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54516 Vand÷uvre-les-Nany, Frane{jose.ragot, didier.maquin}�ensem.inpl-nany.frAbstratThe problem of the estimation of the disrete state of a swithing system is studied. Theknowledge of the swithing law is essential for this kind of system as it simpli�es their manipu-lation for ontrol purposes. This paper investigates the use of a model-based diagnosis methodfor the determination of the ative mode at eah timepoint based on the system input/outputdata. The issue of the parametri identi�ation of the swithing law is also addressed.1 IntrodutionThe modelling of omplex systems often leads to omplex nonlinear models. To get rid of theomplexity of the obtained model, one often resorts to a widely used modelling strategy whihrepresents the system behaviour by using a set of models with a simple struture, eah modeldesribing the behaviour of the system in a partiular operating zone. Within this modellingframework, hybrid models [9, 19℄ are very suessful in representing suh proesses.Hybrid models haraterize physial proesses governed by ontinuous di�erential and di�ereneequations and disrete variables. The proess is desribed by several operating regimes alled modesand the transition from one mode to another is governed by the evolution of internal variables(input, output, state) or external variables or events (ation of a human operator on the systemfor instane). The global behaviour obtained for the modelled omplex system is strongly relatedto the nature of the proedure managing the transition from one mode to another. When thistransition is abrupt, one obtains the lass of swithing models. This lass of models is widely usedbeause the well mastered tools for analysis and ontrol of linear systems an be extended, under
∗Corresponding author. 1



some assumptions, to this lass of systems and, moreover, many real proesses an be representedby models belonging to this lass.Researh on swithing systems is mainly foused on the �elds of identi�ation [17, 22, 24, 25℄,ontrol [9, 12℄, stability analysis [12, 21℄ and state estimation [1, 6℄. The knowledge of the modedesribing the evolution of the system at any moment, this mode being alled ative mode, is aruial piee of information that simpli�es the appliation of the various results oming from the�elds of identi�ation, ontrol, stability analysis and state estimation. Akerson and Fu [1℄ werethe �rst to onsider the question of the determination of the ative mode by stating the problem inthe form of a state estimation problem in a noisy environment. The system noise is modelled by aset of Gaussian distributions, with di�erent means and varianes that in�uene the system one ata time, the transition from one noise soure to another being determined by a Markov transitionmatrix. In [14, 15, 16, 24℄, the reognition of the ative mode is arried out by the means ofmodel-based diagnosis tehniques. A methodology for the design of dynami observers for hybridsystems is proposed in [6℄. The suggested observer onsists of two parts: a loation observer whihis dediated to the reognition of the ative mode at any moment and a ontinuous observer whihis devoted to the estimation of the ontinuous state, one the ative mode is reovered. Severalobservability onepts were introdued in [3, 4, 26℄. Depending on the knowledge of the modesequene and on the variables to be reovered, several observability onepts are given and they areharaterized through linear algebrai tests.The reognition of the ative mode is losely related to the �proximity� of the models desribing eahmode. It is obviously easier if the swithing law is known. From there, one an see the importaneof the identi�ation of the swithing law.This paper addresses the issue of the ative mode determination for a swithing system, usingonly the system input/output data. To perform this task, a model-based diagnosis method [23℄ isextended to this lass of systems. We also put forward a proedure for the identi�ation of theswithing law. The paper starts in setion 2.1 with a brief reminder on the modelling of swithingsystems. The reognition of the ative mode is developed in setion 3. The proposed method restson model-based diagnosis methods. Then, the onditions guaranteeing the disernability of thevarious modes are formulated. An enhanement to the method is arried out in order to take intoaount the presene of measurement noise. Setion 4 is devoted to the identi�ation of the swithinglaw. The proposed method o�ers an interval approah for the estimation of the parameters of theswithing law. An aademi example is shown in setion 5.2 Problem statement2.1 Modelling of swithing systemsLet us onsider the system represented by equation (1):
{

x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k)
µk ∈ {1, 2, . . . , s}, s ∈ N

∗\{1}
x ∈ R

n, u ∈ R
m, y ∈ R

p

(1)Equation (1) represents a swithing system with s operating regimes or modes. The variables u(·),
y(·) and x(·) respetively stand for the input, the output and the state of the system. The swithesare introdued by means of the state matrix whih takes its value in a �nite set A = {A1, A2, . . . , As}2



whih is a priori known. This formulation does not restrit at all the modelling of the swithingsystem and the results presented in this paper an be extended to the ase where the matries Band C also take di�erent values. The variable µ(·) denotes the ative mode at any moment. Forexample, if one has µk = i, i ∈ {1, 2, . . . , s}, the system is said to be in the mode i at the instant k.The evolution of the mode seletion variable µ(·) an be desribed in a variety of ways. Here, weassume that µk is given by:
µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s} , (2)where the swithing law depends on the variable ξ(·) ∈ R

nξ . Eah region Hi is a onvex polyhedronde�ned as:
Hi = {ξk ∈ R

nξ |Hiϕ
T
k ≤ 0} (3)with ϕk =

[
ξk 1

], H ∈ R
q×(nξ+1) and the set {H1,H2, . . . ,Hs} is a omplete partition of

H ⊂ R
nξ , i.e. s⋃

i=1

Hi = H and Hi ∩Hj = ∅, ∀i 6= j.In order to let the pieewise a�ne map de�ned by equation (3) be well posed, we allow some of the�≤� inequalities to be strit, meaning they an be replaed by �<� inequalities.The variable ξ(·) an be external to the system and, in that ase, the mode sequene is arbitraryand independent of the system variables (input, output and state). The swithes from one mode toanother an also be triggered by internal variables as the state x(·) (pieewise a�ne systems [8℄) orthe input u(·) and the output y(·) (pieewise autoregressive exogenous systems). We assume herethat ξk is de�ned by:
ξk =

[
Yk−1,k−na

Uk−1,k−na

]
, (4)where Yk−1,k−na

=
(

yk−1 yk−2 . . . yk−na

) and Uk−1,k−na
=

(
uk−1 uk−2 . . . uk−na

).It is worth noting that the de�nition of εk in equation (4) do not limit the signi�ane of the proposedontribution in this paper (espeially in setion 4) as the proposed method remains appliable aslong as ξk an be estimated (ase of pieewise a�ne systems) or measured.Combining (1), (2) and (4), we retained model of equation (5) as a model for swithing systems inthe ontinuation of this paper:






x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k)
µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s} , s ∈ N

∗\{1}
ξk =

[
Yk−1,k−na

Uk−1,k−na

]

x ∈ R
n, u ∈ R

m, y ∈ R
p

(5)The model of equation (5) is intended in this paper to represent a swithing system that do notswith at every timepoint like it an be the ase for stati onverter. Hene, the system is assumedto have a minimum dwell time in a mode after a swithing instant.Coming from (5), �rst, we wish to reover the ative mode at any moment, using only the systeminput/output data on a �nite observation window. If the system's modes are assumed to representhealthy operating modes as well as faulty operating modes, the ative mode estimation task an thebe seen as a fault detetion task. One the ative mode is reovered, the goal is to estimate, froma su�iently rih sequene of input/output data, the parameters Hi, i = 1, . . . , s of the swithinglaw, knowing its struture. 3



2.2 De�nitions and notationWe introdue the following de�nitions:De�nition 1 A path µ is a �nite sequene of modes: µ = (µ1 · µ2 · . . . · µh).The length of a path µ is denoted |µ| and Θh denotes the set of all paths of length |µ|.
µ[i,j] is the in�x of the path µ between i and j: µ[i,j] = (µi · µi+1 · . . . · µj).De�nition 2 The observability matrix Oµ,h of a path µ ∈ Θh is de�ned as :

Oµ,h =










C
CAµ1...

C Aµh
Aµh−1

· · ·Aµ1
︸ ︷︷ ︸

h










(6)De�nition 3 On a �nite observation window [k − h, k], the ative path µ∗ is the one desribingthe atual mode sequene on the observation window.From de�nitions 1 and 3, the estimation of the ative mode at any moment is equivalent to thedetermination of the path desribing the true mode sequene on a �nite observation window. Inorder to ahieve this, throughout the remainder of this paper, we will fous on the reovery of theative path on an observation window.3 Reognition of the Ative Mode3.1 Detetion of the ative pathThe ative path determination task an be formulated as a reursive problem applied to a slidingwindow. On a time window [k − h, k], equation (5) an be written as:
Oµ,hx (k − h) =






y (k − h)...
y (k)




 − Tµ,h






u (k − h)...
u (k)




 (7)where Tµ,h is a Toeplitz matrix de�ned by :

Tµ,h =










0 0 . . . 0 0
CB 0 0 0... ... ...

C Aµk−1
. . . Aµk−h+1

︸ ︷︷ ︸

h−1

B C Aµk−1
. . . Aµk−h+2

︸ ︷︷ ︸

h−2

B . . . CB 0










(8)Equation (7) an be written in a more ompat way:
Yk−h,k − Tµ,hUk−h,k = Oµ,hx(k − h) (9)The relation (9) links on the time window the input and the output of the system to the initialstate x(k − h) on the observation window. We introdue the following proposition:4



Assumption 1 The observability matries Oµ,h of the paths µ generated on the observation window
[k − h, k] are all of full rank: rank (Oµ,h) = dim (x) = n, ∀h ≥ n.The existene of an integer h, suh that assumption 1 holds, was analysed in [5℄ and is linked topathwise observability that have been furthermore shown to be deidable.Using proposition 1, one an de�ne a projetion matrix1 Ωµ,h in suh a way that Ωµ,hOµ,h = 0,i.e. Ωµ,h is seleted as a basis for the left null spae of Oµ,h.Next, residuals rµ,h(·), independent of the initial state x(k − h), an be de�ned as:

rµ,h(k) = Ωµ,h(Yk−h,k − Tµ,hUk−h,k) (10)The residuals rµ,h(·) are useful for the determination of the ative path on the observation windowand they only depend on measurable variables, namely the system input and output. In fat, forthe ative path µ∗, the residual rµ∗,h(·) equals zero.Theorem 1 The ative path µ∗ desribing the true mode sequene on a time window [k − h, k] isthe one satisfying:
rµ∗,h(k) = Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k) = 0 (11)To reover the true mode sequene µ∗ from the system measurements, one an proeed in thefollowing way:

• �rst, all the possible paths of length h are built on the time window [k − h, k]. This isequivalent to �nding all the matries Oµ,h.
• knowing the matries Oµ,h, the projetion matries Ωµ,h are easily alulated.
• from the matries Oµ,h and Ωµ,h, one an form the residuals rµ,h(·) using the system mea-surements.
• the ative path is reovered from the system measurements by testing the residuals rµ,h(·)and it orresponds to the one whih residual equals zero.Theorem 1 impliitly says that the observability matries Oµ,h do not share the same null spae.Setion 3.2 will highlight the onditions that guarantee this impliit assumption.3.2 On the number of pathsIt is easy to see that the enumeration of all paths on a time window [k−h, k] introdues a problemof ombinative explosion related to the number of modes and the length of the observation window.Indeed, the number of residuals rµ,h(·), µ ∈ Θh, to be alulated is equal to sh and quikly growswith the length h + 1 of the observation window and the number s of modes. Then, the use of allpaths on a time window is awkward and omputationally demanding.In pratie, all paths µ ∈ Θh do not have to be onsidered at every moment. When at a time k0,the ative path on an observation window [k0 − h, k0] is identi�ed, it is not neessary to test the shresiduals at the next instant k0 + 1. Only the paths µ ∈ Θh with in�xes µ[k0−h+1,k0−1] idential tothe in�x µ∗

[k0+1−h,k0−1] of the path µ∗ reovered previously at k0 are onsidered at the next instant1In fat, the existene of the projetion matrix is diretly linked to the observability of the system and to thelength of the observation window [18℄ 5



k0 + 1.Moreover, assuming that the minimum sojourn time in a mode is greater than the length of theobservation window, one an limit the number of generated paths by only onsidering paths thatdesribe the mode sequene when the system remains in the same mode all over the duration ofthe observation window, i.e. µ = (i · i · . . . · i), i ∈ {1, 2, . . . , s}. Nevertheless, the redution of thenumber of residuals omes at the expense of a delay in the estimation of the swithing time fromone mode to another. The reognition of the ative path annot take plae as long as the swithinginstant is in the observation window. Thus, when applying this redution of the number of paths,a maximum delay equal to the length of the observation window exists.Prior knowledge of the proess suh as �prohibited� swithing sequenes or minimal time betweentwo onseutive swithes, an also help to limit the number of generated residuals or paths to beonsidered.In a pratial implementation, the methodology should be to �rst ompute a redued set of residualsomposed of the residuals linked to paths that desribe the mode sequene when the system remainsin the same mode on the time window. From this initial set of residuals, a redued set of residualsan be onsidered at eah time instant, depending on the previously reovered path. This operationonsiderably redues the omputing load.3.3 Disernability of the modesIn what follows, we are interested in the onditions guaranteeing the disernability of the variouspaths enumerated on an observation window. These onditions ensure the uniqueness of the re-overed ative path µ∗ during the path reognition proess. Disernability guarantees that twodi�erent modes never indue the system in the same dynamis on a �nite time window.De�nition 4 Two paths µ1 ∈ Θh and µ2 ∈ Θh are disernible on an observation window [k−h, k]if their respetive orresponding residuals rµ1,h(·) and rµ2,h(·) are not simultaneously null when oneof the two paths is ative on the onsidered observation window.The study of paths disernability onditions have also been investigated by other authors likeBabaali and Egerstedt [3℄, Hwang et al. [20℄, Vidal et al. [26℄. The di�erene here is that the studyof the paths disernability onditions is not performed independently of the ative mode observerbut also takes into aount the harateristis of the mode observer thanks to the analysis of theresiduals rµ,h(·).In order to establish the disernability onditions of two di�erent paths, let us onsider two paths
µ1 ∈ Θh and µ2 ∈ Θh on an observation window [k − h, k]. We denote Y µ1

k−h,k (respetively
Y µ2

k−h,k) the system output vetor when the ative path is µ1 (respetively µ2). We suppose thatat an instant k, the ative path on the observation window is the path µ1. This information beingunknown, we have to analyse the possibilities that the path µ1 or the path µ2 are in adequay withthe system data. From (10), the expressions of the residuals rµ1,h(·) and rµ2,h(·) are given by:
{

rµ1,h(k) = Ωµ1,h

(
Yk−h,k − Tµ1,hUk−h,k

)

rµ2,h(k) = Ωµ2,h

(
Yk−h,k − Tµ2,hUk−h,k

) (12)
6



Sine µ1 is the ative mode on the observation window, equation (12) an be written as:






rµ1,h(k) = Ωµ1,h

(

Y µ1

k−h,k − Tµ1,hUk−h,k

)

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Tµ2,hUk−h,k

) (13)and, by de�nition, one also has Ωµ1,h

(

Y µ1

k−h,k − Tµ1,hUk−h,k

)

= 0. From where:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Tµ2,hUk−h,k

) (14)Adding and taking away Y µ2

k−h,k from the expression of rµ2,h(·), one obtains:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k + Y µ2

k−h,k − Tµ2,hUk−h,k

) (15)As by de�nition Ωµ2,h

(

Y µ2

k−h,k − Tµ2,hUk−h,k

)

= 0, one has:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k

) (16)Equation (16) learly points out that the residual alulated for the path µ2 (non-ative path)diretly depends on the di�erene between the system outputs when the mode sequene evolvesaording to the two paths µ1 and µ2, the system being exited by the same inputs in both ases.From equation (16), a neessary and su�ient ondition for the disernability of the paths µ1 and
µ2 is:

Y µ1

k−h,k − Y µ2

k−h,k /∈ Nr(Ωµ2,h) (17)where Nr stands for the operator �right null spae�.Aording to equation (9), one has:
Y µ1

k−h,k − Y µ2

k−h,k =
(
Oµ1,h −Oµ2,h

)
x(k − h) +

(
Tµ1,h − Tµ2,h

)
Uk−h,k (18)where x(k − h) is the value of the system state at the initial instant of the observation window.One dedues from (18) after multipliation on the left by Ωµ2,h:

Ωµ2,h(Y µ1

k−h,k − Y µ2

k−h,k) = Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k (19)If Y µ1

k−h,k − Y µ2

k−h,k belongs to the right null spae of Ωµ2 , one has:
Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0 (20)The relation (20) is satis�ed �for almost every initial state�2 x(k− h) if the following neessary andsu�ient ondition is satis�ed:

{
Ωµ2,hOµ1,h = 0

Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0

(21)2see remark 1 for the explanation of the expression �for almost every initial state�7



Therefore, the paths µ1 and µ2 are not disernible on a time window [k− h, k] if the relations (21)are satis�ed.Theorem 2 Two paths µ1 and µ2 of a swithing system are disernible on an observation window
[k − h, k], �for almost every initial state� x(k − h), if:

Ωµi,hOµj ,h 6= 0, i, j ∈ {1, 2} , i 6= j (22)or
Ωµi,h

(
Tµj ,h − Tµi,h

)
Uk−h,k 6= 0 i, j ∈ {1, 2} , i 6= j (23)The proof of this theorem diretly omes from the preeding remarks.When the paths µ1 and µ2 are of the type (i · i · . . . · i), i ∈ {1, 2, . . . , s}, theorem 2 is equivalentto the mode disernability onditions formulated in [14℄.Remark 1 In theorem 2, the expression �for almost every initial state� holds owing to the fatthat the disernability of the paths annot be ensured for any initial state x(k − h). In fat, forertain partiular values of x(k − h), the relation (20) is always satis�ed independently of theinput sequene Uk−h,k. For example, in the situation where Oµ1,h has full rank, for x(k − h) =

(
Oµ1,h

)† (
Φ −

(
Tµ1,h − Tµ2,h

)
Uk−h,k

), equation (20) is satis�ed for every input sequene Uk−h,k,where Φ belongs to the right null spae of Ωµ2,h and (
Oµ1,h

)† is a pseudo-inverse of Oµ1,h.3.4 Determination of the ative mode in a noisy environmentIn setion 3.1, the determination of the ative mode at any moment was arried out within adeterministi framework, i.e. there were no noise on the system measurement. Now, we assumethe presene of a bounded noise on the output of the system desribed by equation (5). Theonly available information on the noise is its maximum magnitude. No probabilisti assumption isformulated on the probability distribution of the measurement noise:






x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k) + n(k)

∀k, |n(k)| ≤ δ, δ > 0

(24)where δ is the bound of the measurement noise magnitude n(·).In this situation, the residual rµ∗,h(·), de�ned by (11) and whih orresponds to the ative path µ∗on the time window [k − h, k], is no longer equal to zero. Indeed, the expression of the residual
rµ∗,h(·), using equation (10), beomes:

rµ∗,h(k) = Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k + Nk−h,k) (25)where the values taken by the measurement noise on the observation window [k − h, k] are stakedin Nk−h,k. As Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k) = 0, one an write :
rµ∗,h(k) = Ωµ∗,hNk−h,k (26)Using the bound of the measurement noise magnitude, we an de�ne an interval residual [rµ∗,h(k)][2℄ :

[rµ∗,h(k)] = [rµ∗,h , r̄µ∗,h] (27)8



where rµ∗,h and r̄µ∗,h depends on the bound δ of the measurement noise and are given by :
rµ∗,h = − |Ωµ∗,h|Uδ and r̄µ∗,h = |Ωµ∗,h|Uδ, U being a olumn vetor of length equal to the numberof olumns of Ωµ∗,h and all the elements of U being equal to 1.In an interval framework, the determination of the ative path amounts to seeking the path thatorresponds to an interval residual inluding the value zero. This test an be performed by al-ulating the sign of the produt of the upper and lower bounds of eah interval residual [rµ,h(·)].The interval residual [rµ,h(·)] assoiated with the ative path µ∗ is the one for whih the sign of theprodut of its upper and lower bound is negative.Depending on the evolution of the various operating regimes dynamis, it an happen that morethan one interval residuals ontains the value zero, this situation being linked to the path disern-ability and the bound of the measurement noise magnitude. In this ase, one refrains from makingany deision on the ative path. We have to onsider this situation from a looser point of view andwe an only enumerate the set of all possible ative paths. However, onsidering suessive timeinstants k + 1, k + 2, . . ., the situation may be lari�ed.Note that it is also oneivable to introdue some probabilisti modelling assumptions on theoutput noise and then refer to a statistial test like the CUSUM [7℄ algorithm to reover the ativepath from the analysis of the generated residuals.4 Identi�ation of the swithing lawOne the reognition of the ative mode at every moment is performed, the next step is to proeedto the identi�ation of the parameters of the swithing law desribed by (5).The identi�ation of the swithing law aims at �nding a omplete partition of the regressors setinto s polyhedral regions suh that µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s}. This problem amounts toseparating s sets of points by means of linear lassi�ers (hyperplanes). Depending on the ativemode estimation proess, the resulting s sets of points may be linearly separable or not (due tonoise or mislassi�ation). In the literature, Robust Linear Programming (RLP) [10℄ and SupportVetor Mahines (SVM ) [13℄ methods are employed.We onsider here another way to proeed to the determination of the parameters of the s polyhedralregions. An interval approah is adopted. The interval representation allows to look for a set ofaeptable values for the swithing law, this set being of a simple geometrial form. The omputationof the set of all feasible separating hyperplanes is also useful to the aim of haraterising the modelunertainties.4.1 Determination of the swithing law parameters in an interval formWe assume that from model (5), one obtains a dataset D =

{
ξT
k , k = 1, . . . , N

}. After proeedingto the ative mode reognition, the dataset D an be partitioned into s lasses Ci, i = 1, . . . , s usingthe following lassi�ation rule:
ξk ∈ Ci if µk = i (28)From the lasses Ci, i = 1 . . . , s, the determination of the parameters Hi, i = 1 . . . , s amountsto separating the s lasses using linear lassi�ers whih are, in this ase, hyperplanes. This anbe done by either onsidering all the s lasses together at the same time (one-against-all and all-together approah) or onsidering them pairwise (one-against-one approah). Here, we adopt theone-against-one approah. The one-against-one approah onsiders all possible ombinations of9



pair of lasses. Let us onsider two lasses Ci and Cj with i 6= j.To separate Ci and Cj , we need to ompute a hyperplane Hij = {ξk ∈ R
na+nb

∣
∣ hijϕ

T
k = 0 , hij ∈

R
na+nb+1}, with ϕk =

[
ξk 1

] , in suh a way that:
{

hijϕ
T
k > 0 if ξk ∈ Ci

hijϕ
T
k < 0 if ξk ∈ Cj

(29)where hij ∈ R
na+nb+1.Using the system desription (5), one an write the relation (30) for any data ξk belonging to

Ci or Cj :
νk

(
hijϕ

T
k

)
> 0, k ∈ I = {k1, k2, . . . , kNij

} (30)where νk = sign (
hijϕ

T
k

) or alternatively:
νk =

{
1 if ξk ∈ Ci

−1 if ξk ∈ Cj
(31)and I is a set ontaining the time instants at whih the mode i or the mode j were deteted duringthe mode reognition proess. The onstant Nij is the sum of the ardinal of Ci and the ardinalof Cj.Considering (30), for all the Nij data ξk, one obtains a set of inequalities that an be expressed inthe form of a linear matrix inequality:

−






νk1ϕk1...
νkNij

ϕkNij




hT

ij <






0...
0




 (32)The resolution of the LMI (32) gives a domain of aeptable solutions to whih belong the parameters

hij . Generally, solving (32) leads to a �omplex� domain, i.e. a domain desribed with a hugenumber of vertie. To redue this omplexity, one an look for a simpler polytopi form desribinga redued domain of aeptable solutions. Here, we look for a zonotope.For example, the �rst graph of �gure 1 represents the projetion in R
2 of the found domain forthe dataset in table 1 with ϕk = (yk−1 uk−1 1), hij = (1 α β), α ∈ R and β ∈ R. This domainis depited in the plan {α, β} on the graph on the left of �gure 1 and orresponds to the set ofinequalities (33) obtained from equation (32) :







β > 1
β < 2
−α + β > 0
−2α + β < 0

(33)All the points belonging to this domain are partiular aeptable solutions. The symbol �o�highlights one of those aeptable solutions and may be, for example, the one resulting from theimplementation of an interior-point algorithm. The graph on the right of �gure 1 presents a sub-optimal solution (grey area) that simpli�es the desription of the found domain in the form ofindependent inequalities in respet to α and β:
{

1 < α < 1.5
1.5 < β < 2

(34)10



Table 1: Dataset
uk−1 0 0 -1 -2
yk−1 -1 -2 0 0
νk 1 -1 1 -1
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Figure 1: Aeptable domains for α and βThe determination of a zonotope haraterizing the set of aeptable solutions is equivalent tothe determination of the parameters hij in an interval form. For that, many optimization riteriaan be hosen. For example, one an fore the widths of the intervals to be determined to bemaximal while respeting the system onstraints.The parameters hij are desribed in an interval form by:






hij = hij0
+ λhij

⊗ rhij

rhij
> 0

∥
∥λhij

∥
∥
∞

≤ 1
(35)where hij0

is the vetor ontaining the entres of the searhed intervals, rhij
represents the half-widths of the intervals and the variables λ(·) are bounded normalized variables that allow to takeinto aount all the values inside an interval. The operator ⊗ performs a omponentwise produtof two vetors. We reall that for any vetor e ∈ R

n, one has ‖e‖∞ = max
1≤i≤n

|ei|, ei being the ithomponent of the vetor e. The inequality holding on the vetor rhij
is a omponentwise inequality.Using the interval form of hij (35), equation (30) an be rewritten as :







rhi,j
> 0

∥
∥λhij

∥
∥
∞

≤ 1

νk

(
hij0

+ λhij
⊗ rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

(36)
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Hene, one has:






rhi,j
> 0

νk

(
hij0

+ rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

νk

(
hij0

− rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

(37)Finally, to �nd hij0
et rhij

, we have to look for intervals with maximal half-widths while respetingthe onstraints (37). A natural hoie an be to maximize the volume of the zonotope. This leadsto the onstrained optimization problem (38):






max
hij0

,rhij

na+nb+1∏

m=1

rhij ,ms. t. (37) (38)where rhij ,m is the mth omponent of the vetor rhij
.One an then use lassial algorithms in the �eld of optimization [11℄ for the resolution of (38).The onstrained optimization problem (38) has to be solved for all pairs of lasses {Ci, Cj}, i 6= jand i, j ∈ {1, 2, . . . , s}.Remark 2 It is lear that the aim of the presented method in this setion is to propose a simplerdesription of a geometrial domain represented by a set of inequalities. Hene, the method is insome way independent of the linear separability of the lasses and it will work , whether the lassesare linearly separable or not, as long as the initial geometrial domain (32) exists. Moreover, theinner zonotopi approximation introdues some onservatism but this is not a huge drawbak. It isthe ost of the obtaining of a very simple geometrial desription of the initial domain (32).5 ExampleWe present here an aademi example of a swithing system. The simulated system is haraterizedby three modes and the matries of the models desribing the di�erent modes are:

A1 =

(
−0.211 0

0 0.521

)

, A2 =

(
0.691 0

0 −0.310

)

,

A3 =

(
0.153 0

0 0.410

)

, B =
(

2 −1
)T

, C =
(

1 2
)

(39)Therefore, the modes 1, 2 and 3 of the system are represented by seond order models with
K1 = −1.464, K2 = 2.002 and K3 = −0.514 as respetive gains and the ouples (−0.211; 0.521),
(0.691;−0.310) and (0.153; 0.410) as respetive pairs of poles. The swithing law is haraterizedby:







µk = 1 if
(

h12

[
yk−1 uk−1 1

]T
)

≥ 0 and
(

h13

[
yk−1 uk−1 1

]T
)

≥ 0

µk = 2 if
(

h12

[
yk−1 uk−1 1

]T
)

< 0 and
(

h23

[
yk−1 uk−1 1

]T
)

< 0

µk = 3 if
(

h23

[
yk−1 uk−1 1

]T
)

≥ 0 and
(

h13

[
yk−1 uk−1 1

]T
)

< 0

(40)12



Table 2: Set of all paths of length 2Path µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

µ1 1 1 1 2 2 2 3 3 3
µ2 1 2 3 1 2 3 1 2 3with h12 =

(
1 0.51 0

), h13 =
(

0 1 0
), h23 =

(
1 −0.29 0

).Figure 2 shows the input u(·), the output y(·), the state x(·) and the mode sequene µ(·). Thevertial dashed lines on the third graph of �gure 2 mark the time instants at whih swithes our.The fourth graph plots the mode sequene desribed by the mode seletion variable µ(·). For in-stane, on the time windows [1, 8] and [9, 17], the system is respetively in the modes 1 and 2.
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kFigure 2: Input u(·), output y(·), state x(·), mode sequene µ(·)As Ωµi,hOµj ,h 6= 0, µi, µj ∈ Θ2, µi 6= µj , Θ2 being the set of all paths of length 2, the ondition(22) of theorem 2 is respeted. Condition (23) is tested at every moment. If it is not satis�ed, nodeision is taken onerning the reognition of the ative path.In order to perform the determination of the ative path at every moment from the systeminput and output signals, we onsider an observation window of length 3. The set Θ2 of all pathsof length 2 on the observation window orresponds to the set of the nine paths in table 2.Figure 3 presents the evolution of the alulated residuals. The di�erent graphs on the �gure showthe residuals r(i · j),h(·), i, j ∈ {1, 2, 3} orresponding to the paths of length 2 in table 2. Only one ofthe nine residuals equals zero at eah instant, the index (i · j) of this residual orresponding to theative path on the onsidered time window. For example, from time k = 1 to k = 6, the residual
r(1 · 1),h(·) (�rst row and �rst olumn of �gure 3) equals zero, meaning that the path (1 · 1) is theative one on the observation window. Hene, the ative mode on the window [1, 6] is the mode 1.At k = 7, only the residual r(1 · 2),h(·) equals zero, meaning that the path (1 · 2) beomes the ativeone. From there, and taking into aount the length of the observation window, the ourrene ofa swith at k = 9 is highlighted. 13
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Figure 3: Residuals rµ,h(·), µ ∈ ΘhThe mode sequene (�rst graph of �gure 4) and its estimation (seond graph of �gure 4) whileanalysing the residuals are depited on �gure 4. The �gure shows that the mode sequene is ex-atly reonstruted.
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Figure 4: Mode reognitionAs explained in setion 3.2, in order to redue the number of residuals to be analysed during themode reognition proess, one an onsider only the paths desribing the mode sequene when thesystem remains in the same mode all over the duration of the observation window. In this ase,only the paths (1 · 1), (2 · 2), and (3 · 3) have to be onsidered.For the system desribed by matries (39), we proeed to the reognition of the ative path ina noisy environment where the system output is subjet to the e�et of a bounded noise. In thissituation, to make the analysis simpler, we only onsider the three paths (1 · 1), (2 · 2) and (3 · 3).14



The ative mode reognition is performed by analysing interval residuals as presented in setion 3.4.On �gure 5, the three interval residuals are shown in dashed lines. One an notie that only one ofthe three interval residuals inludes at any moment the value zero, this residual being assoiatedwith the ative path on the observation window.
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Figure 5: Evolution of the residualsThe seond and the third graphs of �gure 6 illustrate the results of the ative path detetion byanalysing the interval residuals. The seond graph shows the modes deteted while testing the mem-bership of the value zero to the interval residuals. Although the modes are rather well deteted,there are situations where it was impossible to provide an estimate of µ(·) beause of the fat thatmore than one interval residual or none of the three interval residuals ontain the value zero. Onthe seond graph of �gure 6, the points, with Y-oordinate equal to zero, emphasizes this kind ofsituation whih is due to the presene of noise and to the fat that all the possible paths on theobservation window are not onsidered in the analysis. The third graph of �gure 6 is obtained bytesting the oherene in the suession of the deteted ative paths at onseutive moments. Thisis equivalent to the path redution method presented in setion 3.2 using the in�x of the detetedative path. One an notie a perfet reonstrution of the mode sequene.One the proess of the ative mode reognition is performed, we an proeed now to theidenti�ation of the parameters of the swithing law de�ned by equation (40). The dataset is as-sumed to be representative enough of the system's various operating regimes. The onstrainedoptimization problem (38) is resolved by using an iterative algorithm. The results are presented intable 3.In table 3, the entres of the intervals found are indiated by h(.)0
, the half-widths by rh(·)

and
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kFigure 6: Ative path reognitionTable 3: Bounded parameters

h12 h120
rh12

1 1.013 0.526

0.51 0.694 0.215

0 0.000 0.001

h13 h130
rh13

0 0.013 0.180

1 1.052 0.381

0 0.011 0.021

h23 h230
rh23

1 1.112 0.281

−0.29 −0.326 0.197

0 0.001 0.007the real values are represented by h(·). From table 3, the intervals found are:
[h12] =

(

[0.604 , 1.656] [0.470 , 0.909] [−0.001 , 0.001]
)

[h13] =
(

[−0.167 , 0.193] [0.671 , 1.433] [−0.010 , 0.032]
)

[h23] =
(

[0.831 , 1.393] [−0.523 , −0.129] [−0.006 , 0.008]
)

(41)While analysing the estimated values in table 3, one an see that the estimated intervals for theswithing law parameters always inlude the real values h(·). In fat, this situation depends onthe loalization of the data points in the regressor set. When there are many data points whihare lose to the separating hyperplanes in the estimation dataset, the estimated interval for theswithing law parameters are likely to ontain the real parameters.6 ConlusionIn this paper, we put forward a method for the determination of the swithing instants and theative mode of a swithing system. The method rests on the analysis of residuals generated from16
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