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We consider reflected backward stochastic differential equations with time and space
dependent coefficients in an orthant, and with oblique reflection. Existence and unique-
ness of solution are established assuming local Lipschitz continuity of the drift, Lipschitz
continuity and uniform spectral radius conditions on the reflection matrix.

Keywords: Backward Stochastic Differential Equations, Oblique Reflection, Brownian
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1 Introduction

It was mainly during the last decade that the theory of backward stochastic differential
equations took shape as a distinct mathematical discipline. This theory has found
a wide field of applications as in stochastic optimal control and stochastic games (see
Hamadéne and Lepeltier [9]), in mathematical finance via the theory of hedging and non-
linear pricing theory for imperfect markets (see El Karoui et al.[6]). Backward stochastic
differential equations also appear to be a powerful tool for constructing I'—martingales
on manifolds (see Darling [4]). These kind of equations provide probabilistic formulae

for solutions to partial differential equations (see Pardoux and Peng [14]).

Consider the following linear backward stochastic differential equation

{ _dY; = [S/;ﬁs + ZsVs]dS - stB.97 0 S S S T
(1.1)
Yr = &

As is well known, equation (1.1) was first introduced by Bismut [1, 2] when he was
studying the adjoint equation associated with the stochastic maximum principle in

optimal stochastic control. It is used in the context of mathematical finance as the
model behind the Black and Scholes formula for the pricing and hedging option.
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296 A. AMAN and M. N'ZI

The development of general backward stochastic differential equation (BSDE in
short)
{ —dYy, = f(s,Ys, Zs)ds — Z4dBs, 0<s<T
Yr = ¢

begins with the paper of Pardoux and Peng [14]. Since then, BSDEs have been inten-
sively studied. For example, BSDE with reflecting barrier have been studied among
others by El Karoui et al. [5], Cvitanic and Karatzas [3], Matoussi [12] and Hamadéne
et al.[10] in the one dimensional case. The higher dimensional one has been considered
by Gegout-Petit and Pardoux [8] for reflection in a convex domain. The multivalued
context can be found in Pardoux and Rascanu [15], N’zi and Ouknine [13], Hamadeéne
and Ouknine [11] and Essaky et al [7].

These works concern the case of normal reflection at the boundary. In the last two
decades, thanks to the numerous applications in queuing theory, the deterministic as
well as stochastic Skorokhod problem (in a convex polyhedron with oblique reflection
at the boundary) has been studied by many authors. Recently, S. Ramasubramanian
[16] has considered reflected backward stochastic differential equations (RBSDE’s) in an
orthant with oblique reflection at the boundary. He has established the existence and
uniqueness of the solution under a uniform spectral radius condition on the reflection
matrix (plus of course, a Lipschitz continuity condition on the coefficient).

The aim of this article is to weaken the Lipschitz condition on the drift to a locally
Lipchitz one. The paper is organized as follows. In section 2, we introduce the under-
lying assumptions and state the main result. Section 3 is devoted to the proof of the
main result.

2 Assumptions and Formulation of the Main Result

Let B = {B(t) = (Bi(t),...,Ba(t)) : t > 0} be a d— dimensional standard Brownian
motion defined on a probability space (2, F, P) and let {F;} be the natural filtration
generated by B, with F( containing all P—null sets.
Let G={re€R?:2z; >0,1<i<d} denote the d—dimensional positive orthant.
We are given the following:

e T >0 is a terminal time;
e ¢ is an Fr—measurable, bounded, G—valued random variable;

¢ b:[0;T] x 2xRY — R4 R:[0;T] x Q x RY — My(R) are both bounded mea-
surable functions such that for every y € R%, b(.,.,y) = (bi(.,,9),---,ba(-, -, v))
and R(.,.,y) = (ri; (-, -, y))1<i,j<a are Fy—predictable processes. We also assume
that r; (.,.,.) = 1. (Here Mjg(R) denotes the class of d x d matrices with real
entries).

Definition 2.1: A triple Y = {Y(¢t) = (Y1(¢),...Ya(¥)) : t > 0};Z = {Z(t) =
(Zij(t)1<ij<a 1 t > 0} and K = {K(t) = (K1(¢), .., Kq(t)) : t > 0} of {F;} —progress-
ively measurable integrable processes is said to solve RBSDE (&,b, R) if the following
hold:

(i) (Y, Z,K) is a continuous R% x My(R) x R?—valued process;
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(ii) for everyi=1,...,d,and 0 <t <T,

d
Yi(t) = 5i+/tT Z/jz $)AB; + Ki(T) - Ki(t)

j=1

+Z/ rij(s,Y (s))dK;(s);
JFi
(iii) forevery 0 <t < T, Y(t) € G;

(iv) for every 1 < i <d, K;(0) = 0, K;(-) is nondecreasing and can increase only when
Y: (-) =0, that is

Ki(t) = /O 1oy (Yi(8))dE (5).

We make the following assumptions on the coefficients b, R.

(A1) For every 1 < i < d, y — b;(t,w,y) is locally Lipschitz continuous, uniformly
over (t,w); there is a constant §; such that |b;(¢t,w,y)| < B, for all (t,w,y) €
[0;T] x Q x R4,

(A2) For 1<i,j<d, yw r;(t,w,y) is Lipschitz continuous, uniformly over (¢,w).
(A3) For every i # j there exists constant v;; such that |ri;(t,w,y)| < v;;. Set V =

(vij) with v; = 0.We assume that o (V) < 1, where o (V') denotes the spectral
radius of V' . Therefore,

(IT-V) ' =T+V+V24+V34

In the sequel, we put 8 = (51, ..., Ba)-
Remark 2.1: In view of (A3), there exists constants a;,1 <j<dand0<a <1

such that
Y ailri(tw,y)l <Y awi; < aa;
i#] i#]
forall j=1,...,d and (t,w,y) € [0;T] x Q x R9.
Let H stands for the space of all {F;} —progressively measurable, continuous pairs
of processes {Y (t) = (Y1(t), .., Ya(t)) : t > 0} and {K (¢) = (K1(t),.., K4(t)) : t > 0} such
that

(i) forevery 0 <t <T,Y(t) € G ;

(i) for every 1 <i < d, K;(0) = 0; K;(-) is nondecreasing and can increase only when
Yi () =0;

(iii) E (Z fT eta; |Yi(t)] dt) < +o0;

(iv) E Z f e ai o Ki)dt> < +o00; where ¢;(g) denotes the total variation of g over

[t ] and 0 > 0 is a fixed constant which will be chosen suitably later.
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For (Y,K),(Y,K) € H, we define the metric

d((Y,K),(Y,K)) = E(Z/O e%m(t)_mdt>

d
+E <Z; /OT eaipy (K; — fg-)dt) . (2.1)

It is not difficult to see that (H,d) is a complete metric space.
Let H denote the collection of all (Y, K) € H such that there exists an {F;} —pro-

gressively measurable process {D(t) = (D1(t), ....., Dq(t)) : t > 0}, with
¢
0< D;(t) < ((I-V) ' 3); as. and K(t) :/ Di(s)ds.
0

Since H is a closed subset of H, (ﬁ, d) is a complete metric space.

We consider the norm ||y|| = > a;|y;| which is equivalent to the Euclidean norm
in RZ. So, we may assume that the local Lipschitz continuity in (A1) and Lipschitz
continuity in (A2) are with respect to this norm.

Before stating our main result, let us remark that if (Y, K), (}A/, IA() € ‘H with D;, D;
being respectively the derivatives of K, K; then

T
(K — K;) = /t |Dy(s) — Di(s)|ds.

Therefore, using integration by parts in (2.1), we have

d T ot _ .
+E (z / Ll Di(t) —Di<t>|dt>

T =R T eet _ =R
E </0 Y (1) — Y(t)||dt> +E </0 ; LD - D(t)||dt> .

For every z € My(R), we put

1/2
4 /

d
2l = DD ailzi;l
j=1

=1

Let H denote the space of all Fi-progressively measurable processes Z = (Z;;)1<i, j<d

such that
T
E (/ |||Z<t>|||2dt> < +oo,
0

T ) 1/2
E(/ nzl| dt)]

endowed with the norm

17| =
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It is clear that H is a Banach space.

Now, we state our main result:

Theorem 2.1: Assume (A1)-(A3). Let & be a bounded, Fr—measurable G—valued
random variable. Then there is a unique couple ((Y,K),Z) € HxH solving RBSDE
(&, b,R).

3 Proof of the Main Result

The proof of Theorem 2.1 needs some preliminary lemmas.
Lemma 3.1: Let b be a process satisfying assumption (A1). Then there exists a
sequence of processes b™ such that

(i) for each m, b™ is Lipschitz continuous and |} (t,w,y)| < B; , for all 1 < i < d and
(t,w,y) € [0,T] x Q x R%

(ii) for every p, pp(b"™ —b) — 0 as n — +o0, where

T
po(f) =E ( / e sup ||f<s,x>||ds> .

|z|<p

Proof: Let v, be a sequence of smooth functions with support in the ball B (0,n + 1)
such that sup ¢, = 1. It not difficult to see that the sequence (b"), -, of truncated func-
tions defined by b™ = b, satisfies all the properties quoted above.

In view of Ramasubramanian [16], there exists a unique couple of processes {((Y " (t),
K™(t)), Z™(t)) : t > 0} € HxH solution to the RBSDE (£, b, R).

We formulate some uniform estimates for the processes {((Y"(t), K™(t)), Z"(t)) : t > 0}
in the following way.

Lemma 3.2: Assume (A1)-(A3). Then there exists a constant C, such that for

every n > 1
T Teet_l
E / Y™ ()| |dt | +E / D" lldt | < C. (3.1)
0 0

Proof:Let the triple (Y™, K™, Z™) be the unique solution of RBSDE (&,b", R). We
have for every i =1,...,d, and 0 <t < T

T T d
v = g [ WY s - [ Y Z5 (B, + KT - Ko
t [t
T
+3 [ e Y ) o)
j#i Ut
Since

T
o(KT) = / D2 (s) ds,
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applying Theorem 3.2 [16] and using integration by parts, we obtain

E ( / 0t |Y (1) |dt> +E ( / 96‘”%(1{")(%)
(/ 9t Y (1) |dt> +E (/T (e —1) |D$(t)|dt>

E (7 - 1)|&.]) + ( /O D) |bg(t,yn(t))|dt>

|
&=

IN

T
+E / 1) |ri (8, Y™ ()| Dy (2) |t
0

J#i

We know that for every (¢,w,y) and every i # j, |ri; (t,w,y)| < v;;. Moreover for every
J=1,....dand n>1, [V (t,w,y)| < B, |D}(tw,y)| < (1= V)" B);.

Therefore
T T
E 0t Y ()| d E 0’ o (K™M)d
(/ Y (1) t>+ (/ i m)
T
<E( (! -1) |§i|)+E(/ (e(’t—l)ﬁidt>
0

T
+]E/ 1) v (I =V)™'p)dt | - (3.2)

J#i

Let us note that

T T eOt
d((Y", K™),(0,0) = E ( / Y| dt) +E ( / Lo dt) |

Multiplying (3.2) by a; and adding leads to

d d T
0d((Y"™, K™), (Z 1) a;l&)| ) <Z /0 azﬁzdt>

i=1

+IE/ ZZ“”’” (I =V)~' B);dt

i=1 j#i

In view of the inequality

E vija; < aay,

i#]
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we have
d T
0d((Y™, K™), (Z — 1 az|§Z ) <Z/o azﬂzdt>
d
+alE (/T e Z )Jdt)
< (" - 1) Elf¢]|
T
+(18]] + o [((1 = V)_lﬁ)ll)/0 (€7 —1)dt
<C.

Hence inequality (3.1) is proved.
Now, we shall prove the convergence of the sequence (Y™, K™, Z"),>1.

Theorem 3.1: Assume (A1)-(A83). Then there exists (Y,K),Z) € HxH such
that

. T ot n Teet_l n -
i {E (/O Y (t)—Y(t)|dt> +E/O — D (t)—D(t)|dt} —0
and
. r n 2 _
HETOOE</O z" () = Z )|l dt) =0,

t
:/ D;(s)ds, i=1,...,d.
0

Proof: It follows from the same idea used in the proof of inequality (3.1) that

E (/T 9|y (t) — Yl-”(t)|dt> +E </ 0’ oy (K™ K")dt)
0 0
= E (/T 0’ Y (t) — Yi”(t)ldt> +E </T (e =1) D" (1) — D?(t)ldt>
0 0

where

T
< E ( / (e — 1) (1, Y™ (1)) b?(aY”(tmclt)
0
T
+E (/ (e‘% -1) Zrij(t,Ym(t))D;-”(t) — rij(t,Y"(t)D;-’(t) dt)
0 j#i
T
< E ( / (e — 1) (¢, Y™ (1)) — b?(t,mwdt)

T
+E /O (€ = 1)) lrig (&, Y™ (8) = i (8, Y7 (£)) ]| D ()| dt

i
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T
42| [0S ey o) - Dl |
0 i

For an arbitrary number N > 1, let Ly be the Lipschitz constant of b in the ball
B(0,N). We put

AN = {w e QY™ (tw)| +[[Y (W) > N}, Ay, = QAN .

It follows that

r ot m _ n r Gt_ m _ n
E( / 0 Y (1) — Y <t>|dt>+E</0 (¢ —1)[DP(t) - D <t>|dt>
T

< E </ (e” = D[ (t, Y™ (1)) — b?(taY"(f))llAgl,ndt>

0

T
+E ( | =y o) - ey @iy dt)

m,n

0 j#i

T
+E (/ (e = 1) Y Iriy (8, Y™ (8) — it Y"(t))IID?(t)Idt)

T

+E / (€ = 1)) |ri (8, Y™ ()| D} (£) — Dy (t)|dt
0 j#i

= L+1L+13+ 14 (3.3)

It not difficult to check that

T
I = E</ <e‘”—1>|bz”<t,Ym<t>>—b?(t,Y”@”'lzﬁ,ndt)

IN

T
E/O (e — B (E, Y™ (1)) — bilt, Y™ (£)) [ Lo d

m,n

T
+E </0 (e — 1)|bs (£, Y™ (¢)) — bs(t, Y"(t))|1Aﬁyndt>

T
+E ( / (e = 1)[bi(t, Y (1)) — B (1, Y™ (1)) 1y dt>.

m,mn
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L
Since b; is N

—locally Lipschitz, we get

T

T
I, < E </ (e” = 1) b (£, Y™ (1)) — ba(t, Y™ ()] 1~ dt)
0 o

T
+E (/O (% — 1) |bi(£, Y™ (1)) — b (£, Y™ (1)) 1Aﬁ,ndt>

g (/O (e —1) [Y™(t) — Y"(1)] dt) . (3.4)

Q;

In view of the Lipschitz condition on R and the boundedness of D7 (t), we obtain that
there exists C; > 0 such that

T
I; < LE </0 (e” = 1) Y™ (t) = Y™ ()| | D} (t)| dt)
T
< 1| [ (@) e -y OIS - V) )y
0 i
T
< LCl]E/O (e = 1) |Y™(t) — Y™ (t)| dt. (3.5)

Now, from the boundness of R, we have

T
ILL<E (/ (e = 1) vi; | Dy (t) — D} (b)] dt) : (3.6)
0
By virtue of (3.3)-(3.6), we deduce that
E </T 07 [V (1) — Y (¢)] dt) +E (/T (e” = 1) |D"(t) — D} (t)] dt)
0 0
T
< E </ (€% = 1) [ (, Y™ (1)) = b (1, Y™ (1)) Lan ndt>
. ,
T
+E (/ (% — 1) [B(t, Y™ (t)) — ba(t, Y™ ()] 1~ dt)
o o
T
+E (/ (% — 1) [bi(t, Y™ (t)) — b (£, Y™ (£))| 1y dt)
o o
T
+ (LN + LCl) E </0 (e = 1) |lY™(t) — Y™ (1) dt)

a;

T
+E /0 (e = 1) > i | DJM(t) — Dy (1) dt | - (3.7)
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Multiplying (3.7) by a;, adding and using >, ,; a;vi; < aa;, we obtain

(Y™, K™),(Y",K"™))

(Z/ ) ai b7 (£, Y™ () = b7 (£, Y (1)) 1Agymdt>
+E <Z / ) a; [B(E, Y™ (1) — bi(t, Y™(1)))] 1Aﬁ,ndt>
+E <Z/ ) aq [bi(t, Y () — b (t, Y (1)) 1zﬁ,ndt>

+ (dLN + <Z ai> L01> E </OT (P —1)[[Y™(t) — Y”(t)||dt>

(2

+a (/O (e —1)||ID™(t) — D"(t)||dt> .

Choosing 6 large enough such that + (dLN + (Zl 1 al) LCl) < « leads to

IN

a((y™, K™, (Y", K")) < od((Y™, K™),(Y", K"))
N (6" =)+ 5on (" ~b)
+%C£Z7n (3.8)

where

N, = <Z / 1) as (¢ Ym<>>—b?<t,Y“<t>>|1A%,ndt>
22/ 1) aifiE (Lay, ) dt

< %26 [ = nE Qs o

IN

Let Cs be such that
d
Z azﬂi < Cg.
i=1

We have

T
O < ZFE [ =) (Ol + Yol

By virtue of (3.1), there exists C' > 0 such that

C
N

< —.
Om”_N
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Therefore

1/C 1

(I1—a)d((Y™",K™),(Y", K™)) < 7 <—) + gpN(b” —-b)+ %pN(bm —b). (3.9)

Passing to the limit on n,m and N in (3.9 ), we deduce that (Y, K")  _y is a Cauchy

sequence in H. Since H is a Banach space, we set

Iim Y"=Y,and lim K" =K.

n—-+4oo n—-+o0o

If we return to the equation satisfied by the triple (Y, K™, Z"), .\ and use Itd’s formula,
we have

E(|Y(1) — Y (0) / ZI 5(s)2ds

T
= 2E (/0 Y™ (s) = Y ()] 10" (5, Y™ (5)) — b7 (5, Y " (5))] d8>

T
2R ( / Y™ (s) — Y7 (s)] | D (s) — D2 (s)| ds>

T
+2FE (/0 [Y;"(s) = Y;"(s)] ZTij(S,Ym(S))D;ﬁ(S) — rij(5, Y™ (3)) DI (s) ds)

J#i
T T
< 4@-1@(/@ IYZ-’”(S)—Yi”(S)IdS>+4((I—V)_1ﬁ)ilE</O mm(s)—x@”(snds)
T
+4Y v (I-v)"'8) E ( / Y77 (s) = Y{"(5)] ds> . (3.10)
J#i ! 0

Multiplying (3.10) by a; and adding leads to the existence of C' > 0 such that

d d 5

i=1 j=1

T d
< E(/ Zaiﬁimws)—n"(snds)
+4E</0 Z I V)~ )iai|Yim(S)—Yi"(S)|ds>
T
e [ S S aaw (T = V) B, [ (s) — ¥ (5) s
0 =1 j#i
T d
< E(/ Zaimm(s)_}gn(s)ms). (3.11)

0
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Passing to the limit on m,n, we deduce that (Z"), ., is a Cauchy sequence in the
Banach H. Since H is a Banach space, we put -

Z = lim Z".

n—-+o0o

Lemma 3.3:Let (Y™, K", Z"), -, be the unique solution of the RBSDE (£,b", R).
Then B
b™(.,Y™) converges to b(.,Y) in (LL(Q x [0,T],dP x e dt)).

Proof:Set
AN = {w € Q|IY" (W) + [V (t,w)]| > N}, ) = Q\A.

Teﬁt n n
E( | ey - |dt>
s@( /T B2 (E, V(1)) — bilt, Y |1Awdt>
0
T
+E </ I, Y (t) — bi(t, Y (2))| 1 th>
0
+E </T69t|bi(t,Y"(t)) bi(t, Y ()] 1 th>
0
) T
<2 (/ YOl + 1Y () dt)

+E </T60t b7 (t, Y (t)) — bi(t, Y™ (1))| 1 th>
0

LN T Gt n
E Y™ ( 1) dt (3.12)
a; 0

Multiplying (3.12) by a; and adding, we get

T
E ( / B (E Y (1)) — bt Y ()] dt)
0
2 < T
< ow (" =0+ =3 G ( / Y] + ||Y<t>||>dt>

+dLyE (/OT Y () - Y (@) dt) .

By virtue of (3.1), we deduce that there exists C' > 0 such that

T
E ( / B (L, Y™ (1) — bt Y (1) dt)
0

We have

T
<pn(b" —D)+ % +dLNE </0 Y () - Y ()| dt) :
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Passing to the limit on n, N, completes the proof of Lemma 3.5.
Proof of Theorem 2.1:

Existence: Combining Lemmas (3.2)-(3.5) and passing to the limit in the RBSDE
(&,0", R), we deduce that the triple {(Y(¢), K(t), Z(t)),0 < ¢ < T} is a solution of our
RBSDE (¢,b, R).

Uniqueness: Let {(Y (), K(t), Z(t)),0 < t < T} and {(Y’(t), K'(t),Z (t),0<t< T}
be two solutions of our RBSDE. For every ¢ > 0, define

(AY (t),AK(t),AZ(t),AD()) = (Y(@t)-Y (t),K(t)—K (t),Z(t)—Z (t),D(t)—D (t)).

We have
T T
E (/ 9t |AY;(1)] dt+E/ (e — 1) |AD; (1) dt)
0 0

T
< E (/ (e — 1) |bs(t, Y () — bi(t,Y'(t))] dt)
0

T
2 ([ =) Tl v ) - r e, Y O) D0

J#i

T
+E /0 (% = 1) S |y (1, Y'(8)) | |AD; (1) dit | (3.13)

J#
For an arbitrary number N > 1, let Ly be Lipschitz constant of b in the ball B(0, N).
We put

AV {weq vt wll+ IV ¢ wll > N}, A" =a\a~.

By virtue of (3.13) and the Lipschitz continuity of R, we deduce that there exists C; > 0

such that
r o0t - r et _ )
E (/0 0 |A}Q(t)|dt> +E (/0 ( 1) |AD1(t)|dt>

T
< E ( / (e = 1) [bi(t, Y () — bi(t, Y/ ()] 1Awdt>
0
T

+E </ (% = 1) |bs(£, Y () — bs(t, Y (1)) 12““)

0

T
+LC1E </ (e —1) |AY (1) dt)
0

T
+E / (e = 1) > vi; |AD;(t)] dt
0

i
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From the boundeness condition on the coefficient b, we get

r ot - g ot _ .
E(/O fe |AYZ(t)|dt>+E</O (e 1)|ADl(t)|dt>

2 ( / (" = 1) [V (0)] + Y <t>||dt>

+ (LQ + ];N> E (/OT(eet - 1||AZ(t)||dt>

+E /OT (e = 1) wvij |AD;(#)| dt. (3.14)

J#i

IN

Multiplying (3.14) by a;, adding and using (3.1) and the inequality >, ; a;vi; < aa; ,
we get the existence of C' > 0 such that

;o C
0i((v,2), (', 2) < T
d T
+ (dLN + (Z ai> LCl> E/ (eet — 1) HAY(t)H dt
i=1 0

T
+aF (/O (e — 1) [|AD ()| dt) .

Choosing 6 large enough such that % (dLN + (Zle ai) LC’l) < a, we get

A, K), (' K) < ot ad((Y,K), (Y K)).
Finally .
(1= ) d((Y, K), (Y, K)) < .,

which leads to
Y =Y"and K = K,

by letting N going to +o0.
By the same calculations as in (3.10) and (3.11), we obtain the existence of C' > 0
such that

d T d d
E(Zai |An(t)|2> +E /0 DO ailAZi(s)] ds

i=1 j=1

T d
< 0E</O Zaimn(s)ms).

Therefore
Z=7.
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