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tThe problem of the estimation of the dis
rete state of a swit
hing system is studied. Theknowledge of the swit
hing law is essential for this kind of system as it simpli�es their manipu-lation for 
ontrol purposes. This paper investigates the use of a model-based diagnosis methodfor the determination of the a
tive mode at ea
h timepoint based on the system input/outputdata. The issue of the parametri
 identi�
ation of the swit
hing law is also addressed.1 Introdu
tionThe modelling of 
omplex systems often leads to 
omplex nonlinear models. To get rid of the
omplexity of the obtained model, one often resorts to a widely used modelling strategy whi
hrepresents the system behaviour by using a set of models with a simple stru
ture, ea
h modeldes
ribing the behaviour of the system in a parti
ular operating zone. Within this modellingframework, hybrid models [9, 19℄ are very su

essful in representing su
h pro
esses.Hybrid models 
hara
terize physi
al pro
esses governed by 
ontinuous di�erential and di�eren
eequations and dis
rete variables. The pro
ess is des
ribed by several operating regimes 
alled modesand the transition from one mode to another is governed by the evolution of internal variables(input, output, state) or external variables or events (a
tion of a human operator on the systemfor instan
e). The global behaviour obtained for the modelled 
omplex system is strongly relatedto the nature of the pro
edure managing the transition from one mode to another. When thistransition is abrupt, one obtains the 
lass of swit
hing models. This 
lass of models is widely usedbe
ause the well mastered tools for analysis and 
ontrol of linear systems 
an be extended, under
∗Corresponding author. 1



some assumptions, to this 
lass of systems and, moreover, many real pro
esses 
an be representedby models belonging to this 
lass.Resear
h on swit
hing systems is mainly fo
used on the �elds of identi�
ation [17, 22, 24, 25℄,
ontrol [9, 12℄, stability analysis [12, 21℄ and state estimation [1, 6℄. The knowledge of the modedes
ribing the evolution of the system at any moment, this mode being 
alled a
tive mode, is a
ru
ial pie
e of information that simpli�es the appli
ation of the various results 
oming from the�elds of identi�
ation, 
ontrol, stability analysis and state estimation. A
kerson and Fu [1℄ werethe �rst to 
onsider the question of the determination of the a
tive mode by stating the problem inthe form of a state estimation problem in a noisy environment. The system noise is modelled by aset of Gaussian distributions, with di�erent means and varian
es that in�uen
e the system one ata time, the transition from one noise sour
e to another being determined by a Markov transitionmatrix. In [14, 15, 16, 24℄, the re
ognition of the a
tive mode is 
arried out by the means ofmodel-based diagnosis te
hniques. A methodology for the design of dynami
 observers for hybridsystems is proposed in [6℄. The suggested observer 
onsists of two parts: a lo
ation observer whi
his dedi
ated to the re
ognition of the a
tive mode at any moment and a 
ontinuous observer whi
his devoted to the estimation of the 
ontinuous state, on
e the a
tive mode is re
overed. Severalobservability 
on
epts were introdu
ed in [3, 4, 26℄. Depending on the knowledge of the modesequen
e and on the variables to be re
overed, several observability 
on
epts are given and they are
hara
terized through linear algebrai
 tests.The re
ognition of the a
tive mode is 
losely related to the �proximity� of the models des
ribing ea
hmode. It is obviously easier if the swit
hing law is known. From there, one 
an see the importan
eof the identi�
ation of the swit
hing law.This paper addresses the issue of the a
tive mode determination for a swit
hing system, usingonly the system input/output data. To perform this task, a model-based diagnosis method [23℄ isextended to this 
lass of systems. We also put forward a pro
edure for the identi�
ation of theswit
hing law. The paper starts in se
tion 2.1 with a brief reminder on the modelling of swit
hingsystems. The re
ognition of the a
tive mode is developed in se
tion 3. The proposed method restson model-based diagnosis methods. Then, the 
onditions guaranteeing the dis
ernability of thevarious modes are formulated. An enhan
ement to the method is 
arried out in order to take intoa

ount the presen
e of measurement noise. Se
tion 4 is devoted to the identi�
ation of the swit
hinglaw. The proposed method o�ers an interval approa
h for the estimation of the parameters of theswit
hing law. An a
ademi
 example is shown in se
tion 5.2 Problem statement2.1 Modelling of swit
hing systemsLet us 
onsider the system represented by equation (1):
{

x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k)
µk ∈ {1, 2, . . . , s}, s ∈ N

∗\{1}
x ∈ R

n, u ∈ R
m, y ∈ R

p

(1)Equation (1) represents a swit
hing system with s operating regimes or modes. The variables u(·),
y(·) and x(·) respe
tively stand for the input, the output and the state of the system. The swit
hesare introdu
ed by means of the state matrix whi
h takes its value in a �nite set A = {A1, A2, . . . , As}2



whi
h is a priori known. This formulation does not restri
t at all the modelling of the swit
hingsystem and the results presented in this paper 
an be extended to the 
ase where the matri
es Band C also take di�erent values. The variable µ(·) denotes the a
tive mode at any moment. Forexample, if one has µk = i, i ∈ {1, 2, . . . , s}, the system is said to be in the mode i at the instant k.The evolution of the mode sele
tion variable µ(·) 
an be des
ribed in a variety of ways. Here, weassume that µk is given by:
µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s} , (2)where the swit
hing law depends on the variable ξ(·) ∈ R

nξ . Ea
h region Hi is a 
onvex polyhedronde�ned as:
Hi = {ξk ∈ R

nξ |Hiϕ
T
k ≤ 0} (3)with ϕk =

[
ξk 1

], H ∈ R
q×(nξ+1) and the set {H1,H2, . . . ,Hs} is a 
omplete partition of

H ⊂ R
nξ , i.e. s⋃

i=1

Hi = H and Hi ∩Hj = ∅, ∀i 6= j.In order to let the pie
ewise a�ne map de�ned by equation (3) be well posed, we allow some of the�≤� inequalities to be stri
t, meaning they 
an be repla
ed by �<� inequalities.The variable ξ(·) 
an be external to the system and, in that 
ase, the mode sequen
e is arbitraryand independent of the system variables (input, output and state). The swit
hes from one mode toanother 
an also be triggered by internal variables as the state x(·) (pie
ewise a�ne systems [8℄) orthe input u(·) and the output y(·) (pie
ewise autoregressive exogenous systems). We assume herethat ξk is de�ned by:
ξk =

[
Yk−1,k−na

Uk−1,k−na

]
, (4)where Yk−1,k−na

=
(

yk−1 yk−2 . . . yk−na

) and Uk−1,k−na
=

(
uk−1 uk−2 . . . uk−na

).It is worth noting that the de�nition of εk in equation (4) do not limit the signi�
an
e of the proposed
ontribution in this paper (espe
ially in se
tion 4) as the proposed method remains appli
able aslong as ξk 
an be estimated (
ase of pie
ewise a�ne systems) or measured.Combining (1), (2) and (4), we retained model of equation (5) as a model for swit
hing systems inthe 
ontinuation of this paper:






x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k)
µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s} , s ∈ N

∗\{1}
ξk =

[
Yk−1,k−na

Uk−1,k−na

]

x ∈ R
n, u ∈ R

m, y ∈ R
p

(5)The model of equation (5) is intended in this paper to represent a swit
hing system that do notswit
h at every timepoint like it 
an be the 
ase for stati
 
onverter. Hen
e, the system is assumedto have a minimum dwell time in a mode after a swit
hing instant.Coming from (5), �rst, we wish to re
over the a
tive mode at any moment, using only the systeminput/output data on a �nite observation window. If the system's modes are assumed to representhealthy operating modes as well as faulty operating modes, the a
tive mode estimation task 
an thebe seen as a fault dete
tion task. On
e the a
tive mode is re
overed, the goal is to estimate, froma su�
iently ri
h sequen
e of input/output data, the parameters Hi, i = 1, . . . , s of the swit
hinglaw, knowing its stru
ture. 3



2.2 De�nitions and notationWe introdu
e the following de�nitions:De�nition 1 A path µ is a �nite sequen
e of modes: µ = (µ1 · µ2 · . . . · µh).The length of a path µ is denoted |µ| and Θh denotes the set of all paths of length |µ|.
µ[i,j] is the in�x of the path µ between i and j: µ[i,j] = (µi · µi+1 · . . . · µj).De�nition 2 The observability matrix Oµ,h of a path µ ∈ Θh is de�ned as :

Oµ,h =










C
CAµ1...

C Aµh
Aµh−1

· · ·Aµ1
︸ ︷︷ ︸

h










(6)De�nition 3 On a �nite observation window [k − h, k], the a
tive path µ∗ is the one des
ribingthe a
tual mode sequen
e on the observation window.From de�nitions 1 and 3, the estimation of the a
tive mode at any moment is equivalent to thedetermination of the path des
ribing the true mode sequen
e on a �nite observation window. Inorder to a
hieve this, throughout the remainder of this paper, we will fo
us on the re
overy of thea
tive path on an observation window.3 Re
ognition of the A
tive Mode3.1 Dete
tion of the a
tive pathThe a
tive path determination task 
an be formulated as a re
ursive problem applied to a slidingwindow. On a time window [k − h, k], equation (5) 
an be written as:
Oµ,hx (k − h) =






y (k − h)...
y (k)




 − Tµ,h






u (k − h)...
u (k)




 (7)where Tµ,h is a Toeplitz matrix de�ned by :

Tµ,h =










0 0 . . . 0 0
CB 0 0 0... ... ...

C Aµk−1
. . . Aµk−h+1

︸ ︷︷ ︸

h−1

B C Aµk−1
. . . Aµk−h+2

︸ ︷︷ ︸

h−2

B . . . CB 0










(8)Equation (7) 
an be written in a more 
ompa
t way:
Yk−h,k − Tµ,hUk−h,k = Oµ,hx(k − h) (9)The relation (9) links on the time window the input and the output of the system to the initialstate x(k − h) on the observation window. We introdu
e the following proposition:4



Assumption 1 The observability matri
es Oµ,h of the paths µ generated on the observation window
[k − h, k] are all of full rank: rank (Oµ,h) = dim (x) = n, ∀h ≥ n.The existen
e of an integer h, su
h that assumption 1 holds, was analysed in [5℄ and is linked topathwise observability that have been furthermore shown to be de
idable.Using proposition 1, one 
an de�ne a proje
tion matrix1 Ωµ,h in su
h a way that Ωµ,hOµ,h = 0,i.e. Ωµ,h is sele
ted as a basis for the left null spa
e of Oµ,h.Next, residuals rµ,h(·), independent of the initial state x(k − h), 
an be de�ned as:

rµ,h(k) = Ωµ,h(Yk−h,k − Tµ,hUk−h,k) (10)The residuals rµ,h(·) are useful for the determination of the a
tive path on the observation windowand they only depend on measurable variables, namely the system input and output. In fa
t, forthe a
tive path µ∗, the residual rµ∗,h(·) equals zero.Theorem 1 The a
tive path µ∗ des
ribing the true mode sequen
e on a time window [k − h, k] isthe one satisfying:
rµ∗,h(k) = Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k) = 0 (11)To re
over the true mode sequen
e µ∗ from the system measurements, one 
an pro
eed in thefollowing way:

• �rst, all the possible paths of length h are built on the time window [k − h, k]. This isequivalent to �nding all the matri
es Oµ,h.
• knowing the matri
es Oµ,h, the proje
tion matri
es Ωµ,h are easily 
al
ulated.
• from the matri
es Oµ,h and Ωµ,h, one 
an form the residuals rµ,h(·) using the system mea-surements.
• the a
tive path is re
overed from the system measurements by testing the residuals rµ,h(·)and it 
orresponds to the one whi
h residual equals zero.Theorem 1 impli
itly says that the observability matri
es Oµ,h do not share the same null spa
e.Se
tion 3.2 will highlight the 
onditions that guarantee this impli
it assumption.3.2 On the number of pathsIt is easy to see that the enumeration of all paths on a time window [k−h, k] introdu
es a problemof 
ombinative explosion related to the number of modes and the length of the observation window.Indeed, the number of residuals rµ,h(·), µ ∈ Θh, to be 
al
ulated is equal to sh and qui
kly growswith the length h + 1 of the observation window and the number s of modes. Then, the use of allpaths on a time window is awkward and 
omputationally demanding.In pra
ti
e, all paths µ ∈ Θh do not have to be 
onsidered at every moment. When at a time k0,the a
tive path on an observation window [k0 − h, k0] is identi�ed, it is not ne
essary to test the shresiduals at the next instant k0 + 1. Only the paths µ ∈ Θh with in�xes µ[k0−h+1,k0−1] identi
al tothe in�x µ∗

[k0+1−h,k0−1] of the path µ∗ re
overed previously at k0 are 
onsidered at the next instant1In fa
t, the existen
e of the proje
tion matrix is dire
tly linked to the observability of the system and to thelength of the observation window [18℄ 5



k0 + 1.Moreover, assuming that the minimum sojourn time in a mode is greater than the length of theobservation window, one 
an limit the number of generated paths by only 
onsidering paths thatdes
ribe the mode sequen
e when the system remains in the same mode all over the duration ofthe observation window, i.e. µ = (i · i · . . . · i), i ∈ {1, 2, . . . , s}. Nevertheless, the redu
tion of thenumber of residuals 
omes at the expense of a delay in the estimation of the swit
hing time fromone mode to another. The re
ognition of the a
tive path 
annot take pla
e as long as the swit
hinginstant is in the observation window. Thus, when applying this redu
tion of the number of paths,a maximum delay equal to the length of the observation window exists.Prior knowledge of the pro
ess su
h as �prohibited� swit
hing sequen
es or minimal time betweentwo 
onse
utive swit
hes, 
an also help to limit the number of generated residuals or paths to be
onsidered.In a pra
ti
al implementation, the methodology should be to �rst 
ompute a redu
ed set of residuals
omposed of the residuals linked to paths that des
ribe the mode sequen
e when the system remainsin the same mode on the time window. From this initial set of residuals, a redu
ed set of residuals
an be 
onsidered at ea
h time instant, depending on the previously re
overed path. This operation
onsiderably redu
es the 
omputing load.3.3 Dis
ernability of the modesIn what follows, we are interested in the 
onditions guaranteeing the dis
ernability of the variouspaths enumerated on an observation window. These 
onditions ensure the uniqueness of the re-
overed a
tive path µ∗ during the path re
ognition pro
ess. Dis
ernability guarantees that twodi�erent modes never indu
e the system in the same dynami
s on a �nite time window.De�nition 4 Two paths µ1 ∈ Θh and µ2 ∈ Θh are dis
ernible on an observation window [k−h, k]if their respe
tive 
orresponding residuals rµ1,h(·) and rµ2,h(·) are not simultaneously null when oneof the two paths is a
tive on the 
onsidered observation window.The study of paths dis
ernability 
onditions have also been investigated by other authors likeBabaali and Egerstedt [3℄, Hwang et al. [20℄, Vidal et al. [26℄. The di�eren
e here is that the studyof the paths dis
ernability 
onditions is not performed independently of the a
tive mode observerbut also takes into a

ount the 
hara
teristi
s of the mode observer thanks to the analysis of theresiduals rµ,h(·).In order to establish the dis
ernability 
onditions of two di�erent paths, let us 
onsider two paths
µ1 ∈ Θh and µ2 ∈ Θh on an observation window [k − h, k]. We denote Y µ1

k−h,k (respe
tively
Y µ2

k−h,k) the system output ve
tor when the a
tive path is µ1 (respe
tively µ2). We suppose thatat an instant k, the a
tive path on the observation window is the path µ1. This information beingunknown, we have to analyse the possibilities that the path µ1 or the path µ2 are in adequa
y withthe system data. From (10), the expressions of the residuals rµ1,h(·) and rµ2,h(·) are given by:
{

rµ1,h(k) = Ωµ1,h

(
Yk−h,k − Tµ1,hUk−h,k

)

rµ2,h(k) = Ωµ2,h

(
Yk−h,k − Tµ2,hUk−h,k

) (12)
6



Sin
e µ1 is the a
tive mode on the observation window, equation (12) 
an be written as:






rµ1,h(k) = Ωµ1,h

(

Y µ1

k−h,k − Tµ1,hUk−h,k

)

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Tµ2,hUk−h,k

) (13)and, by de�nition, one also has Ωµ1,h

(

Y µ1

k−h,k − Tµ1,hUk−h,k

)

= 0. From where:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Tµ2,hUk−h,k

) (14)Adding and taking away Y µ2

k−h,k from the expression of rµ2,h(·), one obtains:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k + Y µ2

k−h,k − Tµ2,hUk−h,k

) (15)As by de�nition Ωµ2,h

(

Y µ2

k−h,k − Tµ2,hUk−h,k

)

= 0, one has:
{

rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k

) (16)Equation (16) 
learly points out that the residual 
al
ulated for the path µ2 (non-a
tive path)dire
tly depends on the di�eren
e between the system outputs when the mode sequen
e evolvesa

ording to the two paths µ1 and µ2, the system being ex
ited by the same inputs in both 
ases.From equation (16), a ne
essary and su�
ient 
ondition for the dis
ernability of the paths µ1 and
µ2 is:

Y µ1

k−h,k − Y µ2

k−h,k /∈ Nr(Ωµ2,h) (17)where Nr stands for the operator �right null spa
e�.A

ording to equation (9), one has:
Y µ1

k−h,k − Y µ2

k−h,k =
(
Oµ1,h −Oµ2,h

)
x(k − h) +

(
Tµ1,h − Tµ2,h

)
Uk−h,k (18)where x(k − h) is the value of the system state at the initial instant of the observation window.One dedu
es from (18) after multipli
ation on the left by Ωµ2,h:

Ωµ2,h(Y µ1

k−h,k − Y µ2

k−h,k) = Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k (19)If Y µ1

k−h,k − Y µ2

k−h,k belongs to the right null spa
e of Ωµ2 , one has:
Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0 (20)The relation (20) is satis�ed �for almost every initial state�2 x(k− h) if the following ne
essary andsu�
ient 
ondition is satis�ed:

{
Ωµ2,hOµ1,h = 0

Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0

(21)2see remark 1 for the explanation of the expression �for almost every initial state�7



Therefore, the paths µ1 and µ2 are not dis
ernible on a time window [k− h, k] if the relations (21)are satis�ed.Theorem 2 Two paths µ1 and µ2 of a swit
hing system are dis
ernible on an observation window
[k − h, k], �for almost every initial state� x(k − h), if:

Ωµi,hOµj ,h 6= 0, i, j ∈ {1, 2} , i 6= j (22)or
Ωµi,h

(
Tµj ,h − Tµi,h

)
Uk−h,k 6= 0 i, j ∈ {1, 2} , i 6= j (23)The proof of this theorem dire
tly 
omes from the pre
eding remarks.When the paths µ1 and µ2 are of the type (i · i · . . . · i), i ∈ {1, 2, . . . , s}, theorem 2 is equivalentto the mode dis
ernability 
onditions formulated in [14℄.Remark 1 In theorem 2, the expression �for almost every initial state� holds owing to the fa
tthat the dis
ernability of the paths 
annot be ensured for any initial state x(k − h). In fa
t, for
ertain parti
ular values of x(k − h), the relation (20) is always satis�ed independently of theinput sequen
e Uk−h,k. For example, in the situation where Oµ1,h has full rank, for x(k − h) =

(
Oµ1,h

)† (
Φ −

(
Tµ1,h − Tµ2,h

)
Uk−h,k

), equation (20) is satis�ed for every input sequen
e Uk−h,k,where Φ belongs to the right null spa
e of Ωµ2,h and (
Oµ1,h

)† is a pseudo-inverse of Oµ1,h.3.4 Determination of the a
tive mode in a noisy environmentIn se
tion 3.1, the determination of the a
tive mode at any moment was 
arried out within adeterministi
 framework, i.e. there were no noise on the system measurement. Now, we assumethe presen
e of a bounded noise on the output of the system des
ribed by equation (5). Theonly available information on the noise is its maximum magnitude. No probabilisti
 assumption isformulated on the probability distribution of the measurement noise:






x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k) + n(k)

∀k, |n(k)| ≤ δ, δ > 0

(24)where δ is the bound of the measurement noise magnitude n(·).In this situation, the residual rµ∗,h(·), de�ned by (11) and whi
h 
orresponds to the a
tive path µ∗on the time window [k − h, k], is no longer equal to zero. Indeed, the expression of the residual
rµ∗,h(·), using equation (10), be
omes:

rµ∗,h(k) = Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k + Nk−h,k) (25)where the values taken by the measurement noise on the observation window [k − h, k] are sta
kedin Nk−h,k. As Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k) = 0, one 
an write :
rµ∗,h(k) = Ωµ∗,hNk−h,k (26)Using the bound of the measurement noise magnitude, we 
an de�ne an interval residual [rµ∗,h(k)][2℄ :

[rµ∗,h(k)] = [rµ∗,h , r̄µ∗,h] (27)8



where rµ∗,h and r̄µ∗,h depends on the bound δ of the measurement noise and are given by :
rµ∗,h = − |Ωµ∗,h|Uδ and r̄µ∗,h = |Ωµ∗,h|Uδ, U being a 
olumn ve
tor of length equal to the numberof 
olumns of Ωµ∗,h and all the elements of U being equal to 1.In an interval framework, the determination of the a
tive path amounts to seeking the path that
orresponds to an interval residual in
luding the value zero. This test 
an be performed by 
al-
ulating the sign of the produ
t of the upper and lower bounds of ea
h interval residual [rµ,h(·)].The interval residual [rµ,h(·)] asso
iated with the a
tive path µ∗ is the one for whi
h the sign of theprodu
t of its upper and lower bound is negative.Depending on the evolution of the various operating regimes dynami
s, it 
an happen that morethan one interval residuals 
ontains the value zero, this situation being linked to the path dis
ern-ability and the bound of the measurement noise magnitude. In this 
ase, one refrains from makingany de
ision on the a
tive path. We have to 
onsider this situation from a looser point of view andwe 
an only enumerate the set of all possible a
tive paths. However, 
onsidering su

essive timeinstants k + 1, k + 2, . . ., the situation may be 
lari�ed.Note that it is also 
on
eivable to introdu
e some probabilisti
 modelling assumptions on theoutput noise and then refer to a statisti
al test like the CUSUM [7℄ algorithm to re
over the a
tivepath from the analysis of the generated residuals.4 Identi�
ation of the swit
hing lawOn
e the re
ognition of the a
tive mode at every moment is performed, the next step is to pro
eedto the identi�
ation of the parameters of the swit
hing law des
ribed by (5).The identi�
ation of the swit
hing law aims at �nding a 
omplete partition of the regressors setinto s polyhedral regions su
h that µk = i if ξk ∈ Hi, i ∈ {1, 2, . . . , s}. This problem amounts toseparating s sets of points by means of linear 
lassi�ers (hyperplanes). Depending on the a
tivemode estimation pro
ess, the resulting s sets of points may be linearly separable or not (due tonoise or mis
lassi�
ation). In the literature, Robust Linear Programming (RLP) [10℄ and SupportVe
tor Ma
hines (SVM ) [13℄ methods are employed.We 
onsider here another way to pro
eed to the determination of the parameters of the s polyhedralregions. An interval approa
h is adopted. The interval representation allows to look for a set ofa

eptable values for the swit
hing law, this set being of a simple geometri
al form. The 
omputationof the set of all feasible separating hyperplanes is also useful to the aim of 
hara
terising the modelun
ertainties.4.1 Determination of the swit
hing law parameters in an interval formWe assume that from model (5), one obtains a dataset D =

{
ξT
k , k = 1, . . . , N

}. After pro
eedingto the a
tive mode re
ognition, the dataset D 
an be partitioned into s 
lasses Ci, i = 1, . . . , s usingthe following 
lassi�
ation rule:
ξk ∈ Ci if µk = i (28)From the 
lasses Ci, i = 1 . . . , s, the determination of the parameters Hi, i = 1 . . . , s amountsto separating the s 
lasses using linear 
lassi�ers whi
h are, in this 
ase, hyperplanes. This 
anbe done by either 
onsidering all the s 
lasses together at the same time (one-against-all and all-together approa
h) or 
onsidering them pairwise (one-against-one approa
h). Here, we adopt theone-against-one approa
h. The one-against-one approa
h 
onsiders all possible 
ombinations of9



pair of 
lasses. Let us 
onsider two 
lasses Ci and Cj with i 6= j.To separate Ci and Cj , we need to 
ompute a hyperplane Hij = {ξk ∈ R
na+nb

∣
∣ hijϕ

T
k = 0 , hij ∈

R
na+nb+1}, with ϕk =

[
ξk 1

] , in su
h a way that:
{

hijϕ
T
k > 0 if ξk ∈ Ci

hijϕ
T
k < 0 if ξk ∈ Cj

(29)where hij ∈ R
na+nb+1.Using the system des
ription (5), one 
an write the relation (30) for any data ξk belonging to

Ci or Cj :
νk

(
hijϕ

T
k

)
> 0, k ∈ I = {k1, k2, . . . , kNij

} (30)where νk = sign (
hijϕ

T
k

) or alternatively:
νk =

{
1 if ξk ∈ Ci

−1 if ξk ∈ Cj
(31)and I is a set 
ontaining the time instants at whi
h the mode i or the mode j were dete
ted duringthe mode re
ognition pro
ess. The 
onstant Nij is the sum of the 
ardinal of Ci and the 
ardinalof Cj.Considering (30), for all the Nij data ξk, one obtains a set of inequalities that 
an be expressed inthe form of a linear matrix inequality:

−






νk1ϕk1...
νkNij

ϕkNij




hT

ij <






0...
0




 (32)The resolution of the LMI (32) gives a domain of a

eptable solutions to whi
h belong the parameters

hij . Generally, solving (32) leads to a �
omplex� domain, i.e. a domain des
ribed with a hugenumber of verti
e. To redu
e this 
omplexity, one 
an look for a simpler polytopi
 form des
ribinga redu
ed domain of a

eptable solutions. Here, we look for a zonotope.For example, the �rst graph of �gure 1 represents the proje
tion in R
2 of the found domain forthe dataset in table 1 with ϕk = (yk−1 uk−1 1), hij = (1 α β), α ∈ R and β ∈ R. This domainis depi
ted in the plan {α, β} on the graph on the left of �gure 1 and 
orresponds to the set ofinequalities (33) obtained from equation (32) :







β > 1
β < 2
−α + β > 0
−2α + β < 0

(33)All the points belonging to this domain are parti
ular a

eptable solutions. The symbol �o�highlights one of those a

eptable solutions and may be, for example, the one resulting from theimplementation of an interior-point algorithm. The graph on the right of �gure 1 presents a sub-optimal solution (grey area) that simpli�es the des
ription of the found domain in the form ofindependent inequalities in respe
t to α and β:
{

1 < α < 1.5
1.5 < β < 2

(34)10



Table 1: Dataset
uk−1 0 0 -1 -2
yk−1 -1 -2 0 0
νk 1 -1 1 -1
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Figure 1: A

eptable domains for α and βThe determination of a zonotope 
hara
terizing the set of a

eptable solutions is equivalent tothe determination of the parameters hij in an interval form. For that, many optimization 
riteria
an be 
hosen. For example, one 
an for
e the widths of the intervals to be determined to bemaximal while respe
ting the system 
onstraints.The parameters hij are des
ribed in an interval form by:






hij = hij0
+ λhij

⊗ rhij

rhij
> 0

∥
∥λhij

∥
∥
∞

≤ 1
(35)where hij0

is the ve
tor 
ontaining the 
entres of the sear
hed intervals, rhij
represents the half-widths of the intervals and the variables λ(·) are bounded normalized variables that allow to takeinto a

ount all the values inside an interval. The operator ⊗ performs a 
omponentwise produ
tof two ve
tors. We re
all that for any ve
tor e ∈ R

n, one has ‖e‖∞ = max
1≤i≤n

|ei|, ei being the ith
omponent of the ve
tor e. The inequality holding on the ve
tor rhij
is a 
omponentwise inequality.Using the interval form of hij (35), equation (30) 
an be rewritten as :







rhi,j
> 0

∥
∥λhij

∥
∥
∞

≤ 1

νk

(
hij0

+ λhij
⊗ rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

(36)
11



Hen
e, one has:






rhi,j
> 0

νk

(
hij0

+ rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

νk

(
hij0

− rhij

)
ϕk ≥ 0, k = k1, . . . , kNij

(37)Finally, to �nd hij0
et rhij

, we have to look for intervals with maximal half-widths while respe
tingthe 
onstraints (37). A natural 
hoi
e 
an be to maximize the volume of the zonotope. This leadsto the 
onstrained optimization problem (38):






max
hij0

,rhij

na+nb+1∏

m=1

rhij ,ms. t. (37) (38)where rhij ,m is the mth 
omponent of the ve
tor rhij
.One 
an then use 
lassi
al algorithms in the �eld of optimization [11℄ for the resolution of (38).The 
onstrained optimization problem (38) has to be solved for all pairs of 
lasses {Ci, Cj}, i 6= jand i, j ∈ {1, 2, . . . , s}.Remark 2 It is 
lear that the aim of the presented method in this se
tion is to propose a simplerdes
ription of a geometri
al domain represented by a set of inequalities. Hen
e, the method is insome way independent of the linear separability of the 
lasses and it will work , whether the 
lassesare linearly separable or not, as long as the initial geometri
al domain (32) exists. Moreover, theinner zonotopi
 approximation introdu
es some 
onservatism but this is not a huge drawba
k. It isthe 
ost of the obtaining of a very simple geometri
al des
ription of the initial domain (32).5 ExampleWe present here an a
ademi
 example of a swit
hing system. The simulated system is 
hara
terizedby three modes and the matri
es of the models des
ribing the di�erent modes are:

A1 =

(
−0.211 0

0 0.521

)

, A2 =

(
0.691 0

0 −0.310

)

,

A3 =

(
0.153 0

0 0.410

)

, B =
(

2 −1
)T

, C =
(

1 2
)

(39)Therefore, the modes 1, 2 and 3 of the system are represented by se
ond order models with
K1 = −1.464, K2 = 2.002 and K3 = −0.514 as respe
tive gains and the 
ouples (−0.211; 0.521),
(0.691;−0.310) and (0.153; 0.410) as respe
tive pairs of poles. The swit
hing law is 
hara
terizedby:







µk = 1 if
(

h12

[
yk−1 uk−1 1

]T
)

≥ 0 and
(

h13

[
yk−1 uk−1 1

]T
)

≥ 0

µk = 2 if
(

h12

[
yk−1 uk−1 1

]T
)

< 0 and
(

h23

[
yk−1 uk−1 1

]T
)

< 0

µk = 3 if
(

h23

[
yk−1 uk−1 1

]T
)

≥ 0 and
(

h13

[
yk−1 uk−1 1

]T
)

< 0

(40)12



Table 2: Set of all paths of length 2Path µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

µ1 1 1 1 2 2 2 3 3 3
µ2 1 2 3 1 2 3 1 2 3with h12 =

(
1 0.51 0

), h13 =
(

0 1 0
), h23 =

(
1 −0.29 0

).Figure 2 shows the input u(·), the output y(·), the state x(·) and the mode sequen
e µ(·). Theverti
al dashed lines on the third graph of �gure 2 mark the time instants at whi
h swit
hes o

ur.The fourth graph plots the mode sequen
e des
ribed by the mode sele
tion variable µ(·). For in-stan
e, on the time windows [1, 8] and [9, 17], the system is respe
tively in the modes 1 and 2.
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kFigure 2: Input u(·), output y(·), state x(·), mode sequen
e µ(·)As Ωµi,hOµj ,h 6= 0, µi, µj ∈ Θ2, µi 6= µj , Θ2 being the set of all paths of length 2, the 
ondition(22) of theorem 2 is respe
ted. Condition (23) is tested at every moment. If it is not satis�ed, node
ision is taken 
on
erning the re
ognition of the a
tive path.In order to perform the determination of the a
tive path at every moment from the systeminput and output signals, we 
onsider an observation window of length 3. The set Θ2 of all pathsof length 2 on the observation window 
orresponds to the set of the nine paths in table 2.Figure 3 presents the evolution of the 
al
ulated residuals. The di�erent graphs on the �gure showthe residuals r(i · j),h(·), i, j ∈ {1, 2, 3} 
orresponding to the paths of length 2 in table 2. Only one ofthe nine residuals equals zero at ea
h instant, the index (i · j) of this residual 
orresponding to thea
tive path on the 
onsidered time window. For example, from time k = 1 to k = 6, the residual
r(1 · 1),h(·) (�rst row and �rst 
olumn of �gure 3) equals zero, meaning that the path (1 · 1) is thea
tive one on the observation window. Hen
e, the a
tive mode on the window [1, 6] is the mode 1.At k = 7, only the residual r(1 · 2),h(·) equals zero, meaning that the path (1 · 2) be
omes the a
tiveone. From there, and taking into a

ount the length of the observation window, the o

urren
e ofa swit
h at k = 9 is highlighted. 13
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Figure 3: Residuals rµ,h(·), µ ∈ ΘhThe mode sequen
e (�rst graph of �gure 4) and its estimation (se
ond graph of �gure 4) whileanalysing the residuals are depi
ted on �gure 4. The �gure shows that the mode sequen
e is ex-a
tly re
onstru
ted.
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Figure 4: Mode re
ognitionAs explained in se
tion 3.2, in order to redu
e the number of residuals to be analysed during themode re
ognition pro
ess, one 
an 
onsider only the paths des
ribing the mode sequen
e when thesystem remains in the same mode all over the duration of the observation window. In this 
ase,only the paths (1 · 1), (2 · 2), and (3 · 3) have to be 
onsidered.For the system des
ribed by matri
es (39), we pro
eed to the re
ognition of the a
tive path ina noisy environment where the system output is subje
t to the e�e
t of a bounded noise. In thissituation, to make the analysis simpler, we only 
onsider the three paths (1 · 1), (2 · 2) and (3 · 3).14



The a
tive mode re
ognition is performed by analysing interval residuals as presented in se
tion 3.4.On �gure 5, the three interval residuals are shown in dashed lines. One 
an noti
e that only one ofthe three interval residuals in
ludes at any moment the value zero, this residual being asso
iatedwith the a
tive path on the observation window.
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Figure 5: Evolution of the residualsThe se
ond and the third graphs of �gure 6 illustrate the results of the a
tive path dete
tion byanalysing the interval residuals. The se
ond graph shows the modes dete
ted while testing the mem-bership of the value zero to the interval residuals. Although the modes are rather well dete
ted,there are situations where it was impossible to provide an estimate of µ(·) be
ause of the fa
t thatmore than one interval residual or none of the three interval residuals 
ontain the value zero. Onthe se
ond graph of �gure 6, the points, with Y-
oordinate equal to zero, emphasizes this kind ofsituation whi
h is due to the presen
e of noise and to the fa
t that all the possible paths on theobservation window are not 
onsidered in the analysis. The third graph of �gure 6 is obtained bytesting the 
oheren
e in the su

ession of the dete
ted a
tive paths at 
onse
utive moments. Thisis equivalent to the path redu
tion method presented in se
tion 3.2 using the in�x of the dete
teda
tive path. One 
an noti
e a perfe
t re
onstru
tion of the mode sequen
e.On
e the pro
ess of the a
tive mode re
ognition is performed, we 
an pro
eed now to theidenti�
ation of the parameters of the swit
hing law de�ned by equation (40). The dataset is as-sumed to be representative enough of the system's various operating regimes. The 
onstrainedoptimization problem (38) is resolved by using an iterative algorithm. The results are presented intable 3.In table 3, the 
entres of the intervals found are indi
ated by h(.)0
, the half-widths by rh(·)

and
15



10 20 30 40 50 60 70 80 90 100
0

1

2

3

true µ
k

10 20 30 40 50 60 70 80 90 100
0

1

2

3

estimated µ
k

10 20 30 40 50 60 70 80 90 100
0

1

2

3

estimated µ
kFigure 6: A
tive path re
ognitionTable 3: Bounded parameters

h12 h120
rh12

1 1.013 0.526

0.51 0.694 0.215

0 0.000 0.001

h13 h130
rh13

0 0.013 0.180

1 1.052 0.381

0 0.011 0.021

h23 h230
rh23

1 1.112 0.281

−0.29 −0.326 0.197

0 0.001 0.007the real values are represented by h(·). From table 3, the intervals found are:
[h12] =

(

[0.604 , 1.656] [0.470 , 0.909] [−0.001 , 0.001]
)

[h13] =
(

[−0.167 , 0.193] [0.671 , 1.433] [−0.010 , 0.032]
)

[h23] =
(

[0.831 , 1.393] [−0.523 , −0.129] [−0.006 , 0.008]
)

(41)While analysing the estimated values in table 3, one 
an see that the estimated intervals for theswit
hing law parameters always in
lude the real values h(·). In fa
t, this situation depends onthe lo
alization of the data points in the regressor set. When there are many data points whi
hare 
lose to the separating hyperplanes in the estimation dataset, the estimated interval for theswit
hing law parameters are likely to 
ontain the real parameters.6 Con
lusionIn this paper, we put forward a method for the determination of the swit
hing instants and thea
tive mode of a swit
hing system. The method rests on the analysis of residuals generated from16



the di�erent modes of the system. We have also examined how to 
arry out the identi�
ation ofthe parameters of the swit
hing law governing the swit
hes from one mode to another by using anapproa
h that 
omputes the bounds of the parameters to be identi�ed.A point to be developed is the situation where all the modes of the system are not indexedbeforehand. In this 
ase, one does not have 
omplete knowledge of all the operating regimes of thesystem. Therefore, when a new mode is dete
ted, it is ne
essary to pro
eed to the identi�
ation ofthe non-indexed operating modes i.e. the state matri
es 
orresponding to these modes.Referen
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