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Résumé

Résumé. On assiste, depuis une bonne dizaine d’années, & un développement considérable de méthodes concourant
a I’efficacité du fonctionnement des systemes technologiques. Ces méthodes s’appliquent lors de la conception d’un
systéme mais aussi dans la phase d’exploitation de ce systeme. Dans ce cas, les méthodes visent d’une part a mieux
connaitre a chaque instant le mode de fonctionnement du systeme en question, et d’autre part, en cas de dysfonction-
nement avéré ou de dérive par rapport au fonctionnement souhaité, a réagir sur les parametres de contrdle du systeme.
Cet exposé est focalisé sur le probleme de la validation des mesures, les mesures validées servant précisément a mieux
connaitre 1’état du systéme. La validation de donnée procede par comparaison des estimés d’une méme grandeur et
nécessite donc de disposer de redondances qui sont d’ordre matériel ou analytique. Dans cet exposé, trois approches
sont considérées correspondant a trois niveaux de redondance : traitement de données par analyse en composantes
principales, réconciliation de données a partir de modeles statiques, estimation d’état a partir de modeles dynamiques.

Mots-clefs : réconciliation de données, diagnostic, détection de défauts, estimation d’état, méthode avec modele,

analyse en composantes principales, robustesse.

1 Introduction

Pour fonctionner correctement, les systemes de
contrdle-commande et de supervision des installations in-
dustrielles ont besoin de recevoir, en permanence, des
informations représentatives de leur état. L’élaboration
de commandes complexes est en effet inefficace, si les
informations prises en compte par les algorithmes qui
les génerent sont erronées et/ou incohérentes. La perfor-
mance et la fiabilité de 1’ensemble des moyens de com-
mande et de contrdle sont liées a la qualité des systemes de
mesures. Toute défaillance de I’instrumentation conduit a
la génération d’informations erronées. La validation de
données qui permet de s’assurer de la cohérence des in-
formations acquises constitue donc une étape essentielle
qui doit précéder toute tentative de conduite rationnelle.
L’étude de cette cohérence est délicate car les données
sont le plus souvent hétérogenes (grandeurs physiques de
natures différentes) et incompletes (en milieu industriel,
il est impossible, pour des raisons de coflit ou des raisons
technologiques, de disposer d’information sur chaque va-
riable du systéme). De plus, les installations considérées
sont souvent d’assez grande dimension et ont un compor-
tement non linéaire.

La validation de données s’appuie sur la connaissance
plus ou moins précise d’un modele de comportement du
systeme a surveiller ou d’une partie de celui-ci et a pour
objet principal :

— d’élaborer, a partir de variables mesurées, des es-
timés cohérents avec ce modele et des indicateurs
globaux de bon fonctionnement ;

— d’enrichir la base de données en fournissant des es-
timés de grandeurs inaccessibles a la mesure ;

— de détecter et localiser, le plus précocement pos-
sible, ’apparition de défauts de mesure (cette
étape peut éventuellement étre suivie d’une ca-
ractérisation des défauts, c’est-a-dire de 1’estima-
tion de leur amplitude).

L’'une des techniques permettant de s’assurer de la
crédibilité d’une mesure consiste a créer une redondance
d’informations ; celle-ci peut étre obtenue en utilisant, par
exemple, les relations structurellement exactes de bilan
matiere ou de bilan énergie. Ce type de redondance est
qualifié d’analytique ou fonctionnelle, contrairement a la
redondance matérielle obtenue en multipliant les capteurs
mesurant une méme grandeur.

La mise en évidence et I’extraction de redondance



constitue le point de départ des méthodes de diagnos-
tic. Quelques nuances peuvent étre apportées selon que
ces redondances sont explicitées ou non. Ainsi, lorsque
on cherche a vérifier si un bilan de production est res-
pecté (égalité de la somme des flux entrants et de la
somme des flux sortants dans I’installation considérée), on
a besoin de fagon explicite des équations de conservation
de la matiere (ou de I’énergie) pour procéder a ce test;
le modele du procédé est donc explicitement connu et
pour cela nécessite une phase préalable de modélisation.
Par contre, certaines techniques de traitement de données
sont capables de détecter des données aberrantes et méme
des modifications de comportement d’un procédé sans
modele préalable explicite de ce procédé. C’est le cas,
par exemple, des analyses en composantes principales
(ACP) qui sont capables de mettre en évidence des
hétérogénéités dans des flux de données. En réalité, 1’exa-
men attentif des techniques d’ACP montre 1’existence
d’un modele sous-jacent prenant en compte 1’existence de
relations linéaires ou quasi-linéaires entre les différentes
variables.

L’exposé est articulé autour de trois points. La sec-
tion 2 traite de I’ACP et rappelle brievement sa formula-
tion classique et son application a la détection de données
aberrantes. Quelques compléments donnent un apercu sur
des extensions de cette technique en abordant notamment
les problemes de robustesse. La section 3 est consacrée
a la validation de données par réconciliation, cette tech-
nique étant présentée dans sa version de base puis étendue
a des situations plus complexes. Enfin, la section 4 traite
de I’estimation de 1’état de fonctionnement des systemes
en évoquant des problemes délicats d’excitations incon-
nues, de commutation de modes de fonctionnement, de
systemes décrits par plusieurs modeles.

On notera que les trois sections utilisent une connais-
sance de plus en plus précise du systeéme que 1’on cherche
a surveiller : pour ACP le modele du systeme n’est
pas connu a priori, pour la réconciliation de données le
modele est sous forme statique, enfin les observateurs
d’état font usage de modeles dynamiques.

2 Analyse en composantes princi-
pales et cohérence de données

Bien que généralement classée parmi les méthodes
sans modele, I’analyse en composantes principales
élabore implicitement un modele du systeme a partir de
données expérimentales prélevées sur le systeme. L’ACP
peut donc étre considérée comme une méthode de diag-
nostic basée sur le concept de redondance analytique a
part entiere. Cette méthode permet :

— la mise en évidence de toutes les relations linéaires
entre les variables du systeéme sans les formuler

explicitement. C’est un point important pour des
systemes de grande dimension dont les composants
peuvent étre fortement liés (degré de redondance
élevé) ;

— la prise en compte de criteres propres au diagnos-
tic (détectabilité des défauts) lors de la synthese
du modele [13]. Eventuellement, 1’isolation des
défauts peut étre effectuée a partir d’ACP utilisant
une partie adéquate des données.

2.1 Principe de base

Soit x(k) = [z1(k) z2(k) ... zm(k)]" le vecteur
contenant les m variables observées du systeme (mesures
ou commandes) a ’instant k. Considérons la matrice de
données X = [x(1) x(2) ... x(N)]" € R¥*™ compre-
nant N observations x(k) recueillies sur ce processus en
fonctionnement normal.

L’ACP détermine une transformation optimale (vis-a-
vis d’un critére de variance) de la matrice de données X :

T=XP et X=TPT (1)

avec T = [t ty ... t,,] € RY*™ ot les t; sont les com-
posantes principales et la matrice P = [py p2 ... Dm] €
R*™ou les vecteurs orthogonaux p; sont les vec-
teurs propres correspondant aux valeurs propres \; de la
décomposition en valeurs et vecteurs propres de la matrice
de covariance (ou de corrélation) 3 de X :

Y = PAPT PP =PT'P=1, (©2

avec A une matrice diagonale ou les termes diago-
naux sont ordonnés dans 1’ordre décroissant. Les valeurs
propres les plus petites par rapport aux autres indiquent
I’existence de relations linéaires ou quasi-linéaires entre
les différentes composantes de X.

Pour une valeur de I’entier ¢ donnée, les matrices des
vecteurs propres et des composantes principales sont par-
titionnées sous la forme :

PZ[Pe‘Pm—zL T:[TZ‘Tm—E] 3)

A partir de I’équation (1), on peut alors expliciter la
partie X des données expliquées uniquement par les ¢ pre-
miers vecteurs propres et la partie résiduelle E expliquée
par les composantes restantes :

X =XPPl =XC,
E=X-X=X{I-0Cy)

avec

“4)
(&)

ou I’on notera que la matrice Cp = pngT n’est pas égale
a la matrice identité.

Détermination du nombre de composantes ¢

Qin et Dunia (2000) ont proposé de déterminer la valeur
du nombre ¢ de composantes a retenir par minimisation de
la variance de I’erreur de reconstruction. La reconstruc-
tion consiste a estimer une variable a 1’aide du modele



ACP et des autres variables, i.e. a partir des relations de
redondance existant entre cette variable et les autres.
Rappelons comment reconstruire une variable. Soit
x;(k) = [z1(k) ... z(k) ... 2m(k)]" le vecteur de
mesure x(k) a I'instant k dont la j*™ composante est re-

construite de la fagon suivante [12] :

x;(k) = G; x(k) (6)
et
el 0l
Gi=[& g &m ],gfw ™
— Cjj
oug;=[0...1... O]T estla jéme colonne de la matrice

identité, c; est la 4™ colonne de Cy et les indices +j
et —j désignent, respectivement, les vecteurs formés par
les (j — 1) premiers et les (m — j) derniers éléments du
vecteur c;.

La variance de I’erreur de reconstruction de la j°™°

composante de x(k) est donnée par :
)3

)
G

pi(l) =
oug; = (I-Cr)g.

Le nombre de composantes principales a retenir s’ob-
tient en minimisant par rapport a £ le critere :

gy =N L)
() 2 ¢Txg;

les contributions des variables au critére étant pondérées
par leurs variances.

Ayant défini le modele ACP , et en particulier le
nombre de composantes principales significatives a re-
tenir, nous examinons maintenant son utilisation pour la

détection et la localisation de défauts de capteurs.

Génération de résidus indicateurs de défauts
Considérons un nouveau vecteur de mesure x(k) dont on
souhaite éprouver la consistance. Evaluons le vecteur des
dernieres composantes principales (1) :

tm—e(k) = PL_,x(k) (10)

Soient x°(k) le vecteur des valeurs vraies, (k) le vec-
teur des bruits de mesure supposé blanc et £y la direction
du défaut. En présence d’un défaut d’amplitude d(k) quel-
conque, on peut expliciter le vecteur de mesure sous la
forme :

x(k) = x°(k) + e(k) + £rd(k) (11

Le vecteur des résidus (10) s’écrit alors :
tom—o(K) Bl _yx®(k) +PL_, e(k) + PL_, &pd(k)
—_———

=0

(12)

En absence de défauts, 1’espérance mathématique du
résidu est nulle. Par contre, en présence de défauts,
I’espérance mathématique du résidu n’est plus nulle et
le défaut affecte toutes les composantes du vecteur des
résidus :

z T

Esp(tm—o(k)) = P,y §d(k)

On peut noter le rdle important joué par la matrice
PSL ¢ &7 qui indique la fagon dont les résidus sont in-
fluencés par le défaut considéré. L'examen du rang de
cette matrice et de ses colonnes est révélateur de 1’in-
fluence de ce défaut.

Localisation de défauts par reconstruction

Pour localiser la ou les variables du vecteur z(k) qui sont
en cause, c’est-a-dire retrouver la direction £y, nous al-
lons tout a tour reconstruire chaque variable de ce vecteur
a partir du modele ACP établi précédemment et des autres
variables [13],[17], [18].

Etudions la propagation d’un défaut sur le vecteur des
reconstructions x; (k) dans la direction j, ¢’est-a-dire :

xj(k) = G;(x°(k) + e(k)) + G &pd(k) — (13)
qui se réduit naturellement a :
x;(k) = G;(e(k)) + G &pd(k) (14)

Si la variable en défaut est la variable reconstruite (j = f)
alors, compte tenu de la définition de G5, on peut montrer
que :

Gi&r =0 (15)

A partir de I’équation (15), on constate que si la re-
construction se fait dans la direction du défaut (c’est-a-
dire quand j = f), 'effet du défaut est éliminé sur x;
puisque :

Esp(x;(k)) = G; §pd(k) =0

Ainsi, I’analyse des amplitudes des différents résidus
obtenus par reconstruction dans toutes les directions
(j=1..m) est révélatrice de la présence de défauts et per-
met de déterminer la composante de la donnée affectée
par ce défaut.

Remarque - Cette méthode peut étre utilisée pour la
localisation de défauts multiples en reconstruisant simul-
tanément les variables supposées en défauts [13].



2.2 Extension : ACP robuste

L’ACP est essentiellement basée sur la mise en
évidence de relations linéaires ou quasi-linéaires entre les
variables et présente un caractere d’optimalité uniquement
au sens d’un critére portant sur ’erreur quadratique d’es-
timation en valeur moyenne (MSE). Il est bien connu que
I’estimation basée sur 1’utilisation de critere de type MSE
est moins robuste aux valeurs aberrantes que celle issue
d’autres criteres comme celui de I’erreur en valeur abso-
lue.

Pour préciser ce point, rappelons que 1’approche
classique de I’ACP utilise un calcul préliminaire de la
moyenne des données et de leur matrice de covariance ;
la moyenne et la variance sont sensibles a la présence
de valeurs aberrantes, et les résultats obtenus s’averent
souvent inexploitables car trop biaisés par I’influence
de ces valeurs aberrantes. Afin de réduire la sensibilité
de ’ACP aux valeurs aberrantes, nous avons privilégié
une technique consistant a réaliser ’ACP directement sur
les données éventuellement contaminées par des valeurs
aberrantes en recherchant des directions principales in-
sensibles a ces valeurs aberrantes. Dans [6], les auteurs
définissent une matrice de covariance “’locale” qui tend
a privilégier la contribution d’observations proches au
détriment d’observations éloignées, 1’éloignement étant
dh a la présence de valeurs aberrantes. Cette matrice est
définie de la facon suivante :

N—-1 N
S3 iy (x0) — x() (x(0) — x(7))"

i=1 j=i+1

i:

(16)
ou les poids w; ; sont eux-mémes définis par :

wig = exp (= () = x())" 57 (x() - x07)
a7
[ étant un parametre a régler pour obtenir effectivement
une réduction de I’influence des observations éloignées.
I’ ACP peut alors étre conduite sur cette “nouvelle” ma-
trice de covariance réputée robuste vis-a-vis des valeurs
aberrantes grice a la présence de poids adaptés w; ;.

3 Réconciliation des données

3.1 Principe de base

La réconciliation de données a pour but de rendre
compatibles les mesures effectuées sur un systeme avec
son modele. A ce titre, les méthodes de réconciliation
se rapprochent parfaitement des méthodes d’estimation
d’état. Une conséquence importante de la réconciliation
est la détection de valeurs de mesures aberrantes. En effet,

les valeurs réconciliées peuvent &tre comparés aux me-
sures ; les écarts constatés peuvent étre analysés, les plus
grands d’entre eux pouvant témoigner de la présence de
mesures aberrantes.

La validation de données peut étre effectuée sur la
base de modeles plus ou moins complexes selon la
connaissance dont on dispose sur une installation. Comme
nous 1’avons mentionné précédemment, 1’établissement
de bilans mati¢re élémentaires sur des durées d’observa-
tion suffisamment importantes conduit a des modeles sta-
tiques linéaires. En pratique, dans ce cas, les grandeurs
sujettes a validation sont des cumuls ou des moyennes des
mesures des grandeurs physiques sur une fenétre d’obser-
vation temporelle. La prise en compte de bilans énergie
ou de bilans par especes chimiques ou minérales, par
exemple, nécessite 1’'usage de modeles non linéaires. La
validation de données peut également étre effectuée, a
chaque instant, en utilisant des modeles dynamiques ; en
fait, les méthodes développées dans le cadre des modeles
statiques peuvent €tre ré-utilisées pour les modeles dy-
namiques. Pour cette raison, les principes généraux de
la validation de données sont exposés pour le cas des
modeles statiques. On considere donc un systéme pouvant
&étre décrit par :

— un ensemble de contraintes statiques représenté par
une fonction vectorielle (linéaire ou non linéaire)
d’un vecteur d’état inconnu :

F(X*)=0 (18)

ol F(X*) est de dimension n et X*, le vecteur
d’état du systeme, est de dimension v ;

— une équation d’observation liant un vecteur de me-
sure Z aux états :

Z=H(X")+e (19)

ol Z est de dimension m, H(X™*) caractérise le
systéme de mesure et €, de dimension m, est un vec-
teur aléatoire d’erreurs de mesure caractérisées par
des lois de distributions de probabilité connues.
Historiquement, la 1loi de Laplace-Gauss a
précisément été élaborée a partir de 1’observation sta-
tistique d’erreurs de mesure.
Pour une variable aléatoire continue scalaire, la den-
sité de probabilité d’une telle loi s’écrit :

2
1 1 /(x—p
flr)=—exp| =
(@) 2o 2 o
ou u et o représentent respectivement 1’espérance
et I’écart-type de la distribution. Cette expression se

généralise dans le cas d’une variable aléatoire vectorielle
X € R™ sous la forme :

(20)

1) = G 9 (51X B0l )

2n



ou, par définition, 1’écriture ||U||3 correspond a UTTU.

Pour un échantillon de IV observations indépendantes
Z; = H(X*) 4+ ¢, pour i = 1,..., N, la fonction de
vraisemblance s’écrit comme le produit des densités de
probabilité des erreurs :

N
1 1 -
B WEGXI@ <2||Zi - H(X )V_1>

(22)

Au sens du maximum de vraisemblance, le meilleur
estimé X est celui qui maximise la fonction de vrai-
semblance tout en respectant les contraintes du modele
F(X)=0.

Compte tenu de la forme de cette fonction de vrai-
semblance et du fait que la fonction logarithme est une
fonction monotone, on peut maximiser le logarithme de
la fonction de vraisemblance qui possede son maximum
pour les mémes valeurs d’argument que la fonction de
vraisemblance :

In(v) = s

(23)

En supprimant le terme constant, le probleme d’esti-

mation revient donc a chercher le minimum, par rapport a
X*, du critere :

N
S nrm V)~ 5312 - H(X®

i=1

¢ = 1n|V| ZHZ H(X)|3-

sous les contraintes F/(X*) =0

(24)

Selon le degré de connaissance de la matrice de
variance-covariance V' des erreurs de mesure, la solu-
tion peut étre explicitée davantage. L’hypothese la plus
communément employée consiste a supposer que la ma-
trice de variance des erreurs de mesures est connue. En
effet, celle-ci peut étre déduite de la connaissance des
précisions avec lesquelles les mesures sont effectuées.
Fréquemment, cette matrice est également supposée dia-
gonale, c’est-a-dire que 1’on formule I’hypothese que les
erreurs de mesure sont statistiquement indépendantes. Le
probléme précédent [24] se ramene alors a la recherche
du minimum, par rapport a la grandeur inconnue X*, du
critere :

][

1 N
=3 Z |(Z; — H(X*
=1

sous les contraintes F'(X*) =0

(25)

Il s’agit donc d’un probleme classique d’optimisation
sous contraintes égalité [37]. La difficulté de résolution
de ce probleme dépend étroitement de la structure et de
la dimension des équations du modele, de la structure des
contraintes et du nombre d’observations. Dans le cas de

contraintes et d’équations d’observation linéaires, les so-
Iutions sont analytiques [40]. Dans tous les autres cas,
il faut utiliser les techniques de calcul hiérarchisé, de
linéarisation, de changement de variables ou méme des
solutions approchées. De nombreux travaux présentent
ces techniques, par exemple [44], [27].

3.2 Extension : réconciliation robuste

De nombreux développements completent le principe
de base que nous venons de rappeler. Ils sont nés de la
nécessité de pouvoir appliquer ce principe a des situations
et des données réelles, situations qui ne respectent pas
toujours les hypotheses de base précédemment utilisées.
C’est ainsi que des extensions ont permis de s’intéresser
aux systemes dynamiques [10], a la présence d’erreurs
de mesure bornées [35], [39], [38], a la présence de pa-
rametres mal connus [4], & I’estimation de la précision des
mesures [26], a la réconciliation des données de facon si-
multanée a 1’estimation des parametres du systeme [31],
a la localisation de défauts de mesure [33] [34], a la
conception de réseaux de capteurs pour la surveillance des
systemes [24],[5].

Dans ce paragraphe, le point particulier de la robus-
tesse de la réconciliation vis-a-vis des mesures aberrantes
est abordé. Pour introduire cette problématique, rappe-
lons que la réconciliation repose sur la minimisation d’un
critere formé a partir des écarts pondérés entre estimés et
mesures, les pondérations étant proportionnnelles aux va-
riances des erreurs de mesure. La validité et le caractere
optimal de cette approche sont éminemment liés a I’hy-
pothese forte de normalité des erreurs de mesure. Dans
la pratique, cette hypothese peut étre mise en défaut en
présence de grosses erreurs qui constituent des valeurs
aberrantes. On apporte donc plus de réalisme en posant
le probleme de réconciliation de la fagon suivante. A par-
tir de mesures z; estimer les grandeurs vraies ;] d’un
systeéme a modele linéaire, sachant que :

(26a)

T, =x; + € + g, i=1.v

v
*

E ai,jxj = 07

Jj=1

les mesures étant affectées par des erreurs de faibles et
de grosses amplitudes ¢; et g;, ces dernieres n’étant pas
connues a priori. Pour prendre ces erreurs en compte, plu-
sieurs approches ont été envisagées.

i=1.n (26b)

Partant de I’hypotheése que le nombre de grosses
erreurs est faible, la premicre technique procede par
réconciliation des mesures par moindres carrés (donc avec
I’hypothése de normalité des erreurs), puis détecte et lo-
calise les grosses erreurs (analyse des termes correctifs),
et enfin reconduit la procédure de réconciliation en affec-
tant une variance trés grande aux mesures pour lesquelles



des grosses erreurs ont été localisées. Le défaut majeur de
cette a‘pproche réside dans la premiere réconciliation qui
peut s’avérer fortement erronnée en raison de la présence
des grosses erreurs ; ceci peut rendre ensuite difficile la
localisation des grosses erreurs en analysant les termes
correctifs.

La seconde approche cherche a prendre en compte
directement la présence des grosses erreurs au moyen
d’une loi de distribution plus appropriée. La classe des
M-estimateurs fournit des estimées robustes vis-a-vis des
grosses erreurs. Le critére d’estimation est pris sous la
forme :

N
©, = —> log (f(e:)) 27)
i=1
ou f est habituellement une distribution dite contaminée,
c’est-a-dire prenant en compte la présence des erreurs de
faibles amplitudes et les grosses erreurs [41]. Par exemple,
avec des distributions normales :

flei) = ppri(e) + (1 — p)p2,ie;) (28)
N
exp —1 (M) (29)

2 01,

)

1 (ar =7\
o 30
(7)) e

Les écart-types o9 ; seront choisis plus grands que o ;
afin de marquer la disparité entre les deux types d’er-
reur. Dans la pratique, on pourra choisir une dépendance
linéaire entre les écart-types des deux distributions o3 ; =
A.o1,;. Le coefficient p, encore appelé parametre de
mélange traduit la proportion de grosses erreurs dans les
mesures. C’est un coefficient connu a priori ou dans le cas
contraire qui peut étre estimé.

Finalement, avec le critere (27) et compte tenu
des définitions (28, 29, 30) et des contraintes (26), la
réconciliation des données résulte donc d’une procédure
d’optimisation sous contraintes. La forme du critére a op-
timiser limite ici les approches analytiques qui doivent
étre substituées par des approches numériques souvent
itératives [41], [42].

1
pl,i(fi) = \/%70
1,i

exp

1
p2,i(€i) = \/ﬂia
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3.3 Applications

La réconciliation de mesures est un moyen largement
répandu et appliqué au niveau industriel pour mettre en
évidence la cohérence ou 1’incohérence des mesures, et
dans le deuxieéme cas, pour corriger ces incohérences.

Dans D'article [3], les auteurs présentent un exemple
d’application de la réconciliation de données a des me-
sures fournies par les capteurs installés sur un four de
durcissement de boulettes d’oxyde de fer. Les résultats
montrent que la technique utilisée permet d’estimer des
débits de gaz dans des conduites de plusieurs metres

de diametre a partir de mesures de pression et de
température, en plus de permettre d’identifier des me-
sures imprécises ou biaisées de capteurs. Les résultats
peuvent aussi étre utilisés pour le développement de cap-
teurs virtuels pour relier la puissance de ventilateurs au
débit de gaz poussé par ces derniers.

On trouve des applications semblables dans le do-
maine de l’industrie papetiere [19], [5], de I’industrie
nucléaire [11], de I’industrie minérale [2], [25], de I’hy-
draulique [10], [31], [28], [43], de I’énergie [21], de la
sidérurgie [49], [38], du génie chimique [34], [39], [44].
Toutes ces applications mettent en évidence I’intérét des
procédures de réconciliation de données qui fournissent
une critique des données et des mesures, qui restituent a
I'utilisateur des données cohérentes pouvant ensuite étre
utilisées dans des procédures de contrdle des processus.

4 Diagnostic a base d’observateurs

Cette section présente quelques méthodes de diagnos-
tic de systemes exploitables lorsque 1’opérateur dispose
d’un modele du systeme a superviser. Ce modele est un
ensemble de relations mathématiques faisant intervenir les
variables d’entrée et de sortie du systeme, ainsi que des
variables internes caractéristiques de 1’état du systeme.
Un tel modele est obtenu, soit a partir des lois de com-
portement des éléments constitutifs du systeme, soit par
identification a partir de la mesure en fonctionnement des
signaux d’entrée et de sortie.

Une fois le modele du systeme établi, il est possible de
I’utiliser pour avoir une meilleure connaissance de I’état
dans lequel est le systeme. Généralement 1’opérateur a
acces aux mesures des grandeurs d’entrée et de sortie,
en revanche, les grandeurs internes peuvent étre inacces-
sibles a la mesure. Afin de pallier ce manque, on peut
chercher a construire un filtre, qui permet de déduire la
valeur des grandeurs internes a partir des grandeurs me-
surées, on parle alors d’observateur.

Le principe général du diagnostic a base d’observa-
teurs est que le modele du systeme représente son fonc-
tionnement sain, c’est a dire exempt de tout défaut. Autre-
ment dit, I’estimation obtenue en utilisant un observateur
donne les valeurs des grandeurs internes en I’absence de
défaut et I’estimation des variables d’état permet, a 1’aide
du modele, d’estimer les variables de sorties. Il est alors
possible de comparer les sorties mesurées et les sorties
estimées. L' éventuel écart entre les grandeurs mesurées et
estimées met en évidence un écart entre le fonctionnement
réel et le fonctionnement sain du systeme. En d’autres
termes, cet écart peut étre considéré comme un résidu,
c’est a dire un indicateur de 1’occurrence d’un dysfonc-
tionnement.

Les dysfonctionnements affectant un systéme sont
souvent modélisés par des signaux inconnus qui peuvent



étre de deux natures. D une part les signaux de défauts,
qui représentent le mauvais fonctionnement d’un compo-
sant, par exemple la déviation d’un capteur ou la varia-
tion d’un parametre due a 1’'usure mécanique d’une piece.
D’autre part, des signaux de perturbations induits par les
différentes sources d’incertitudes, par exemple des erreurs
commises lors de la modélisation ou des imprécisions de
mesures. L objectif du diagnostic est de pouvoir mettre en
évidence la présence des défauts malgré la présence des
perturbations.

Dans la suite, nous détaillerons ces techniques dans
le cas des systémes décrits par un modele dynamique
linéaire. Malgré 1’apparente simplicité de cette classe de
modeles, cette approche permet de décrire une grande
variété de processus. Par la suite, le diagnostic d’autres
classes de modeles sera évoqué.

4.1 Diagnostic de systemes linéaires

Synthese d’observateur

Dans cette partie, il est supposé que le processus a sur-
veiller peut &tre décrit par un modele dynamique linéaire
défini par :

dxz(t)
dt

= Ax(t) + Bu(t)
€1y

ou u(t) € RP est le vecteur des entrées de commande du
systetme, z(t) € R™ est le vecteur des variables internes
du systéme, aussi appelé vecteur d’état, et y(t) € R™ est
le vecteur des sorties mesurées. Les matrices A € R**",
B € R*"*P et C € R™*" sont des matrices constantes et
connues.

L’observateur est un filtre actif qui permet de recons-
truire I’état x(¢) a partir des grandeurs connues u(t) et
y(t). Les estimées de I’état et des sorties sont notées res-
pectivement Z(¢) et (t) et sont définies par le systéme
suivant :

(t) (32)

Cette structure, proposée par [22], peut étre intuitivement
percue comme un systeéme évoluant en parallele selon le
modele connu du systeme et qui, de plus, comporte un
bouclage sur ’erreur de sortie (terme K (y(t) — 4(¢)) afin
de corriger I’erreur d’estimation de 1’état. Cela se vérifie
analytiquement, en étudiant 1’évolution de I’erreur d’esti-
mation de 1’état, Z(t) = x(¢) — Z(t). Cette erreur obéit a
I’équation suivante, obtenue avec (31) et (32) :

dz (%)
dt

= (A— KC)i(t) (33)

Si la matrice K est choisie telle que A — K C est stable,
alors I’erreur d’estimation converge vers 0 quelles que

soient les valeurs xy (inconnue) et Z( (fixée arbitraire-
ment). Autrement dit, méme si la valeur initiale de 1’état
est inconnue, I’observateur donnera une estimation juste
de I’état, apres un régime transitoire court dépendant du
choix de K.

Application au diagnostic
Afin d’illustrer I’ utilisation d’un observateur pour le diag-
nostic, on considere a présent un modele linéaire décrivant
un processus affecté de défauts de capteur f.(t) définis
par :

W) — Aw(t) + Bult)
y(t% = Cux(t) + Cofe(t)

x(0) = xo

(34)

Dans ce cas Ierreur d’estimation de 1’état Z(t) et de la
sortie g(t) = y(t) — ¢(t) sont définies par :

B — (A~ KO)#(t) — KC.fo(t)
G(t) = CE(t) + Cefult) (35)
.f?(O) =Ty — i‘o

En I’absence de défaut, les signaux Z(t) et §(¢) tendent
asymptotiquement vers 0. En revanche, a I’apparition de
fe(t), les erreurs d’estimation de I’état ou des sorties vont
s’écarter de 0. Les variables internes étant généralement
inconnues de 1’opérateur, il est donc impossible de former
I’écart Z(t) ; néanmoins il est possible de calculer ().

Une valeur de g(t) significativement différente de 0
est un indicateur de I’occurrence d’un défaut, autrement
dit permet la détection de défaut. Pour obtenir une infor-
mation plus précise, en particulier étre capable de savoir
quel défaut est apparu, il faut étudier plus précisément la
structure de 1’observateur. Par exemple il est possible de
choisir le gain K de 1’observateur dans le but de rendre
une composante du vecteur §(¢) particulierement sensible
a un défaut donné, il s’agit du placement de structure
propre [?].

Les caractéristiques statistiques de g(¢) peuvent
également étre exploitées. En effet, si un comportement
aléatoire de 7(t) peut s’expliquer par la présence de bruits
de mesure (généralement modélisés par un bruit blanc de
variance constante), il est anormal que la moyenne ou la
variance de (t) change brutalement. Différentes tech-
niques de test de caracteres aléatoires ou de détection de
saut de moyenne ou de variance sont exposées dans [37].

Diagnostic a base de bancs d’observateurs

Dans 1’étude précédente, un observateur unique est
construit a partir de toutes les grandeurs mesurées, donc
I’estimation des sorties est affectée par tous les défauts
de capteurs. Dans le but de discerner quel est le défaut
présent, on préférera construire un banc de m observa-
teurs, ou chacun dépend uniquement d’une sortie. Dans
ce cas, ’erreur d’estimation des sorties de chaque obser-
vateur ne sera sensible qu’a un seul défaut de capteur,
il est alors facile de déduire que la mesure en défaut est



celle correspondant a une erreur d’estimation des sorties
non nulle. Cette méthode est applicable sous des condi-
tions d’observabilité du systeme relativement fortes, pour
relaxer ces conditions, on peut construire un banc d’obser-
vateurs ou chacun utilise toutes les sorties sauf une. Dans
ce cas une logique de décision simple permet de mettre en
évidence le défaut apparu [?].

4.2 Quelques extensions

Dans ce paragraphe, on présentera quelques
méthodes permettant d’étendre les résultats présentés
précédemment lorsque le modele n’est pas connu avec
exactitude, ou lorsqu’il n’est pas linéaire.

Prise en compte des incertitudes

Les incertitudes de modélisation ou de mesure sont
généralement modélisées sous la forme de signaux
d’entrée inconnus d, (t) et d..(t) affectant le systéme :

() — Aw(t) + Bu(t) + Bada(t)

y(t) = CI(t) + Ccfc(t) + Cddc(t) (36)
)

Dans le cas ou les signaux de perturbations sont in-
connus, sous certaines hypotheéses de découplage, il est
possible de décomposer le systeme en deux parties : une
soumise aux entrées inconnues et 1’autre indépendante de
ces entrées [16] [8]. En utilisant exclusivement le sous
systtme exempt de perturbation, on obtient une erreur
d’estimation des sorties ne dépendant que des défauts a
détecter.

Si les conditions de découplage parfait ne sont pas
vérifiées, il est souhaitable d’atténuer I’'influence des per-
turbations sur I’erreur d’estimation. Il faut alors définir
une norme pour quantifier cette influence. La synthese
d’observateur se ramene alors au calcul des gains de I’ ob-
servateur minimisant la norme de la fonction de trans-
fert des perturbations vers 1’erreur d’estimation. Les deux
normes couramment utilisées sont les normes Hs et H,
permettant respectivement de minimiser 1’énergie de 1’er-
reur d’estimation et I’amplification maximale entre les
perturbations et I’erreur d’estimation [45], [14].

Dans le cas ou le processus est affecté par des per-
turbations modélisées par des variables aléatoires (de
moyennes nulles, non corrélées entre elles et de variances
connues), on utilise généralement le filtre de Kalman [20]
[32]. Le filtre de Kalman donne une estimation sans biais
(la moyenne de I’estimée est égale a la valeur réelle a es-
timer) et de variance minimale (la dispersion des estima-
tions autour de la valeur réelle est minimisée).

Si les caractéristiques statistiques des perturbations
sont inconnues, mais que leurs plages de variation sont
connues, on peut utiliser I’arithmétique des intervalles afin
de calculer une enveloppe contenant de maniere siire la

valeur réelle de 1’état et des sorties. La procédure de diag-
nostic consiste alors a générer une alarme lorsque les in-
tervalles obtenus pour les sorties possibles (calculées a
partir des mesures et des bornes des perturbations) et les
sorties estimées sont disjoints [23].

Dans le cas ou le modele n’est pas exactement connu,

les incertitudes de modélisation peuvent étre compensées
par ’utilisation d’un observateur proportionnel intégral
[47].
Certains modeles font apparaitre simultanément des
équations dynamiques et des équations statiques (rela-
tions de maillage, bilan de matiere), on parle alors de
systemes singuliers [7]. La synthese d’observateurs pour
ce type de systemes est proche de la synthese d’observa-
teurs pour systemes a entrées inconnues en effet la partie
statique d’un tel systeme peut étre considérée comme une
perturbation [9]. De ce fait de nombreuses techniques de
diagnostic ont été étendues a ce type de systemes [29],
[30].

Diagnostic de systémes non linéaires

Trés peu de systemes sont réellement linéaires, de ce
fait le modele linéaire ne représente correctement le com-
portement du systeme qu’autour d’un point de fonction-
nement donné. Afin de s’affranchir de cette limitation, on
peut déterminer un ensemble de modeles valables chacun
en différents points de fonctionnement. Un modele valide
autour de I’ensemble des points de fonctionnement est ob-
tenu par pondération entre tous les modeles, on parle de
modele polytopique ou flou [48]. Dans ce cas, la synthese
d’un observateur est effectuée en mélangeant différents
observateurs, dédiés a chacun des modeles linéaires [?].
L’étude de I’erreur d’estimation des sorties ainsi obte-
nue permet d’étendre les techniques de diagnostic aux
systemes flous [1].

Dans le cas des systemes non-linéaires, des hy-
potheses sur la nature des non-linéarités (systemes bi-
linéaires, présence de non-linéarités lipschitziennes, ...)
permettent généralement d’utiliser des techniques de
syntheése proches de celles existant pour le cas linéaire
afin de construire des observateurs particuliers (observa-
teurs bilinéaires [46], observateurs a modes glissants [15],
observateurs adaptatifs [50], ...).

5 Conclusion

La surveillance des systemes, le diagnostic étant 1’un
des éléments importants de cette fonction, est sans doute
I’un des domaines de recherche auquel une trés grande
attention est donnée. En effet, apres la construction d’un
processus d’ordre technologique, il convient d’assurer son
exploitation et en particulier de garantir que son fonction-
nement est celui pour lequel il a été congu. Le diagnostic a
précisément comme objectif de déterminer 1’état de fonc-
tionnement de ce processus. Dans cet exposé, nous nous



somme limité a trois aspects importants relatifs a la vali-
dation de données et la détection de défauts, sachant qu’il
existe bien d’autres facettes a ce probléme et notamment
les stratégies de pronostic (prédiction de 1’évolution des
défauts), de détection de changement de modes de fonc-
tionnement, de réaction face aux défauts.
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