exponential number of linear

programs or a quadratic program, which may have prohibitive algorithmic cost
and makes the implementation tedious.

Second, these algorithms only apply to the special class of stopping SSGs.
Although it is possible to transform any SSG into a stopping SSG with arbitrar-
ily small change of values, computing exact values this way requires to modify
drastically the original SSG, introducing either |V |2 new random vertices or new
transition probabilities of bit-length quadratic in the original bit-length. This
also makes the implementation tedious.

Third, the running time of these algorithms may a priori be exponential
whatever be the number of random vertices of the input SSG, including the case
of SSGs with no random vertices at all, also known as reachability games on
graphs. However it is well-known that reachability games on graphs are solvable
in quadratic time.

Notice that randomized algorithms do not perform much better since the
best randomized algorithms [Lud95,Hal07] known so far run in sub-exponential
expected time eO(

√
n).

Our results. In this paper we present an algorithm that computes values and
optimal strategies of an SSG in time O(|VR|! · (|V ||E|+ |p|)), where |VR| is the
number of random vertices, |V | is the number of vertices and |p| is the maximal
bit-length of transition probabilities.

The key point of our algorithm is the fact that optimal strategies may be
looked for in a strict subset of positional strategies, called the class of f -strategies.
The f -strategies are in correspondence with permutations of random vertices.
Our algorithm does an exhaustive search of optimal f -strategies among the |VR|!
available ones and check their optimality. Optimality is easy to check, it consists
in computing a reachability probability in a Markov Chain with VR states, which
amounts to solving a linear system with at most |VR| equations.

Comparison with existing work. We improve existing results by three aspects: our
algorithm performs better on SSGs with few random vertices, it is arguably much
simpler, and we provide new insight about the structure of optimal strategies.

Our algorithm performs much better on SSGs with few random vertices than
previously known algorithms. Indeed, its complexity is O(|VR|! · (|V ||E|+ |p|)),
hence when there are no random vertices at all, our algorithm matches the
usual quadratic complexity for solving reachability games on graphs. When the

number of random vertices is fixed, our algorithm performs in polynomial time,
and on the class of SSGs such that |VR| ≤

√

|VMax| + |VMin| our algorithm is
sub-exponential.

Our algorithm is arguably simpler than previously known algorithms. In-
deed, it does not require use of linear or quadratic programming. Although
linear programs can be solved in polynomial time [Kac79,Ren88], solvers require
high-precision arithmetics. By contrast, our algorithm is very elementary: it enu-
merates permutations of the random vertices and for each permutation, it solves
a linear system of equations.

Our algorithm is also simpler because it applies directly to any kind of SSGs,
whereas previously known algorithms require the transformation of the input
SSG into a stopping SSG of quadratic size.

Plan. The paper is organised as follows. In the first section, we introduce formally
SSGs, values and optimal strategies. In the second section, we present the notion
of f -strategies. In the third section, we focuse on two properties of f -strategies:
self-consistency and progressiveness. We prove that f -strategies that are both
self-consistent and progressive are also optimal, and we prove the existence of
such strategies. In the fourth section we describe our algorithm for solving SSGs.

1 Simple Stochastic Games

In this section we give formal definitions of an SSG, values and optimal strategies.

An SSG is a tuple (V, VMax, VMin, VR, E, t, p), where (V, E) is a graph,
(VMax, VMin, VR) is partition of V , t ∈ V is the target vertex and for every v ∈ VR

and w ∈ V , p(w|v) is the transition probability from v to w, with the property
∑

w∈V p(w|v) = 1.

A play is an infinite sequence v0v1 · · · ∈ V ω of vertices such that if vn ∈
(VMax ∪ VMin) then (vn, vn+1) ∈ E and if vn ∈ VR then p(vn+1|vn) > 0. A play
is won by Max if it visits the target vertex; otherwise the play is won by Min. A
finite play is a finite prefix of a play.

A strategy for player Max is a mapping σ : V ∗VMax → V such that for each
finite play h = v0 . . . vn such that vn ∈ VMax, we have (vn, σ(h)) ∈ E. A play
v0v1 · · · is consistent with σ if for every n, if vn ∈ VMax then vn+1 is σ(v0 · · · vn).
A strategy for player Min is defined similarly, and is generally denoted τ .

Once the initial vertex v and two strategies σ, τ for player Max and Min are
fixed, we can measure the probability that a given set of plays occurs. This prob-
ability measure is denoted P

σ,τ
v . For every n ∈ N, we denote by Vn the random

variable defined by Vn(v0v1 · · ·) = vn, the set of plays is equipped with the σ-
algebra generated by random variables (Vn)n∈N. Then there exists a probability

measure P
σ,τ
v with the following properties:

P
σ,τ
v (V0 = v) = 1 (1)

P
σ,τ
v (Vn+1 = σ(V0 · · ·Vn) | Vn ∈ VMax) = 1 , (2)

P
σ,τ
v (Vn+1 = τ(V0 · · ·Vn) | Vn ∈ VMin) = 1 , (3)

P
σ,τ
v (Vn+1 | Vn ∈ VR) = p(Vn+1|Vn) . (4)

Expectation of a real-valued, measurable and bounded function φ under P
σ,τ
v

is denoted E
σ,τ
v [φ]. We will often use implicitely the following formula, which

gives the expectation of φ once a finite prefix h = v0v1 · · · vn of the play is fixed:

E
σ,τ
v [φ | V0 · · ·Vn = h] = E

σ[h],τ [h]
vn

[φ[h]] , (5)

where σ[h](w0w1w2 · · ·) = σ(v0 · · · vnw1w2 · · ·) and τ [h] and φ[h] are defined
similarly.

Values and positional optimal strategies. The goal of player Max is to reach the
target vertex t with the highest probability possible, whereas player Min has
the opposite goal. Given a starting vertex v and a strategy σ for player Max,
whatever strategy τ is chosen by Min, the target vertex t will be reached with
probability at least:

inf
τ

P
σ,τ
v (Reach(t)) ,

where Reach(t) is the event {∃n ∈ N, Vn = t}. Thus, starting from v, player Max
can ensure to win the game with probability arbitrarily close to:

val∗(v) = sup
σ

inf
τ

P
σ,τ
v (Reach(t)) ,

and symmetrically, player Min can ensure that player Max cannot win with a
probability much higher than:

val∗(v) = inf
τ

sup
σ

P
σ,τ
v (Reach(t)) .

Clearly val∗(v) ≤ val∗(v). In fact these values are equal, and this common value
is called the value of vertex v and denoted val(v). A much stronger result is
known about SSGs: the infimum and supremum used in the definition of val(v)
are attained for some strategies called optimal strategies. Moreover, there ex-
ists optimal strategies of a simple kind, called positional strategies. A strat-
egy σ is said to be positional if it depends only on the current vertex, i.e. for
every finite play v0 · · · vn σ(v0 · · · vn) = σ(vn). The following results are well-
known [Sha53,Con92].

Theorem 1. In any SSG, for every vertex v ∈ V , the values val∗(v) and val∗(v)
are equal. This common value is called the value of vertex v and denoted val(v).
There exists strategies σ# and τ# that are optimal i.e. for every vertex v and
every strategies σ, τ :

P
σ,τ#

v (Reach(t)) ≤ val(v) ≤ P
σ#,τ
v (Reach(t)) .

Moreover there exists strategies that are both optimal and positional.

2 Playing with f-strategies

Existence of positional optimal strategies is a key property of SSGs, used for
designing all known algorithms solving SSGs. The algorithm we propose relies
on a refinement of this result, we will prove that optimal strategies can be looked
for in a strict subset of positional strategies called the set of f -strategies.

In this section, we describe what are f -strategies.

2.1 Informal description of f-strategies

With every permutation f = (r0, . . . , rm) of random vertices VR, we associate
a couple σf , τf of positional strategies, called the f -strategies. We give intuition
about what are f -strategies, before giving their formal construction.

A permutation f = (r0, . . . , rm) of VR intuitively represents preferences of
Max and Min over the random vertices: player Max prefers the play to start
from a random vertex of index as high as possible, i.e. starting from vertex rl+1

is better for player Max than starting from vertex rl, whereas the opposite holds
for player Min.

When both players agree on the preferences given by f , the f -strategies σf , τf
are natural behaviours of player Max and Min. Indeed, strategy σf for player
Max consists in attracting the pebble either in the target vertex or in a random
vertex of index as high as possible in f . By opposite, strategy τf for player Min
consists in keeping the pebble away from the target and from random vertices
of high index in f .

The f -strategies can be described more precisely, introducing a non-stochastic
game. In this non-stochastic game, plays can be either of finite or infinite du-
ration, and after a play, players Max and Min have to give coins to each other.
This game is played on the game graph (V, VMax, VMin, E), where all random
vertices are terminal vertices. When the play reaches a random vertex rl ∈ VR,
the play immediately stops and player Min has to give l coins to Max, where
l is the index of the random vertex rl in the permutation f = (r0, . . . , rm). Of
course player Min wants to give as few coins as possible to player Max, whereas
the goal of player Max is the opposite. The worst for player Min is when the play
does not reach a random vertex but reaches the target vertex instead, in that
case player Min has to give m + 1 coins to Max. The best for player Min is the
remaining case, when the play never reaches any random vertex nor the target,
then instead of giving coins to Max player Min receives 1 coin from player Max.
In this game there exist positional optimal strategies σf and τf for both players.
These strategies are precisely the f -strategies. This intuitive interpretation of
f -strategies is depicted on Figure 2.1, for the permutation (1, 2, 3, 4, 5).

In the rest of this section, we define formally the notion of f -strategies. For
this we need to introduce in the next subsection the notion of deterministic
attractor.

b

c

a

1 2 3 4 5 t

Fig. 2. The permutation is f = (1, 2, 3, 4, 5). Edges consistent with f -strategies
are black, other edges are dotted. For example from vertex a, player Min prefers
moving the pebble on vertex b than on the target vertex t. Indeed in the former
case player Min has to pay 5 coins to Max whereas in the latter case he would
have to pay 6 coins.

2.2 Deterministic attractors

Let W ⊆ V be a subset of vertices. The deterministic attractor in W is the
set of vertices Att(W) ⊆ V from which Max has a strategy for attracting the
play in W and avoiding at the same time any visit to a random vertex before
the first visit to W . An attraction strategy in W is a positional strategy σ# for
Max which guarantees that every play starting from Att(W) has this property.
A trapping strategy out of W is a positional strategy τ# for player Min which
guarantees than any play starting outside Att(W) will avoid a visit to W before
the first visit to a random vertex. These notions are formalized in the following
proposition.

Proposition 1. Let W ⊆ V be a subset of vertices. There exists a subset
Att(W) called the deterministic attractor in W , a positional strategy σ# for
Max called the attraction strategy in W and a positional strategy τ# for Min
called the trapping strategy out of W such that:

1. For every v0 ∈ Att(W), for every play v0v1 · · · ∈ V ω consistent with σ#,
there exists n ∈ N such that vn ∈ W and for every 0 ≤ k < n, vk 6∈ VR.

2. For every v0 6∈ Att(W), for every play v0v1 · · · ∈ V ω consistent with τ#, for
every n ∈ N, if vn ∈ Att(W) then there exists 0 ≤ k < n such that vk ∈ VR.

There exists an algorithm that computes Att(W), σ# and τ# in time O(|E|·|V |).

Proof. of Proposition 1. The deterministic attractor Att(W) is the limit of the
growing sequence W0, W1, . . . ⊆ V defined as follows. First, W0 = W and for
each n ∈ N, Wn+1 = Wn ∪ {v ∈ VMax | ∃(v, w) ∈ E, w ∈ Wn} ∪ {v ∈ VMin |
∀(v, w) ∈ E, w ∈ Wn}. Let Att(W) =

⋃

n∈N
Wn.

The positional strategy σ# : VMax → V of attraction in W is defined as follows.
For each v ∈ Att(W) ∩ VMax, let n(v) be the unique integer such that v ∈
Wn(v)+1 \ Wn(v). By construction of Wn(v)+1 there exists (v, w) ∈ E such that
w ∈ Wn(v), and we define σ(v) = w. For v ∈ VMax\Att(W), σ(v) is any successor
of v.
The trapping strategy τ# out of W is defined as follows. By construction of
Att(W), for every v ∈ VMin \ Att(W) there exists some vertex w ∈ V such that
(v, w) ∈ E and w 6∈ Att(W), and we define τ(v) = w. For v ∈ VMin ∩ Att(W),
τ(v) is any successor of v.

2.3 Computing the f-strategies

We now describe formally how to compute the f -strategies σf , τf associated with
a permutation f = (r0, . . . , rm) of random vertices. Intuitively, the strategy σf

for Max consists in attracting the play in the target vertex t or in a random
vertex whose index is as high as possible in f , while the strategy τf for Min aims
at the opposite.

We start with defining a sequence W−, W0, . . . , Wm+1 of subsets of V :

Wm+1 = Att({t}) ,

for all 0 ≤ l ≤ m, Wl = Att({rl, rl+1, . . . , rm, t}) , (6)

W− = V \ W0 .

An example is given on Figure 2, where relative frontiers of the sets
W−, W0, . . . , Wm+1 are delimited by gray lines. On this example, the set Wm+1

only contains the target vertex t, the set W5 is {a, b, 5, t}, the set W− is the
singleton {c}.

The f -strategies are constructed by combining different positional strategies
together. Let σm+1 be the attraction strategy in {t}, then on Wm+1 σf coincides
with σm+1 and τf is any positional strategy. For 0 ≤ l ≤ m, let σl be the
attraction strategy in {rl, rl+1, . . . , rm, t} and let τl be the trapping strategy out
of {rl+1, . . . , t}, then on Wl \Wl+1 σf coincides with σl and τf coincides with τl.
Let τ− be the trapping strategy out of {r0, . . . , rm, t}, then on W− = V \W0, τf
coincides with τ− and σf is any positional strategy.

We will use the following properties of f -strategies:

Lemma 1. Let f = (r0, . . . , rm) a permutation of random vertices. Every play
consistent with σf and starting from Wm+1 stays in Wm+1 and reaches the target
vertex t. Every play consistent with τf and starting from W− stays in W− and
never reaches t. Let φ : V → R defined by φ(v) = P

σf ,τf
v (Reach(t)). For every

0 ≤ l ≤ m, for every v ∈ Wl \ Wl+1, φ(v) = φ(rl).

3 Optimality of f-strategies

A key property of f -strategies is given in the following theorem.

Theorem 2. In every SSG, there exists a permutation f of random vertices such
that the f-strategies σf and τf are optimal.

This theorem suggests the following algorithm for solving SSGs. It consists
in testing, for each possible permutation f of random vertices, whether the f -
strategies are optimal. Since f -strategies are positional, their optimality can be
tested in polynomial time using linear programming [Der72,Con92]. Finally, the
corresponding algorithm can find values and optimal strategies solving at most
|VR|! linear programs.

Testing optimality of f -strategies can be done in a more elegant and efficient
way, without making use of linear programming. Indeed, Theorem 3 shows that
it is sufficient to test whether the f -strategies are self-consistent and progressive,
in the following sense.

Definition 1 (Self-consistent and progressive permutations). Let f =
(r0, . . . , rm) be a permutation of random vertices and σf and τf the f-strategies.
For v ∈ V , let φ(v) = P

σf ,τf
v (Reach(t)).

Permutation f is self-consistent if

φ(r0) ≤ φ(r1) ≤ . . . ≤ φ(rm) . (7)

Permutation f is progressive if for every 0 ≤ i ≤ j ≤ m, if φ(ri) > 0 then there
exists w ∈ Att({rj+1, . . . , rm, t}) such that p(w|rj) > 0.

Both properties can be reformulated in term of the Markov chain induced by
σf and τf , see Proposition 2.

Intuitively, both players use their f -strategies when they both agree on the
preference order given by f and play consistently with this preference order.
Self-consistency states that plays starting from random vertices of higher rank
in f have greater probabilities of reaching the target. The progressive property
states that if some random vertex ri gives non-zero probability to reach the
target, then, from every random vertex rj of higher rank in f , also with non-zero
probability either the target vertex or a random vertex of higher rank than rj

will be reached prior to any visit to a random vertex.
Next theorem states that together with self-consistency, the progressive prop-

erty ensures optimality of the f -strategies.

Theorem 3. Let f be a permutation of random vertices. If f is self-consistent
and progressive then the f-strategies σf and τf are optimal. Moreover there exists
a permutation f of random vertices which is self-consistent and progressive.

Notice that self-consistency alone is not sufficient for ensuring that f -strategies
are optimal, a counter-example is given on Figure 3.

The progressive property forces any wrong guess about preferences of the
players to propagate among random vertices and to lead to a violation of self-
consistency. Somehow, the progressive property plays a role similar to the halting
hypothesis used in [Con92]. The halting hypothesis states that any play of the

r2

v r1

t

−

r2

r1

t

1
2

1
2

1
2

1
2

1

1

1
2

1
2

1
2

1
2

Fig. 3. On the left is depicted an SSG with two random vertices {r1, r2}, a
Min vertex v and the target vertex t. Player Min has only one optimal strategy:
moving the pebble to vertex r1 whenever it is on v, this way the play never
reaches the target vertex t. This is exactly the f -strategy τf associated with the
permutation f = (r1, r2). Suppose now the permutation is f = (r2, r1), then
following its f -strategy τf , player Min will go to vertex r2 from v. In that case, t

is reached from both r1 and r2 with probability 1, hence permutation (r2, r1) is
self-consistent, although strategy τf is not optimal. However f is not progressive
since from r1 the play reaches r2 before reaching t. On the right is depicted the
Markov chain Mf associated with f = (r2, r1).

SSG should reach a sink vertex, which ensures uniqueness of a solution to the
local optimality equations, see [Con92] for more details.

An algorithm for solving SSGs and based on Theorem 3 is described in the
next section. The rest of this section is dedicated to the proof of Theorem 3,
which relies on a few preliminary lemmas.

Under the hypothesis that f is self-consistent, first lemma states that during
a play consistent with σf , the values of vertices relatively to f -strategies is a
super-martingale, and symmetrically for player Min.

Lemma 2. Let f a permutation of VR and σf , τf the f-strategies. Let φ : V → R

defined by φ(v) = P
σf ,τf
v (Reach(t)). Suppose f is self-consistent. Then for every

strategies σ, τ for Max and Min, for every v ∈ V and n ∈ N,

E
σf ,τ
v [φ(Vn+1) | V0 · · ·Vn] ≥ φ(Vn) , (8)

E
σ,τf
v [φ(Vn+1) | V0 · · ·Vn] ≤ φ(Vn) . (9)

Proof. Proof of Lemma 2 is based on the following properties of φ.

∀v ∈ VR, φ(v) =
∑

w∈V

p(w|v) · φ(w) , (10)

∀v ∈ VMax, ∀(v, w) ∈ E, φ(v) ≥ φ(w) , (11)

∀v ∈ VMin, ∀(v, w) ∈ E, φ(v) ≤ φ(w) , (12)

∀v ∈ VMax, φ(v) = φ(σf (v)) , (13)

∀v ∈ VMin, φ(v) = φ(τf (v)) . (14)

Equation (10), (13) and (14) hold according to (5). Let W−, W0, . . . , Wm, Wm+1

defined by (6).
We now prove (11), let v ∈ VMax and (v, w) ∈ E. If v ∈ Wm+1 then according

to Lemma 1 φ(v) = 1 hence (11) holds. If v ∈ W− then according to Lemma 1,
w is also W− and φ(v) = φ(w) = 0, hence (11). The remaining case is when
there exists 0 ≤ l ≤ m such that v ∈ Wl \ Wl+1. Since v ∈ VMax and since
v 6∈ Att({rl+1, . . . , rm, t}), w 6∈ Wl+1 and there exists k ≤ l such that w ∈ Wk.
According to Lemma 1, φ(v) = φ(rl) and φ(w) = φ(rk. Since k ≤ l and since f
is self-consistent, this achieves the proof of (11).

We now prove (12), let v ∈ VMin and (v, w) ∈ E. If v ∈ Wm+1 then according
to Lemma 1 also w ∈ Wm+1 and φ(v) = φ(w) = 1 hence (12) holds. If v ∈
W− then according to Lemma 1, φ(v) = 0 hence (12). The remaining case is
when there exists 0 ≤ l ≤ m such that v ∈ Wl \ Wl+1. Since v ∈ VMin and
v ∈ Att({rl, . . . , rm, t}) then w ∈ Wl and there exists k ≥ l such that w ∈ Wk.
Since k ≥ l and since f is self-consistent, this achieves the proof of (12).

We now prove (8), i.e. for every finite play h = v0 · · · vn,

E
σ#,τ
v [φ(Vn+1) | V0 · · ·Vn = v0 · · · vn] ≥ φ(vn) . (15)

Suppose first vn ∈ VR then for any strategy σ and τ ,
E

σ,τ
v [φ(Vn+1) | V0 · · ·Vn = v0 · · · vn]

=
∑

w∈V P
σ,τ
v (Vn+1 = w | V0 · · ·Vn = v0 · · · vn) · φ(w) =

∑

w∈V p(w|vn) · φ(w) =
φ(vn), where second equality comes from (4) and third equality from (10). This
proves (15) in the case where vn ∈ VR. Suppose now vn ∈ VMax then:

E
σ#,τ
v [φ(Vn+1) | Vn · · ·V0 = v0 · · · vn] = φ(σ#(vn)) = φ(vn) ,

where first equality comes from (2) and second is (13). This proves (15) in the
case where v ∈ VMax. Suppose now v ∈ VMin then:

E
σ#,τ
v [φ(Vn+1) | Vn · · ·V0 = v0 · · · vn] = φ(τ(v0 · · · vn)) ≥ φ(vn) ,

where first equality comes from (3) and second is (12). This achieves the proof
of (15) and (8). The proof of (9) is similar and we do not detail it.

Under the hypothesis that f is progressive, next lemma gives a necessary and
sufficient condition for a play consistent with σf to reach the target vertex.

Lemma 3. Let f be a permutation of VR and σf , τf the f-strategies. Let φ : V →
R defined by φ(v) = P

σf ,τf
v (Reach(t)). Suppose f is progressive. Then for every

vertex v ∈ V and every strategy τ for Min:

P
σf ,τ
v

(

Reach(t)





φ(Vn) > 0 for infinitely many n ∈ N

)

= 1 . (16)

Proof. Let a = min{p(w|v) | v ∈ VR, w ∈ V, p(w|v) > 0} be the minimal non-
zero transition probability

Let W−, W0, . . . , Wm+1 defined by (6) and for v ∈ V let l(v) = max{0 ≤ l ≤
m + 1 | v ∈ Wl} with the convention l(v) = − if v ∈ W−.

Let Z = {v ∈ V | φ(v) > 0} and k = max{0 ≤ i ≤ m | φ(ri) > 0}.
We start with proving, for any v ∈ Wk,

P
σf ,τ
v (l(V0) = l(V1) | v ∈ VMax) = 1 (17)

P
σf ,τ
v (l(V0) ≤ l(V1) | v ∈ VMin) = 1 (18)

P
σf ,τ
v (l(V0) ≤ l(V1) | v ∈ VR) ≥ a. (19)

The first equality holds because σ(Wl \Wl+1) ⊆ Wl \Wl+1. The second equality
holds since Wl is a deterministic attractor hence Min has no transition to exit
Wl. The third equality holds because f is progressive.

Since there are |VR| distinct random vertices, we deduce from (17)–(19) that
for every v, τ ,

P
σf ,τ
v (Reach(t) | φ(v) > 0) ≥ a|VR| .

Hence, there exists N ∈ N and b > 0 such that for every v, τ ,

P
σf ,τ
v (∃n ≤ N, Vn = t | φ(v) > 0) ≥ b. (20)

By induction, this last equation together with (5) proves that for every m ∈ N,

P
σf ,τ
v

(

∀n ∈ N, Vn 6= t





lim sup

n

φ(Vn) > 0

)

≤ (1 − b)m . (21)

Since b > 0, taking the limit of this inequation achieves the proof of this lemma.

Next lemma is the main ingredient for constructing iteratively a self-consistent
and progressive permutation.

Lemma 4. Let X ⊆ V be a subset of vertices of an SSG and let W = Att(X).
Suppose W contains the target vertex. Then either all vertices v ∈ V \ W have
value 0 in the SSG or there exists a random vertex r ∈ VR ∩ (V \ W) such that
val(r) = max{val(v) | v ∈ V \ W} and

∑

v∈W p(v|r) > 0.

Proof. Let Z be the set of vertices with maximal value in V \ X i.e.

Z = {v ∈ V \ X | val(v) = max
w∈X

val(w)}.

Suppose that
∀w ∈ VR ∩ Z, p(X |w) = 0

and let us prove that
∀v ∈ Z, val(v) = 0.

Let σ#, τ# be two positional optimal strategies in the SSG. Then Z is stable
under σ# and τ#: let v ∈ Z ∩ VMax. By optimality of σ#, val(σ#(v)) = val(v)
and by definition of a deterministic attractor, σ#(v) 6∈ X , hence σ#(v) ∈ Z. Let
v ∈ Z ∩ VMin. By optimality of τ#, val(τ#(v)) = val(v) and by definition of a
deterministic attractor, τ#(v) 6∈ X , hence τ#(v) ∈ Z. Let v ∈ Z ∩ VR. Then
val(v) =

∑

w∈V p(w|v) · val(w). Since by hypothesis p(X |v) = 0 and since val(v)
is maximal in V \X then p(Z|v) = 1. Thus any play starting in Z and consistent
with σ# and τ# will stay in Z. Since t 6∈ Z, such a play will never reach t, hence
by optimality of σ# and τ#, vertices in Z have value 0. Finally, all vertices in
V \ X have value 0, which achieves the proof of Lemma 4.

We now give a proof of Theorem 3.

Proof (of Theorem 3).
We start with proving that if f is self-consistent and progressive then σf and

τf are optimal. Let v ∈ V and σ, τ be some strategies for Max and Min.
We first prove that starting from v, σf ensures to reach t with probability at

least P
σf ,τf
v (Reach(t)):

P
σf ,τ
v (Reach(t)) ≥ P

σf ,τ
v (φ(Vn) > 0 for infinitely many n ∈ N)

≥ E
σf ,τ
v

[

lim sup
n∈N

φ(Vn)

]

≥ lim sup
n∈N

E
σf ,τ
v [φ(Vn)]

≥ E
σf ,τ
v [φ(V0)] = φ(v) = P

σf ,τf
v (Reach(t)) , (22)

where the first inequality comes from Lemma 3, the second because values of φ

are between 0 and 1, the third is a property of expectations, the fourth comes
from Lemma 2 and the last two equalities hold because V0 is equal to the starting
vertex v and by definition of φ.

We now prove that starting from v, τf ensures to reach t with probability no
more than P

σf ,τf
v (Reach(t)):

P
σ,τf
v (Reach(t)) ≤ P

σ,τf
v

((

lim inf
n∈N

φ(Vn)

)

= 1

)

≤ E
σ,τf
v

[

lim inf
n∈N

φ(Vn)

]

≤ lim inf
n∈N

E
σ,τf
v [φ(Vn)] ≤ E

σ,τf
v [φ(V0)]

= φ(v) = P
σf ,τf
v (Reach(t)) , (23)

where the first inequality holds because t is an absorbing state and φ(t) = 1, the
second holds because values of φ are between 0 and 1, the third is a property of
expectations, the fourth comes from Lemma 2 and the two last equalities hold
because V0 is equal to the starting vertex v and by definition of φ.

Finally, (22) and (23) together prove that σf and τf are optimal.

We now prove the existence of a permutation f which is self-consistent and
progressive. For a set W and a random vertex r ∈ VR we denote p(W |r) =
∑

w∈W p(w|r) the probability of going to W from r.
We build a self-consistent and progressive permutation f = (r0, r1, . . . , rm)

by iteration of the following iterative step.
Let 0 ≤ l ≤ m, suppose that vertices (rl+1, . . . , rm) have already been chosen,

let Xl+1 = {rl+1, . . . , rm, t} and let Wl+1 = Att(Xl+1). If l > 0 and all vertices
in V \ Wl+1 have value 0, choose rl to be any random vertex in VR \ Xl+1.
Otherwise, according to Lemma 4, there exists a random vertex rl in V \ Wl+1

whose value is maximal in V \ Wl+1 and such that

p(Wl+1|rl) > 0 . (24)

This achieves the inductive step.
Let f = (r0, r1, . . . , rm) be a permutation built according to this iterative

procedure, we now prove that f is self-consistent and progressive.

By construction of f ,

val(r0) ≤ . . . ≤ val(rn) . (25)

By definition of the f -strategies, for any 0 ≤ l ≤ m:
(A) σf coincides on Wl \ Wl+1 with an attraction strategy in {rl, . . . , rm, t},
(B) τf coincides on Wl \ Wl+1 with a trapping strategy out of {rl+1, . . . , rm, t},
(C) σf coincides on Wm+1 with an attraction strategy in {t},
(D) τf coincides on W− = V \ W0 with a trapping strategy out of W0,
(E) any play consistent with τf starting form a vertex of value 0 stays in the set
of vertices of value 0.

We start with proving that f is progressive. Let 0 ≤ k ≤ m such that
P

σf ,τf
rk

(Reach(t)) > 0. According to (E), val(rk) > 0, hence according to (25), for
every k ≤ l ≤ m, val(rl) > 0. Hence, for every k ≤ l ≤ m, eq. (24) holds, which
proves that f is progressive.

Now we prove that f is self-consistent. According to (25), for proving that f
is self-consistent it is enough to prove that for any 0 ≤ l ≤ m,

P
σf ,τf
rl

(Reach(t)) = val(rl) . (26)

We start with proving for every 0 ≤ l ≤ m,

val is constant equal to val(rl) on Wl \ Wl+1 . (27)

Let 0 ≤ l ≤ m and v ∈ Wl \ Wl+1. According to (A), σf guarantees any play
starting from v to reach set {rl, . . . , rm, t} hence
val(v) ≥ min{val(rl), . . . , val(rm), val(t)}, and together with (25) we get val(v) ≥
val(rl). The converse inequality holds because according to (B), strategy τf guar-
antees any play starting from v to either stay forever in V \Wl+1 and never reach t

or to reach a random vertex in {r0, . . . , rl}, hence val(v) ≤ max{val(r0), . . . , val(rl)} =
val(rl). This achieves to prove (27).

Now we prove that for every v, w ∈ V ,

E
σf ,τf
v [val(Vn+1) | Vn = w] = val(w) . (28)

According to (C), val is constant equal to 1 on Wm+1 and Wm+1 is stable under
σf and τf hence (28) holds for w ∈ Wm+1. According to (D), val is constant equal
to 0 on W− and W− is stable under σf and τf hence (28) holds for w ∈ W−. Let
0 ≤ l ≤ m and w ∈ Wl \ Wl+1. According to (27), val is constant on Wl \ Wl+1

and according to (A) and (B), Wl \ Wl+1 is stable under σf and τf , hence (28)
holds if w ∈ VMax ∪ VMin. If w ∈ VR then (28) also holds because w 6= t hence
according to (5), val(w) =

∑

v∈V p(v|w) · val(v).
Now we prove that for any v ∈ V ,

(Pσf ,τf
v (Reach(t)) = 0) =⇒ (val(v) = 0) . (29)

For every v ∈ V let φ(v) = P
σf ,τf
v (Reach(t)). Let Z = {v ∈ V | φ(v) = 0}.

We start with proving that Z = V \ Wl for some l. According to Lemma 1, for

each 0 ≤ l ≤ m, the value of φ is constant equal to φ(wl) on the set Wl \ Wl+1.
Since φ has value 0 on V \ W0, and since W0 ⊆ W1 ⊆ . . . ⊆ Wm+1, there exists
0 ≤ l ≤ m such that Z = V \ Wl. Now we prove that Z is stable under random
moves. Indeed, let r ∈ VR ∩ Z then since φ(r) =

∑

v∈V p(v|r)φ(v) and since
r ∈ Z, φ(r) = 0, hence all successors of r have value 0 and are in Z. Now we
prove that τf guarantees that every play starting from Z never leaves Z. Indeed
according to (B), strategy τf traps the play in V \ Wl+1 = Z until it reaches a
random vertex, but Z is stable under random moves. Finally, since Z does not
contain the target, any play consistent with strategy τf and starting from Z will
never reach the target. This proves that vertices in Z have value 0 and achieves
the proof of (29).

Now we can achieve the proof that f is self-consistent. We already proved
that f is progressive hence according to Lemma 3, there are two types of play
consistent with σf : those reaching the target and those staying ultimately in the
set where φ has value 0. In the former case, since t is absorbing, limn val(Vn) = 1
and in the latter case according to (29), limn val(Vn) = 0. Hence:

P
σf ,τf
v (Reach(t)) = E

σf ,τf
v

[

lim
n

val(Vn)
]

= lim
n

E
σf ,τf
v [val(Vn)] = val(v) ,

where the second equality holds because val is bounded and the third comes
from (28). This proves (26) and achieves the proof that f is self-consistent.

4 An algorithm for computing values of SSGs

In this section, we give an algorithm that computes values and optimal strategies
of an SSG. This algorithm, based on Theorem 3, looks for a permutation f which
is self-consistent and progressive.

4.1 Testing whether a permutation is self-consistent and progressive

For testing whether a permutation f is self-consistent and progressive, it is
enough to compute some reachability probabilities in the following Markov chain.

Definition 2 (Markov chain associated with f). Let f = (r0, . . . , rm) a
permutation of VR, and W−, W0, . . . , Wm+1 the subsets of V defined by (6). Let
Mf be the Markov chain with states S = {−, 0, . . . , m, m + 1} such that both
states − and m + 1 are absorbing and for every i ∈ {0, . . . , m} and j ∈ S, the
transition probability from i to j in Mf is given by:

xi,j =
∑

v∈Wj

p(v|ri) .

The Markov chain Mf is designed to mimic behaviour of the play when the
players use their f -strategies: it is obtained by removing edges which are not
consistent with f -strategies and shrinking each set Wl to the vertex rl.

The following proposition gives an effective procedure for testing self-consistency
and progressiveness of a permutation.

Proposition 2. Let f = (r0, . . . , rm) be a permutation of random vertices, with
|VR| = m + 1. Let Mf the Markov chain associated with f , with transition prob-
abilities (xi,j)i,j∈S . For 0 ≤ i ≤ m, let x∗

i the probability of eventually reaching
state m + 1 starting from state i in the Markov chain Mf . Then f is self-
consistent iff for every 0 ≤ i, j ≤ m,

(i ≤ j) =⇒ (x∗
i ≤ x∗

j) , (30)

and f is progressive iff for every 0 ≤ i ≤ j ≤ m,

(x∗
i > 0) =⇒ (there exists j < k ≤ m + 1 such that xj,k > 0) . (31)

Let I ⊆ S the set of states from which m + 1 is reachable in Mf i.e. such
that x∗

i > 0. Then (x∗
i)i∈I is the unique solution of the following linear system:

{

x∗
i =

∑

j∈I xi,j · x
∗
j , (i ∈ I \ {m + 1})

x∗
m+1 = 1 .

(32)

Proof. Uniqueness of a solution of the linear system (32) is proven for example
in [Con92], Lemma 1.

4.2 Solving SSGs in time O(|VR|! · (|V ||E| + |p|))

Bringing together results about optimality of f -strategies and characterization of
self-consistent and progressive permutations given by Proposition 2, we obtain
an algorithm for solving SSG:

Theorem 4. Values and optimal strategies of a simple stochastic game G =
(V, VMax, VMin, VR, E, t, p) are computable in time O(|VR|!·(|V ||E|+|p|)), where
|p| is the maximal bit-length of a transition probability in p.

This algorithm enumerates all possible permutations f of VR. For each per-
mutation, the algorithm tests whether f is self-consistent and progressive. This
is done by computing the sets W−, W0, . . . , Wm, Wm+1 defined by (6), comput-
ing the transition probabilities (xi,j)i,j∈S of the Markov chain Mf associated
with f , solving the linear system (32) and testing conditions (30) and (31). If the
permutation fails the test then the algorithm proceeds to the next permutation.
If the permutation passes the test, then the algorithm outputs the f -strategies
and the mapping val : V → [0, 1] which associates 0 to the vertices in W−, 1 to
the vertices in Wm+1 and x∗

l to the vertices in Wl, 0 ≤ l ≤ m.
The correction of the algorithm comes from Theorem 3, which ensures the

existence of a self-consistent and progressive permutation f and the optimality
of f -strategies associated with any such permutation. Proposition 2 validates the
procedure used for testing self-consistency and progressiveness.

The complexity of the algorithm is O(|VR|! · (|V ||E| + |p|)). Indeed, there
are exactly |VR|! permutations of random vertices. For each permutation f , the

algorithm builds the Markov chain Mf . This is done by computing the deter-
ministic attractors Wm+1, . . . , W−, which according to Proposition 1 takes time
O(|E||V |). Then the algorithms solves the linear system (32), which can be done
in time |VR|

3|p|, see [Dix82]. The two tests (30) and (31) can be performed in
time O(|VR|).

Conclusion

We presented an algorithm computing values and optimal strategies of an SSG in
time O(|VR|!·(|V ||E|+ |p|)). Our algorithm is particularly efficient for the SSGs
with few random vertices and does not rely on quadratic or linear programming
solvers.

A natural way of improving our algorithm would be to design a smart way
of updating a permutation f in case it is not self-consistent or progressive, this
way one would obtain a new kind of strategy improvement algorithm for solving
SSGs.

References

Con92. A. Condon. The complexity of stochastic games. Information and Computa-

tion, 96:203–224, 1992.
Con93. A. Condon. On algorithms for simple stochastic games. In Advances in com-

putational complexity theory, volume 13 of DIMACS series in discrete mathe-

matics and theoretical computer science, pages 51–73, 1993.
Der72. C. Derman. Finite State Markov Decision Processes. Academic Press, 1972.
Dix82. J. D. Dixon. Exact solution of linear equations using p-adic expansions. Nu-

merische Mathematik, 40:137–141, 1982.
Hal07. N. Halman. Simple stochastic games, parity games, mean payoff games and

discounted payoff games are all lp-type problems. Algorithmica, 49:37–50,
2007.

Kac79. L. G. Kachiyan. A polynomial time algorithm for linear programming. Soviet

Math Dokl., 20:191–194, 1979.
Lud95. W. Ludwig. A subexponential randomized algorithm for the simple stochastic

game problem. Information and Computation, 117:151–155, 1995.
Ren88. J. Renegar. A polynomial-time algorithm, based on newton’s method, for

linear programming. Mathematical Programming, 40:59–93, 1988.
Sha53. L. S. Shapley. Stochastic games. In Proceedings of the National Academy of

Science USA, volume 39, pages 1095–1100, 1953.
Som05. Rafal Somla. New algorithms for solving simple stochastic games. Electr.

Notes Theor. Comput. Sci., 119(1):51–65, 2005.

