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SEMICLASSICAL ANALYSIS FOR HARTREE EQUATION

We justify WKB analysis for Hartree equation in space dimension at least three, in a régime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semilinear perturbation. This is in contrast with the case of the nonlinear Schrödinger equation with a local nonlinearity, where quasilinear analysis is needed to treat the nonlinearity.

Introduction

We consider the semiclassical limit ε → 0 for the Hartree equation

(1.1) iε∂ t u ε + ε 2 2 ∆u ε = λ(|x| -γ * |u ε | 2 )u ε , γ > 0, λ ∈ R, x ∈ R n ,
in space dimension n 3. We consider initial data of WKB type, (1.2) u ε (0, x) = a ε 0 (x)e iφ 0 (x)/ε , where a ε 0 typically has an asymptotic expansion as ε → 0, a ε 0 ∼ ε→0 a 0 + εa 1 + ε 2 a 2 + . . . , a j independent of ε ∈]0, 1].

The approach that we follow is closely related to the pioneering works of P. Gérard [START_REF] Gérard | Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire[END_REF], and E. Grenier [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], for the nonlinear Schrödinger equation with local nonlinearity:

(1.3)

iε∂ t u ε + ε 2 2 ∆u ε = f |u ε | 2 u ε ,
where the function f is smooth, and real-valued. In [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], the assumption f ′ > 0 is necessary for the arguments of the proof. More recently, this assumption was relaxed in [START_REF]Supercritical geometric optics for nonlinear Schrödinger equations[END_REF], allowing to consider the case f (y) = +y σ , σ ∈ N. Moreover, it is noticed in [START_REF]Supercritical geometric optics for nonlinear Schrödinger equations[END_REF] that to carry out a WKB analysis in Sobolev spaces for (1.3), the assumption f ′ 0 is essentially necessary. Typically, in the case f ′ < 0, working with analytic data is necessary, and sufficient as shown in [START_REF] Gérard | Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire[END_REF][START_REF] Thomann | Instabilities for supercritical Schrödinger equations in analytic manifolds[END_REF]. The reason is that the local nonlinearity is analyzed through quasilinear arguments in [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF][START_REF]Supercritical geometric optics for nonlinear Schrödinger equations[END_REF], and f ′ determines the velocity of a wave equation: if f ′ > 0, then the wave equation is hyperbolic, and f ′ < 0, the underlying operator becomes elliptic.

The above discussion is altered for the Hartree type nonlinearity. Typically, no assumption is made on the sign of λ here. As noticed in [START_REF] Alazard | Semi-classical limit of Schrödinger-Poisson equations in space dimension n 3[END_REF] in the special case of the Schrödinger-Poisson system, the nonlocal nonlinearity in (1.1) can be handled by semilinear arguments. However, a quasilinear analysis is needed to handle the convective coupling.

There are at least to motivations to study this question, besides the general picture of justifying approximations motivated by physics. As remarked in [START_REF] Carles | Cascade of phase shifts for nonlinear Schrödinger equations[END_REF] in the case of a local nonlinearity, WKB analysis and a geometrical transform can help understand the behavior of a wave function near a focal point, in a supercritical régime. In [START_REF] Masaki | Semi-classical analysis for Hartree equations in some supercritical cases[END_REF], other informations were obtained thanks to a different approach, in the case of a Hartree type nonlinearity. The approach of [START_REF] Masaki | Semi-classical analysis for Hartree equations in some supercritical cases[END_REF] and the results of the present paper will certainly be helpful to improve the understanding of the focusing phenomenon in semiclassical analysis. Another application of the WKB analysis for (1.1) concerns the Cauchy problem for the Hartree equation, that is (1.1) with ε = 1. Following the approach initiated in [START_REF] Burq | An instability property of the nonlinear Schrödinger equation on S d[END_REF][START_REF]Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations[END_REF][START_REF] Christ | Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations[END_REF][START_REF]Ill-posedness for nonlinear Schrödinger and wave equations[END_REF][START_REF] Lebeau | Non linear optic and supercritical wave equation[END_REF][START_REF]Perte de régularité pour les équations d'ondes sur-critiques[END_REF], we can prove an ill-posedness result, together with a loss of regularity; see Corollary 1.9.

Assumption 1.1. Let n 3 and max(n/2 -2, 0) < γ n -2. We suppose the following conditions with some s > n/2 + 1:

• The initial amplitude a ε 0 ∈ H s (R n ), uniformly for ε ∈ [0, 1]: there exists a constant C independent of ε such that a ε 0 H s C. • The initial phase φ 0 satisfies |φ 0 (x)| + |∇φ 0 (x)| -→ |x|→∞ 0, and ∇ 2 φ 0 ∈ H s (R n ). Moreover, there exists q 0 ∈]n/(γ + 1), n[ such that ∇φ 0 ∈ L q 0 (R n ).
Remark 1.2. We will see that the above assumption implies that φ 0 and ∇φ 0 are bounded, and enjoy some extra integrability properties. See Remark 3.3.

Remark 1.3. By employing the geometrical reduction made in [START_REF] Alazard | Semi-classical limit of Schrödinger-Poisson equations in space dimension n 3[END_REF], we can relax the assumption |φ 0 (x)| + |∇φ 0 (x)| → 0 as |x| → ∞ in a sense. Indeed, we can replace the initial phase φ 0 with φ 0 + φ quad , where φ quad ∈ C ∞ (R n ) is a polynomial of degree at most two.

For s > n/2, we denote by X s (R n ) the Zhidkov space

X s (R n ) = {u ∈ L ∞ (R n )|∇u ∈ H s-1 (R n )}.
This space was introduced in [START_REF] Zhidkov | The Cauchy problem for a nonlinear Schrödinger equation[END_REF] (see also [START_REF] Vries | nonlinear Schrödinger equations: qualitative theory[END_REF]) in the case n = 1, and its study was generalized to the multidimensional case in [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF]. We denote

u X s := u L ∞ + ∇u H s-1 .

We write

H s = H s (R n ) and X s = X s (R n ).
Theorem 1.4. Let Assumption 1.1 be satisfied. There exists T > 0 independent of ε and s > 1+n/2, and a unique solution u ε ∈ C([0, T ]; H s ) to the equation (1.1)-(1.2). Moreover, it can be written in the form u ε = a ε e iφ ε /ε , where a ε is complex-valued, φ ε is real-valued, with

a ε ∈ C([0, T ]; H s ), φ ε ∈ C [0, T ]; L ∞ ∩ L nq 0 n-q 0 , and ∇φ ε ∈ C [0, T ]; X s+1 ∩ L q 0 . Moreover, if φ 0 ∈ L p 0 for some p 0 ∈]n/γ, nq 0 /(n-q 0 )[ then φ ε ∈ C([0, T ]; L p 0 ).
Note that obtaining a local existence time T which is independent of ε ∈ ]0, 1] is already a non-trivial information, at least for a focusing nonlinearity λ < 0. Using classical results on the Cauchy problem for Hartree equation [START_REF] Ginibre | Sur une équation de Schrödinger non linéaire avec interaction non locale, Nonlinear partial differential equations and their applications[END_REF], and a scaling argument, would yield an existence time that goes to zero with ε. Taking q 0 = 2, we immediately obtain the following corollary: Corollary 1.5. Let Assumption 1.1 be satisfied. Let u ε = a ε e iφ ε /ε be the solution given in Theorem 1.4. If γ ∈]n/2 -1, n -2] and ∇φ 0 ∈ H s+1 , then

φ ε ∈ C [0, T ]; X s+2 ∩ L 2n n-2 .
With this local existence result, we can justify a WKB expansion, provided that the initial data have a suitable expansion as ε → 0. Assumption 1.6. Let N be a positive integer. We suppose Assumption 1.1 with some s > n/2 + 2N + 1. Moreover, the initial amplitude a ε 0 writes

(1.4) a ε 0 = a 0 + N j=1 ε j a j + ε N r ε N ,
where a j ∈ H s (0 j N ) and r ε N H s → 0 as ε → 0.

Theorem 1.7. Let Assumption 1.6 be satisfied. Let u ε = a ε e iφ ε /ε be the unique solution given in Theorem 1.4. Then, there exist (b j , ϕ j ) 0 j N , with

b j ∈ C([0, T ]; H s-2j ), ϕ j ∈ C [0, T ]; L ∞ ∩ L nq 0 n-q 0
and ∇ϕ j ∈ C [0, T ]; X s-2j+1 ∩ L q 0 , such that:

a ε = b 0 + N j=1 ε j b j + o ε N in C([0, T ]; H s-2N ), φ ε = ϕ 0 + N -1 j=1 ε j ϕ j + o ε N in C([0, T ]; L ∞ ∩ L nq 0 n-q 0 ), ∇φ ε = ∇ϕ 0 + N j=1 ε j ∇ϕ j + o ε N in C [0, T ]; X s-2N +1 ∩ L q 0 .
Moreover, for j 1, ϕ j ∈ L p for all p > n/γ, and ∇ϕ j ∈ L q for all q > n/(γ + 1).

Corollary 1.8. Let Assumption 1.6 be satisfied. The solution u ε given in Theorem 1.4 has the following asymptotic expansion, as ε → 0:

u ε = e iϕ 0 /ε β 0 + εβ 1 + . . . + ε N -1 β N -1 + ε N -1 ρ ε , ρ ε H s-2N+2 -→ ε→0 0,
where ϕ 0 is given by Theorem 1.7, and

β j ∈ C([0, T ]; H s-2j
) is a smooth function of (b k , ϕ k+1 ) 0 k j . For instance,

β 0 = b 0 e iϕ 1 ; β 1 = b 1 e iϕ 1 + iϕ 2 b 0 e iϕ 1 .
Corollary 1.9. Let n 5, λ ∈ R, max(n/2 -2, 2) < γ n -2 and 0 < s < s c = γ/2 -1. There exists a sequence of initial data

(ψ h 0 ) 0<h 1 , ψ h 0 ∈ S(R n ), ψ h 0 H s -→ h→0 0,
a sequence of times t h → 0, such that the solution to

i∂ t ψ h + 1 2 ∆ψ h = λ |x| -γ * |ψ h | 2 ψ h ; ψ h |t=0 = ψ h 0 satisfies ψ h (t h ) H k -→ h→0 +∞, ∀k > s 1 + s c -s = s γ/2 -s .
Note that unlike in the case of Schrödinger equations with local nonlinearity, considering a large space dimension is necessary to observe this phenomenon: in low space dimensions, Hartree equations are locally well-posed in Sobolev spaces of positive regularity (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF][START_REF] Ginibre | Sur une équation de Schrödinger non linéaire avec interaction non locale, Nonlinear partial differential equations and their applications[END_REF]).

Using Sobolev embedding, one could infer a loss of regularity at the level of the energy space (consider s > 1 and s γ/2-s = 1, hence γ = 4s > 1), in the spirit of [START_REF]Perte de régularité pour les équations d'ondes sur-critiques[END_REF] (see also [START_REF]Loss of regularity for super-critical nonlinear Schrödinger equations[END_REF][START_REF] Thomann | Instabilities for supercritical Schrödinger equations in analytic manifolds[END_REF] for Schrödinger equations), provided that the space dimension is n 7.

The rest of this paper is organized as follows. In the next paragraph, we present the general strategy adopted in this paper. In §3, we collect some technical estimates. Theorem 1.4 is proved in §4, and Theorem 1.7 is proved in §5, as well as Corollary 1.8. Finally, Corollary 1.9 is inferred in §6.

General strategy

To prove Theorem 1.4 and Theorem 1.7, we follow the same strategy as in [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF]. Seek a solution u ε to (1.1)-(1.2) represented as (2.1) u ε (t, x) = a ε (t, x)e iφ ε (t,x)/ε , with a complex-valued space-time function a ε and a real-valued space-time function φ ε . Note that a ε is expected to be complex-valued, even if its initial value a ε 0 is real-valued. We remark that the phase function φ ε also depends on the parameter ε. Substituting the form (2.1) into (1.1), we obtain

iε ∂ t a ε + a ε i ∂ t φ ε ε + ε 2 2 ∆a ε + 2 ∇a ε • i ∇φ ε ε -a ε |∇φ ε | 2 ε 2 + a ε i ∆φ ε ε = λ(|x| -γ * |a ε | 2 )a ε .
To obtain a solution of the above equation (hence, of (1.1)), we choose to consider the following system:

     ∂ t a ε + ∇a ε • ∇φ ε + 1 2 a ε ∆φ ε = i ε 2 ∆a ε ∂ t φ ε + 1 2 |∇φ ε | 2 + λ(|x| -γ * |a ε | 2 ) = 0. (2.2)
This choice is essentially the same as the one introduced by E. Grenier [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF]. We consider this with the initial data

a ε |t=0 = a ε 0 , φ ε |t=0 = φ 0 . (2.3)
From now on, we work only on (2.2)-(2.3). We first prove that it admits a unique solution with suitable regularity (see Theorem 1.4), hence providing a solution to (1.1)-(1.2). The asymptotic expansion (Theorem 1.7) then follows by the similar arguments.

To conclude this paragraph, we remark that uniqueness for (1.1)-(1.2) in the class C([0, T ]; H s ), s > n/2 + 1, is a straightforward consequence of [START_REF] Ginibre | Sur une équation de Schrödinger non linéaire avec interaction non locale, Nonlinear partial differential equations and their applications[END_REF] (see also [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) in space dimension 3 n 5, since the parameter ε ∈]0, 1] can be considered fixed. Indeed, in that case, one has x → |x| -γ ∈ L p + L ∞ for some p 1 and p > n/4, since γ n -2 < 4. Uniqueness is actually obtained in the weaker class of finite energy solutions. Since we work at a higher degree of regularity, we can simply notice that the nonlinear potential

|x| -γ * |u ε | 2 is bounded in L ∞ ([0, T ] × R n ): for χ ∈ C ∞ 0 (R n ; [0, 1]), χ = 1 near x = 0, we have from Young's inequality, |x| -γ * |u ε | 2 L ∞ (R n ) χ|x| -γ L 1 (R n ) u ε 2 L ∞ (R n ) + (1 -χ)|x| -γ L ∞ (R n ) u ε 2 L 2 (R n ) .
Since we work with an H s regularity, s > n/2 + 1, the above right hand side is bounded, and uniqueness follows from standard energy estimates in L 2 .

Preliminary estimates

We first recall a consequence of the Hardy-Littlewood-Sobolev inequality, which can be found in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Th. 4.5.9] or [13, Lemma 7]:

Lemma 3.1. If ϕ ∈ D ′ (R n ) is such that ∇ϕ ∈ L p (R n ) for some p ∈]0, n[, then there exists a constant γ such that ϕ-γ ∈ L q (R n ), with 1/p = 1/q+1/n.
Remark 3.2. The limiting case γ = n -2 corresponds to the Schrödinger-Poisson system considered in [START_REF] Alazard | Semi-classical limit of Schrödinger-Poisson equations in space dimension n 3[END_REF], with suitable conditions at infinity to integrate the Poisson equation.

Remark 3.3. By Lemma 3.1 and Sobolev inequality, Assumption 1.1 implies φ 0 ∈ L nq 0 n-q 0 ∩ L ∞ , and ∇φ 0 ∈ L q 0 ∩ X s+1 . Note that 2n/(n -2) < n if n 5. Therefore, in this case, we can always find q 0 in ]n/(γ + 1), n[ such that ∇φ 0 ∈ L q 0 . The next two lemmas can be found in [START_REF] Lannes | Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators[END_REF]:

Lemma 3.4 (Commutator estimate). Let s 0 and 1 < p < ∞. Set Λ = (1 -∆) 1/2 . Then, it holds that Λ s (f g) -f Λ s g L p c( ∇f L ∞ Λ s-1 g L p + Λ s f L p g L ∞ ). Lemma 3.5. Let s > 0 and 1 < p < ∞. There exists C > 0 such that Λ s (f g) L p C( Λ s f L p g L ∞ + f L ∞ Λ s g L p ), ∀f, g ∈ W s,p ∩ L ∞ .
The following lemma is crucial for our analysis:

Lemma 3.6. Let n 3, k 0, and s 1 , s 2 ∈ R. Let γ > 0 satisfying n/2 -k < γ n -k -s 1 + s 2 . Then, there exists C s such that |∇| k (|x| -γ * f ) H s 1 C s ( f H s 2 + f L 1 ), ∀f ∈ L 1 ∩ H s 2 . Proof. Since F|x| -γ = C|ξ| -n+γ , it holds that |∇| k (|x| γ * f ) H s 1 = C ξ s 1 |ξ| -n+γ+k Ff L 2 . The high frequency part (|ξ| > 1) is bounded by C f H s 2 if -n + γ + k + s 1 -s 2 0.
On the other hand, the low frequency part (|ξ| 1) is bounded by

C Ff L ∞ |ξ| 1 |ξ| 2(-n+γ+k) dξ C f L 1 if 2(-n + γ + k) > -n, that is, if γ > n/2 -k.

Existence result: proof of Theorem 1.4

Operating ∇ to the equation for φ ε in (2.2) and putting v ε := ∇φ ε , we obtain the following system:

(4.1)    ∂ t a ε + v ε • ∇a ε + 1 2 a ε ∇ • v ε = i ε 2 ∆a ε , a ε |t=0 = a ε 0 , ∂ t v ε + v ε • ∇v ε + λ∇ |x| -γ * |a ε | 2 = 0, v ε |t=0 = ∇φ 0 .
We first construct the solution (a ε , v ε ) to the system (4.1). Proposition 4.1. Let Assumption 1.1 be satisfied. There exists T > 0 independent of ε and s, such that for all ε ∈ [0, 1], (4.1) has a unique solution

(a ε , v ε ) ∈ C [0, T ]; H s × X s+1 ∩ L nq 0 n-q 0 .
Moreover, the norm of (a ε , v ε ) is bounded uniformly for ε ∈]0, 1].

4.1. Regularized system. We shall prove the existence of the solution to the system (4.1) by taking the limit of the solutions to the corresponding regularized system. We take ϕ ∈ C ∞ 0 (R n ), with R n ϕ(x)dx = 1 and ϕ 0 and set (4.2)

J δ f = ϕ δ * f
where ϕ δ = δ -n ϕ(x/δ). We first treat the following regularized system:

(4.3)    ∂ t a ε δ + J δ (v ε δ • ∇J δ a ε δ ) + 1 2 a ε δ ∇ • J δ v ε δ = i ε 2 ∆J 2 δ a ε δ ; a ε δ|t=0 = a ε 0 . ∂ t v ε δ + J δ (v ε δ • ∇J δ v ε δ ) + λ∇J δ (|x| -γ * |a ε δ | 2 ) = 0 ; v ε δ|t=0 = ∇φ 0 .
The point is that the regularized equations (4.3) have been chosen so that the Cauchy problem can be solved as in the standard framework of Sobolev and Zhidkov spaces: Lemma 4.2. Let Assumption 1.1 be satisfied. For all ε ∈ [0, 1] and δ ∈]0, 1], there exists T ε δ > 0 such that the Cauchy problem (4.3) has a unique solution

(a ε δ , v ε δ ) ∈ C 1 ([0, T ε δ ], H s+1 × X s+2 ∩ L 2n n-2 ).
Proof. The proof is based on the usual theorem for ordinary differential equations. We use the following estimates

J δ (v ε δ • ∇J δ a ε δ ) H s+1 C v ε δ H s+1 ∇J δ a ε δ H s+1 Cδ -1 v ε δ H s+2 a ε δ H s+1 , and 
a ε δ ∇ • J δ v ε δ H s+1 Cδ -1 a ε δ H s+1 v ε δ X s+2 , ∆J 2 δ a ε δ H s+1 Cδ -2 a ε δ H s+1 , J δ (v ε δ • ∇J δ v ε δ ) X s+2 Cδ -1 v ε δ 2 X s+2 , ∇J δ (|x| -γ * |a ε δ | 2 ) X s+2 C ∆(|x| -γ * |a ε δ | 2 ) H s+1 C a ε δ 2
H s+1 . We have applied Lemma 3.6 with k = 2 and s 1 = s 2 = s + 1. We note that the space X s+2 ∩ L 2n n-2 with norm • X s+2 is complete. 4.2. Uniform bound. We shall establish an upper bound for the H s norm and X s+1 norm of a ε δ and v ε δ for s > n/2 + 1, respectively. We first estimate the H s norm of a ε δ . We use the following convention for the scalar product in L 2 :

ϕ, ψ := R n ϕ(x)ψ(x)dx. Set Λ = (I -∆) 1/2 . We shall estimate d dt a ε δ 2 H s = 2 Re ∂ t Λ s a ε δ , Λ s a ε δ .
Since [Λ s , ∇] = 0 and [Λ s , J δ ] = 0, by commuting Λ s with the equation for a ε δ , we find:

(4.4) ∂ t Λ s a ε δ + J δ Λ s (v ε δ • ∇J δ a ε δ ) + 1 2 Λ s (a ε δ ∇J δ • v ε δ ) -i ε 2 J δ ∆J δ Λ s a ε δ = 0.
The coupling of the second term and Λ s a ε δ is written as

Λ s (v ε δ • ∇J δ a ε δ ), J δ Λ s a ε δ = v ε δ • ∇J δ Λ s a ε δ , J δ Λ s a ε δ + [Λ s , v ε δ ] • ∇J δ a ε δ , J δ Λ s a ε δ
, where we have use the fact that J δ f, g = f, J δ g for any f and g. We see from the integration by parts that

(4.5) | Re v ε δ • ∇J δ Λ s a ε δ , J δ Λ s a ε δ | 1 2 ∇v ε δ L ∞ J δ Λ s a ε δ 2 L 2 . Moreover, the commutator estimate shows that (4.6) | Re [Λ s , v ε δ ] • ∇J δ a ε δ , J δ Λ s a ε δ | C( ∇v ε δ H s-1 J δ ∇a ε δ L ∞ + ∇v ε δ L ∞ J δ ∇a ε δ H s-1 ) J δ Λ s a ε δ L 2
We estimate the third term of (4.4) by the Kato-Ponce inequality as

(4.7) | Re Λ s (a ε δ ∇J δ • v ε δ ), Λ s a ε δ | C( a ε δ L ∞ J δ ∇v ε δ H s + a ε δ H s J δ ∇v ε δ L ∞ ) Λ s a ε δ L 2
and the last term vanishes since

(4.8) Re -i∆J δ Λ s a ε δ , J δ Λ s a ε δ = Re i ∇J δ Λ s a ε δ 2
L 2 = 0. Therefore, summarizing (4.4)-(4.8), we end up with

d dt a ε δ 2 H s C( a ε δ W 1,∞ + ∇v ε δ L ∞ )( a ε δ H s + v ε δ X s+1 ) a ε δ H s , hence (4.9) d dt a ε δ 2 H s C( a ε δ W 1,∞ + ∇v ε δ L ∞ )( a ε δ 2 H s + v ε δ 2 X s+1 ).
Let us proceed to the estimate of v ε δ . We denote the operator Λ s ∇ by Q. From the equation for v ε δ , we have (4.10)

∂ t Qv ε δ + J δ Q(v ε δ • ∇J δ v ε δ ) + Q∇Λ s J δ (|x| -γ * |a ε δ | 2 ) = 0
We consider the coupling of this equation and Qv ε δ . The second term can be written as

Q(v ε δ • ∇J δ v ε δ ), J δ Qv ε δ = v ε δ • ∇J δ Qv ε δ , J δ Qv ε δ + [Q, v ε δ ] • ∇J δ v ε δ , J δ Q∇v ε δ .
As the previous case, integration by parts shows

(4.11) | Re v ε δ • ∇J δ Qv ε δ , J δ Qv ε δ | 1 2 ∇ • v ε δ L ∞ J δ Qv ε δ L 2 ,
and the commutator estimate also shows

(4.12) | Re [Q, v ε δ ] • ∇J δ v ε δ , J δ Qv ε δ | C( ∇v ε δ H s J δ ∇v ε δ L ∞ + ∇v ε δ L ∞ J δ ∇v ε δ H s ) J δ Qv ε δ L 2 .
For the estimate of the Hartree nonlinearity, we use Lemma 3.6 with k = 2 and s 1 = s 2 = s, to obtain

λJ δ Λ s ∇ 2 (|x| -γ * |a ε δ | 2 ) L 2 C( |a ε δ | 2 H s + |a ε δ | 2 L 1 ) C( a ε δ H s a ε δ L ∞ + a ε δ 2 L 2 ). (4.13)
Summarizing (4.10)-(4.13), we deduce that

d dt ∇v ε δ 2 H s C( a ε δ L 2 + a ε δ L ∞ + ∇v ε δ L ∞ )( a ε δ H s + ∇v ε δ H s ) ∇v ε δ H s ,
and so that

(4.14) d dt ∇v ε δ 2 H s C( a ε δ L 2 + a ε δ L ∞ + ∇v ε δ L ∞ )( a ε δ 2 H s + ∇v ε δ 2 H s ).
Using Lemma 3.1, we see that the above estimate yields an L 2n/(n-2) estimate for v ε δ . Interpolating with a suitable Ḣk norm shows that the L ∞ norm of v ε δ is estimated as above. Alternatively, integrating the second equation of (4.3) with respect to time, Sobolev embedding directly yields a similar estimate for

v ε δ in L ∞ (R n ). Now, putting M ε δ (t) := a ε δ (t) 2 H s + ∇v ε δ (t) 2 H s + v ε δ (t) 2
L ∞ , we conclude from (4.9) and (4.14) that (4.15)

M ε δ C + C t 0 ( a ε δ L 2 + a ε δ W 1,∞ + ∇v ε δ L ∞ )M ε δ dτ.
We obtain the following Lemma.

Lemma 4.3. Let Assumption 1.1 be satisfied with s > n/2 + 1. There exists T independent of δ and ε such that the solution

(a ε δ , v ε δ ) is bounded in C([0, T ]; H s × X s+1 ) uniformly in δ ∈]0, 1].
Proof. We only estimate the above M ε δ (t). Note that v ε δ vanishes at spatial infinity. It implies that v ε δ L ∞ is bounded by ∇v ε δ H s with some constant, since n 3. and s > n/2 + 1. Sobolev embedding and (4.15) yield (4.16)

M ε δ (t) C + C t 0 (M ε δ (τ )) 3/2 dτ.
Therefore, there exists T ε δ > 0 depending only on M ε δ (0) such that M ε δ (t) is bounded by constant times M ε δ (0) uniformly in t ∈ [0, T ε δ ]. Since M ε δ (0) is bounded independent of δ and ε by assumption, T ε δ can be taken independent of δ and ε, as well as the upper bound of M ε δ (t). 4.3. Existence of the solution to the nonlinear hyperbolic system. Next we prove the existence of the solution to (4.1). From Lemma 4.3, we see that the sequences {a ε δ } δ and {v ε δ } δ are uniformly bounded in C([0, T ]; H s ) and C([0, T ]; X s+1 ∩ L 2n n-2 ), respectively. Therefore, from Ascoli-Arzela's theorem, for a subsequence δ ′ of δ,

a ε δ ′ ⇀ a ε weakly in C([0, T ]; H s ), v ε δ ′ ⇀ v ε weakly in C([0, T ]; L 2n n-2 ), ∇v ε δ ′ ⇀ ∇v ε weakly in C([0, T ]; H s ) as δ ′ → 0. Moreover, we have (a ε , v ε ) ∈ C w ([0, T ]; H s × X s+1 ∩ L 2n n-2
). We shall show that (a ε , v ε ) satisfies (4.1) in D ′ (]0, T ]×R n ). We fix some t. We choose some s ′ so that s > s ′ > n/2 + 1. Then, the above convergences imply (a ε δ ′ , ∇v ε δ ′ ) → (a ε , ∇v ε ) strongly in C([0, T ]; H s ′ loc × H s ′ loc ) as δ ′ → 0 . Then, we deduce that a ε δ ′ , ∇a ε δ ′ , v ε δ ′ , and ∇v ε δ ′ converge uniformly in any compact subset of R n , since s > n/2 + 1 and

v ε δ ′ -v ε L ∞ is bounded by ∇v ε δ ′ -∇v ε H s ′
with some constant. Then, we can pass to the limit in all the terms in (4.1), except possibly the Hartree term. Since (f * g) * h = f * (g * h) and f * g, h = f, ǧ * h with ǧ(x) = ḡ(-x), the Hartree term can be rewritten as

λ∇J δ ′ (|x| -γ * |a ε δ ′ | 2 ), ϕ = -λ J δ ′ |a ε δ ′ | 2 , |x| -γ * ∇ϕ .
The function |x| -γ * ∇ϕ is not compactly supported, but an ε/3-argument shows that the right hand side tends to -λ |a ε | 2 , |x| -γ * ∇ϕ . Thus, we

obtain the solution (a ε , v ε ) ∈ C w ([0, T ]; H s × X s+1 ∩ L 2n n-2
). We now claim that this solution is strongly continuous in time. To prove this, we only have to show that the solution is norm continuous, that is, the function

M ε (t) := a ε (t) 2 H s + ∇v ε (t) 2 H s is continuous in time.
In the same way as (4.15), we have (4.17)

d dt M ε C ( a ε L 2 + a ε W 1,∞ + ∇v ε L ∞ ) M ε .
Since the right hand side is bounded, M ε is upper semi-continuous. Weak continuities of a ε and v ε imply the lower semi-continuity of M ε . Hence, M ε is continuous. Lemma 4.4. Let Assumption 1.1 be satisfied. Suppose s > n/2+1. Let T be given in Lemma 4.3. For all ε ∈ [0, 1], there exists

(a ε , v ε ) ∈ C([0, T ]; H s × X s+1 ∩ L 2n n-2 ) which solves (4.1) in D ′ .
4.4. Uniqueness. We next prove the uniqueness of the solution (a ε , v ε ) by showing that if (a ε 1 , v ε 1 ) and (a ε 2 , v ε 2 ) are solutions to (4.1), in the class C([0, T ]; H s × X s+1 ∩ L 2n/(n-2) ) for some s > n/2 + 1, then the distance

(a ε 1 -a ε 2 , v ε 1 -v ε 2 ) is equal to zero in L ∞ ([0, T ]; L 2 × Ḣ1 ) sense. Denote (d ε a , d ε v ) := (a ε 1 -a ε 2 , v ε 1 -v ε 2 )
. Then, from (4.1), the system for (d ε a , d ε v ) is rewritten as 

∂ t d ε a + d ε v • ∇a ε 1 + v ε 2 • ∇d ε a + 1 2 d ε a • ∇v ε 1 + 1 2 a ε 2 • ∇d ε v = i ε 2 ∆d ε a , (4.18) ∂ t d ε v + d ε v • ∇v ε 1 + v ε 2 • ∇d ε v + λ∇(|x| -γ * (d ε a a ε 1 + a ε 2 d ε a )) = 0. ( 4 
L 2 = 2 Re ∂ t d ε a , d ε a C | Re d ε v • ∇a ε 1 , d ε a | + C| Re v ε 2 • ∇d ε a , d ε a | + C| Re d ε a • ∇v ε 1 , d ε a | + C| Re a ε 2 • ∇d ε v , d ε a | + | Re i∆d ε a , d ε a |.

Now, Hölder's inequality and integration by parts show that

| Re a ε 2 • ∇d ε v , d ε a | a ε 2 L ∞ ∇d ε v L 2 d ε a L 2 , | Re v ε 2 • ∇d ε a , d ε a | + | Re d ε a • ∇v ε 1 , d ε a | ( ∇v ε 1 L ∞ + ∇v ε 2 L ∞ ) d a 2 L 2 , Re i∆d ε a , d ε a = 0.

Another use of Hölder's and Sobolev inequalities shows

| d ε v • ∇a ε 1 , d ε a | d ε v L 2n n-2 ∇a ε 1 L n d ε a L 2 C ∇a ε 1 H n 2 -1 ∇d ε v L 2 d ε a L 2
Thus, we end up with the estimate

d dt d ε a 2 L 2 C d ε a 2 L 2 + ∇d ε v 2 L 2 , (4.20) 
where the constant C depends on a ε 1 H n/2 , a ε 2 L ∞ , and ∇v ε k L 2 (k = 1, 2). Similarly, for all 1 i, j n, we have the estimates for ∂ i d ε v,j :

((∂ i d ε v ) • ∇)v ε 1,j , ∂ i d ε v,j C ∇v ε 1,j L ∞ ∂ i d ε v 2 L 2 , (d ε v • ∇)∂ i v ε 1,j , ∂ i d ε v,j C ∇∂ i v ε 2,j L n d ε v L 2n n-2 ∂ i d ε v,j L 2 , ((∂ i v ε 2 ) • ∇)d ε v,j , ∂ i d ε v,j C ∂ i v ε 2 L ∞ ∇d ε v,j 2 L 2 , (v ε 2 • ∇)∂ i d ε v,j , ∂ i d ε v,j C ∇v ε 1 L ∞ ∂ i d ε v,j 2 L 2 , ∂ i ∂ j (|x| -γ * (d ε a a ε 1 )), ∂ i d ε v,j C( a ε 1 L ∞ + a ε 1 L 2 ) d ε a L 2 ∂ i d ε v,j L 2 , ∂ i ∂ j (|x| -γ * (a ε 2 d ε a )), ∂ i d ε v,j C( a ε 2 L ∞ + a ε 2 L 2 ) d ε a L 2 ∂ i d ε v,j L 2
, where v ε 1,j and d ε v,j denote the j-th components of v ε 1 and d ε v , respectively. Summing up over i and j, we obtain Proof of Proposition 4.1. We have already shown that the system (4.1) has a unique solution (a

d dt ∇d ε v 2 L 2 C d ε a 2 L 2 + ∇d ε v 2 L 2 . (4.21) Denote D(t) := d ε a (t) 2 L 2 + ∇d ε v (t) 2 L 2 : since D(0) = 0, Gronwall lemma shows that D(t) = 0 for all t ∈ [0, T ]. Lemma 4.5. The solution (a ε , v ε ) ∈ C([0, T ]; H s × X s+1 ∩ L
ε , v ε ) ∈ C([0, T ]; H s × X s+1 ∩ L 2n n-2 ).
We show that the existence time T is independent of s, thanks to tame estimates. In the above proof, the existence time T depends on s. However, once we show the existence of the solution in [0, T s 0 ] for some s 0 > n/2 + 1, then, for any s 1 > n/2 + 1, we deduce from (4.17) that

M ε s 1 (t) M ε s 1 (0) exp Ct sup 0 τ t ( a ε (τ ) L 2 + a ε (τ ) W 1,∞ + ∇v ε (τ ) L ∞ ) M ε s 1 (0) exp(Ct sup M ε s 0 ),
and so that

M ε s 1 (t) < ∞ holds for t ∈ [0, T s 0 ]. It means that the solution (a ε , v ε ) extends to time T s 0 as a H s 1 × X s 1 +1 ∩ L 2n n-2 -valued function, that is, T s 1 T s 0 .
The same argument also shows T s 0 T s 1 . Therefore, T does not depend on s. 4.6. Construction of φ ε . We finally construct φ ε from v ε defined in Proposition 4.1. Since v ε is known, in view of (2.2), it is natural to define φ ε as

(4.22) φ ε (t, x) = φ 0 (x) - t 0 1 2 |v ε (τ, x)| 2 + λ |x| -γ * |a ε | 2 (τ, x) dτ.
By Assumption 1.1 and Lemma 3.1, φ 0 ∈ L ∞ ∩L nq 0 n-q 0 . Proposition 4.1 shows that

|v ε | 2 ∈ C [0, T ]; X s+1 ∩ L nq 0 n-q 0 . Lemma 3.6 with k = 2 and s 1 = s 2 = s shows that ∇ 2 |x| -γ * |a ε | 2 ∈ C ([0, T ]; H s ) .
By the Hardy-Littlewood-Sobolev inequality, for all n/(γ + 1) < q < ∞, it holds that

∇(|x| -γ * |a ε | 2 ) L q C (|x| -γ-1 * |a ε | 2 ) L q C a ε 2 H s , and ∇ |x| -γ * |a ε | 2 ∈ C [0, T ]; H s+1 . Moreover, the Sobolev inequality shows |x| -γ * |a ε | 2 ∈ L ∞ .
Therefore, φ ε has the regularity announced in Theorem 1.4. To conclude, we simply notice the identity

∂ t (∇φ ε -v ε ) = ∇∂ t φ ε -∂ t v ε = 0,
so that v ε = ∇φ ε , and (4.22) yields the second equation in (2.2). This completes the proof of Theorem 1.4.

Asymptotic expansion

Proof of Theorem 1.7. First order. Suppose that Assumption 1.6 is satisfied with N 1. We already know that the equation (4.1) has a unique solution (a ε , v ε ) ∈ C([0, T ];

H s × X s+1 ∩ L q 0 ) for all ε ∈ [0, 1]. Denote (b 0 , w 0 ) := (a ε , v ε ) |ε=0 . We define b ε = a ε -b 0 ε , w ε = v ε -w 0 ε . (5.1)
Substituting a ε = b 0 + εb ε and v ε = w 0 + εw ε into the system (4.1), we obtain the system for (b ε , w ε ):

(5.2)                  ∂ t b ε + w ε • ∇b 0 + w 0 • ∇b ε + 1 2 b 0 ∇ • w ε + 1 2 b ε ∇ • w 0 +εw ε • ∇b ε + ε 2 b ε ∇ • w ε -i 1 2 ∆b 0 = i ε 2 ∆b ε , ∂ t w ε + w ε • ∇w 0 + w 0 • ∇w ε + λ∇(|x| -γ * 2 Re(b 0 b ε )) +εw ε • ∇w ε + λε∇(|x| -γ * |b ε | 2 ) = 0, b ε |t=0 =a 1 + N -1 j=1 ε j a j+1 + ε N -1 r ε N , w ε |t=0 = 0, (5.3) 
where we have used the fact that (b 0 , w 0 ) is the solution to the system (4.1) with ε = 0 and the assumption that the initial data of a ε is written as a ε 0 = a 0 + εa 1 + N j=2 ε j a j + ε N r ε N . Since we know that b ε ∈ C([0, T ]; H s ) and w ε ∈ C([0, T ] : X s+1 ∩ L nq 0 n-q 0 ) for ε > 0, we just need to prove a priori estimates which are independent of ε. Mimicking the energy estimates (4.9) and (4.14), we obtain

(5.4) d dt ( b ε 2 H s-2 + ∇w ε 2 H s-2 ) C + C(1 + ε( b ε L 2 + b ε W 1,∞ + w ε L ∞ ))( b ε 2 H s-2 + ∇w ε 2 H s-2 )
, where the constant C depends on b 0 H s and ∇w 0 H s . Indeed, the quadratic terms of the system can be handled by the same way since they are exactly the same as those in the system (4.1) up to the constant ε. We estimate linear terms essentially by the same way. Note that the integration by parts does not work well, and so that we need the H s-1 -boundedness of b 0 and ∇w 0 . The term i 1 2 ∆b 0 is also new. By the presence of this term, b 0 is required to be bounded in H s .

Mimicking the proof of Proposition 4.1, we can show the existence of a unique solution (b ε , w

ε ) ∈ C([0, T ], H s-2 × X s-1 ∩ L 2n n-2 ) for all ε ∈ [0, 1]. Since b ε (0) is uniformly bounded in H s-2 by assumption, we see that the H s-2 × X s-1 -bound of (b ε , w ε ) is independent of ε. It proves a ε -b 0 H s-2 + ∇v ε -∇w 0 H s-2 = O(ε).
Moreover, the existence time T is also independent of ε. Then, we see from (5.1) that, for ε > 0, the existence time for (b ε , w ε ) must be equal to that for (a ε , v ε ). Hence, we conclude that the existence time for (b ε , w ε ) with ε = 0 is also the same. Thus, putting (b 1 , w 1 ) = (b ε , w ε ) |ε=0 , we obtain the solution to the system (5.5)

   ∂ t b 1 + w 1 • ∇b 0 + w 0 • ∇b 1 + 1 2 b 0 ∇ • w 1 + 1 2 b 1 ∇ • w 0 -i 1 2 ∆b 0 = 0, ∂ t w 1 + w 1 • ∇w 0 + w 0 • ∇w 1 + λ∇(|x| -γ * 2 Re(b 0 b 1 )) = 0, b 1|t=0 =a 1 , w 1|t=0 = 0. (5.6)
Since w 1|t=0 ≡ 0 ∈ L r for all r and b 1 ∈ H s-2 , we see that (b 1 , w 1 ) ∈ C([0, T ]; H s-2 × X s-1 ∩ L q ) for all q ∈]n/(γ + 1), ∞]. By the similar way as the construction of φ ε , we can construct φ 1 so that φ 1 ∈ L p for all p ∈]n/γ, ∞] and ∇φ 1 = v 1 .

Higher order. Let N 2 and Assumption 1.6 be satisfied. Take m ∈ [2, N ] and assume that, for 1 k m -1, the system (5.7)

         ∂ t b k + i+j=k w i • ∇b j + 1 2 i+j=k b i ∇ • w j -i 1 2 ∆b k-1 = 0, ∂ t w k + i+j=k w i • ∇w j + λ i+j=k ∇(|x| -γ * 2 Re(b i b j )) = 0, b k|t=0 =a k , w k|t=0 = 0, (5.8) has a unique solution (b k , w k ) ∈ C([0, T ]; H s-2k × X s-2k+1 ∩ L q ), where q ∈]n/(γ + 1), ∞]. Denote b ε = a ε -m-1 j=0 ε j b j ε m , w ε = v ε -m-1 j=0 ε j w j ε m .
Then, (b ε , w ε ) satisfies the following system: (5.9) As the first order, we see that the upper bound of (b ε , w ε ) and the existence time T is independent of ε. Furthermore, T is the same one as for (a ε , v ε ). Note that we need the H s-2m+2 boundedness of ∆b m-1 to solve the system (5.9)-(5. Since w m|t=0 ≡ 0 ∈ L r for all r and b m ∈ H s-2m with s -2m > n/2 + 2(N -m) + 1 n/2 + 1, we see that w m ∈ C([0, T ]; X s-2m+1 ∩ L q ) for all q ∈]n/(γ +1), ∞], and that there exists ϕ m which satisfies ϕ m ∈ C([0, T ], L p ) for all p ∈]n/γ, ∞] and ∇ϕ m = w m .

                                                   ∂ t b ε + m-1 ℓ=0 ε ℓ w ε • ∇b ℓ + w ℓ • ∇b ε + 1 2 b ε ∇ • w ℓ + 1 2 b ℓ ∇ • w ε + m-1 ℓ=0 ε ℓ i,j<m,i+j=m+l w i • ∇b j + 1 2 b i ∇ • w j + ε m w ε • ∇b ε + ε m 2 b ε ∇ • w ε -i 1 2 ∆b m-1 = i ε 2 ∆b ε , ∂ t w ε + m-1 ℓ=0 ε ℓ (w ε • ∇w ℓ + w ℓ • ∇w ε ) + λ∇(|x| -γ * 2 Re(b ℓ b ε )) + m-1 ℓ=0 ε ℓ i,j<m,i+j=m+l w i • ∇w j + λ∇(|x| -γ * 2 
Proof of Corollary 1.8. Corollary 1.8 is a straightforward consequence of Theorem 1.7, by considering the asymptotic expansion of e iϕ 0 /ε+iϕ 1 b 0 + εb 1 + . . . + ε N b N e iεϕ 2 +iε 2 ϕ 3 +...+iε N-1 ϕ N in powers of ε. The first exponential is not modified, but one considers the asymptotic expansion of the last two terms in this product.

Note the shift in precision, between Theorem 1.7 and Corollary 1.8: the initial order of precision o(ε N ) becomes o(ε N -1 ) (in L 2 ∩ L ∞ ). This is because the phase φ ε is divided by ε to go back to u ε . This phenomenon has several consequences, see e.g. [START_REF]Geometric optics and instability for semi-classical Schrödinger equations[END_REF] for instabilities.

Proof of Corollary 1.9

To see that Corollary 1.9 is a consequence of Corollary 1.8, we resume the same approach as in [START_REF]Geometric optics and instability for semi-classical Schrödinger equations[END_REF]. Let a 0 ∈ S(R n ) be non-trivial (independent of h), and consider ψ h 0 (x) = h s-n/2 a 0 x h .

Let ε = h sc-s = h γ/2-1-s : h and ε go to zero simultaneously by assumption. Consider the change of unknown function

ψ h (t, x) = h s-n/2 u ε t εh 2 , x h .
Then the Cauchy problem for ψ h is equivalent to:

iε∂ t u ε + ε 2 2 ∆u ε = λ(|x| -γ * |u ε | 2 )u ε ; u ε |t=0 = a 0 .
This is (1.1)-(1.2) with φ 0 = 0, and a ε 0 = a 0 independent of ε. By construction, the phase ϕ 0 provided in Theorem 1.7 is such that

ϕ 0|t=0 = 0 ; ∂ t ϕ 0|t=0 = -λ|x| -γ * |a 0 | 2 ,
where we have used the equation determining ϕ 0 , that is, (2.2) with ε = 0. Therefore, there exists τ > 0 independent of ε such that ϕ 0|t=τ is nontrivial on the support of a 0 : at time t = τ , u ε is exactly ε-oscillatory, from Corollary 1.8. Back to ψ h , this yields Corollary 1.9, up to replacing a 0 with | log h| -1 a 0 (this makes no trouble, since the competition in terms of h is logarithmic decay vs. algebraic decay).
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 245 ) to the system (4.1) given in Lemma 4.4 is unique. Completion of the proof of Proposition 4.1. Now we complete the proof of existence result.

  Re(b i b j )) + ε m w ε • ∇w ε + λε m ∇(|x| -γ * |b ε | 2 ) = 0, b ε |t=0 =a m + N -m j=1 ε j a j+m + ε N -m r ε N , w ε |t=0 = 0, (5.10)By induction on m, the system (5.9)-(5.10) has a unique solution(b ε , w ε ) ∈ C [0, T ]; H s-2m × X s-2m+1(s -2m + 1 > n/2).

  10). Denote (b m , w m ) := (b ε , w ε ) |ε=0 . Then, (b m , w m ) satisfies (5.7)-(5.8) with k = m.
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