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Centre de Recherche en Automatique de Nancy. INPL/UHP/CNRS UMR 7039.

Institut National Polytechnique de Lorraine.

2, Avenue de la forêt de Haye. F - 54 516 Vandoeuvre les Nancy Cedex.

{benoit.marx, gilles.mourot, didier.maquin, josé.ragot}@ensem.inpl-nancy.fr
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Résumé

Résumé. On assiste, depuis une bonne dizaine d’années, à un développement considérable de méthodes concourant

à l’efficacité du fonctionnement des systèmes technologiques. Ces méthodes s’appliquent lors de la conception d’un

système mais aussi dans la phase d’exploitation de ce système. Dans ce cas, les méthodes visent d’une part à mieux

connaı̂tre à chaque instant le mode de fonctionnement du système en question, et d’autre part, en cas de dysfonction-

nement avéré ou de dérive par rapport au fonctionnement souhaité, à réagir sur les paramètres de contrôle du système.

Cet exposé est focalisé sur le problème de la validation des mesures, les mesures validées servant précisément à mieux

connaı̂tre l’état du système. La validation de donnée procède par comparaison des estimés d’une même grandeur et

nécessite donc de disposer de redondances qui sont d’ordre matériel ou analytique. Dans cet exposé, trois approches

sont considérées correspondant à trois niveaux de redondance : traitement de données par analyse en composantes

principales, réconciliation de données à partir de modèles statiques, estimation d’état à partir de modèles dynamiques.

Mots-clefs : réconciliation de données, diagnostic, détection de défauts, estimation d’état, méthode avec modèle,

analyse en composantes principales, robustesse.

1 Introduction

Pour fonctionner correctement, les systèmes de

contrôle-commande et de supervision des installations in-

dustrielles ont besoin de recevoir, en permanence, des

informations représentatives de leur état. L’élaboration

de commandes complexes est en effet inefficace, si les

informations prises en compte par les algorithmes qui

les génèrent sont erronées et/ou incohérentes. La perfor-

mance et la fiabilité de l’ensemble des moyens de com-

mande et de contrôle sont liées à la qualité des systèmes de

mesures. Toute défaillance de l’instrumentation conduit à

la génération d’informations erronées. La validation de

données qui permet de s’assurer de la cohérence des in-

formations acquises constitue donc une étape essentielle

qui doit précéder toute tentative de conduite rationnelle.

L’étude de cette cohérence est délicate car les données

sont le plus souvent hétérogènes (grandeurs physiques de

natures différentes) et incomplètes (en milieu industriel,

il est impossible, pour des raisons de coût ou des raisons

technologiques, de disposer d’information sur chaque va-

riable du système). De plus, les installations considérées

sont souvent d’assez grande dimension et ont un compor-

tement non linéaire.

La validation de données s’appuie sur la connaissance

plus ou moins précise d’un modèle de comportement du

système à surveiller ou d’une partie de celui-ci et a pour

objet principal :

– d’élaborer, à partir de variables mesurées, des es-

timés cohérents avec ce modèle et des indicateurs

globaux de bon fonctionnement ;

– d’enrichir la base de données en fournissant des es-

timés de grandeurs inaccessibles à la mesure ;

– de détecter et localiser, le plus précocement pos-

sible, l’apparition de défauts de mesure (cette

étape peut éventuellement être suivie d’une ca-

ractérisation des défauts, c’est-à-dire de l’estima-

tion de leur amplitude).

L’une des techniques permettant de s’assurer de la

crédibilité d’une mesure consiste à créer une redondance

d’informations ; celle-ci peut être obtenue en utilisant, par

exemple, les relations structurellement exactes de bilan

matière ou de bilan énergie. Ce type de redondance est

qualifié d’analytique ou fonctionnelle, contrairement à la

redondance matérielle obtenue en multipliant les capteurs

mesurant une même grandeur.

La mise en évidence et l’extraction de redondance
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constitue le point de départ des méthodes de diagnos-

tic. Quelques nuances peuvent être apportées selon que

ces redondances sont explicitées ou non. Ainsi, lorsque

on cherche à vérifier si un bilan de production est res-

pecté (égalité de la somme des flux entrants et de la

somme des flux sortants dans l’installation considérée), on

a besoin de façon explicite des équations de conservation

de la matière (ou de l’énergie) pour procéder à ce test ;

le modèle du procédé est donc explicitement connu et

pour cela nécessite une phase préalable de modélisation.

Par contre, certaines techniques de traitement de données

sont capables de détecter des données aberrantes et même

des modifications de comportement d’un procédé sans

modèle préalable explicite de ce procédé. C’est le cas,

par exemple, des analyses en composantes principales

(ACP) qui sont capables de mettre en évidence des

hétérogénéités dans des flux de données. En réalité, l’exa-

men attentif des techniques d’ACP montre l’existence

d’un modèle sous-jacent prenant en compte l’existence de

relations linéaires ou quasi-linéaires entre les différentes

variables.

L’exposé est articulé autour de trois points. La sec-

tion 2 traite de l’ACP et rappelle brièvement sa formula-

tion classique et son application à la détection de données

aberrantes. Quelques compléments donnent un aperçu sur

des extensions de cette technique en abordant notamment

les problèmes de robustesse. La section 3 est consacrée

à la validation de données par réconciliation, cette tech-

nique étant présentée dans sa version de base puis étendue

à des situations plus complexes. Enfin, la section 4 traite

de l’estimation de l’état de fonctionnement des systèmes

en évoquant des problèmes délicats d’excitations incon-

nues, de commutation de modes de fonctionnement, de

systèmes décrits par plusieurs modèles.

On notera que les trois sections utilisent une connais-

sance de plus en plus précise du système que l’on cherche

à surveiller : pour l’ACP le modèle du système n’est

pas connu a priori, pour la réconciliation de données le

modèle est sous forme statique, enfin les observateurs

d’état font usage de modèles dynamiques.

2 Analyse en composantes princi-

pales et cohérence de données

Bien que généralement classée parmi les méthodes

sans modèle, l’analyse en composantes principales

élabore implicitement un modèle du système à partir de

données expérimentales prélevées sur le système. L’ACP

peut donc être considérée comme une méthode de diag-

nostic basée sur le concept de redondance analytique à

part entière. Cette méthode permet :

– la mise en évidence de toutes les relations linéaires

entre les variables du système sans les formuler

explicitement. C’est un point important pour des

systèmes de grande dimension dont les composants

peuvent être fortement liés (degré de redondance

élevé) ;

– la prise en compte de critères propres au diagnos-

tic (détectabilité des défauts) lors de la synthèse

du modèle [13]. Eventuellement, l’isolation des

défauts peut être effectuée à partir d’ACP utilisant

une partie adéquate des données.

2.1 Principe de base

Soit x(k) = [x1(k) x2(k) . . . xm(k)]
T

le vecteur

contenant les m variables observées du système (mesures

ou commandes) à l’instant k. Considérons la matrice de

données X = [x(1) x(2) . . . x(N)]
T ∈ ℜN×m compre-

nant N observations x(k) recueillies sur ce processus en

fonctionnement normal.

L’ACP détermine une transformation optimale (vis-à-

vis d’un critère de variance) de la matrice de données X :

T = XP et X = TPT (1)

avec T = [t1 t2 . . . tm] ∈ ℜN×m, où les ti sont les com-

posantes principales et la matrice P = [p1 p2 . . . pm] ∈
ℜm×m, où les vecteurs orthogonaux pi sont les vec-

teurs propres correspondant aux valeurs propres λi de la

décomposition en valeurs et vecteurs propres de la matrice

de covariance (ou de corrélation) Σ de X :

Σ = PΛPT avec PPT = PT P = Im (2)

avec Λ une matrice diagonale où les termes diago-

naux sont ordonnés dans l’ordre décroissant. Les valeurs

propres les plus petites par rapport aux autres indiquent

l’existence de relations linéaires ou quasi-linéaires entre

les différentes composantes de X.

Pour une valeur de l’entier ℓ donnée, les matrices des

vecteurs propres et des composantes principales sont par-

titionnées sous la forme :

P =
[

P̂ℓ P̃m−ℓ

]
, T =

[

T̂ℓ T̃m−ℓ

]
(3)

A partir de l’équation (1), on peut alors expliciter la

partie X̂ des données expliquées uniquement par les ℓ pre-

miers vecteurs propres et la partie résiduelle E expliquée

par les composantes restantes :

X̂ = XP̂ℓP̂
T
ℓ = XĈℓ (4)

E = X − X̂ = X(I − Ĉℓ) (5)

où l’on notera que la matrice Ĉℓ = P̂ℓP̂
T
ℓ n’est pas égale

à la matrice identité.

Détermination du nombre de composantes ℓ

Qin et Dunia (2000) ont proposé de déterminer la valeur

du nombre ℓ de composantes à retenir par minimisation de

la variance de l’erreur de reconstruction. La reconstruc-

tion consiste à estimer une variable à l’aide du modèle
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ACP et des autres variables, i.e. à partir des relations de

redondance existant entre cette variable et les autres.

Rappelons comment reconstruire une variable. Soit

xj(k) = [x1(k) . . . zj(k) . . . xm(k)]
T

le vecteur de

mesure x(k) à l’instant k dont la j ème composante est re-

construite de la façon suivante [12] :

xj(k) = Gj x(k) (6)

et

GT
j =

[
ξ1 · · · gj · · · ξm

]
, gT

j =

[
cT
−j 0 cT

+j

]

1 − cjj
(7)

où ξj = [0 . . . 1 . . . 0]
T

est la j ème colonne de la matrice

identité, cj est la j ème colonne de Ĉℓ et les indices +j

et −j désignent, respectivement, les vecteurs formés par

les (j − 1) premiers et les (m − j) derniers éléments du

vecteur cj .

La variance de l’erreur de reconstruction de la j ème

composante de x(k) est donnée par :

ρj(ℓ) =
ξ̃T
j Σξ̃j

(

ξ̃T
j ξ̃j

)2 (8)

où ξ̃j =
(

I − Ĉℓ

)

ξj .

Le nombre de composantes principales à retenir s’ob-

tient en minimisant par rapport à ℓ le critère :

J(ℓ) =
m∑

j=1

ρj(ℓ)

ξT
j Σξj

ℓ = 1, . . . ,m − 1 (9)

les contributions des variables au critère étant pondérées

par leurs variances.

Ayant défini le modèle ACP , et en particulier le

nombre de composantes principales significatives à re-

tenir, nous examinons maintenant son utilisation pour la

détection et la localisation de défauts de capteurs.

Génération de résidus indicateurs de défauts

Considérons un nouveau vecteur de mesure x(k) dont on

souhaite éprouver la consistance. Evaluons le vecteur des

dernières composantes principales (1) :

t̃m−ℓ(k) = P̃T
m−ℓ x(k) (10)

Soient xo(k) le vecteur des valeurs vraies, ǫ(k) le vec-

teur des bruits de mesure supposé blanc et ξf la direction

du défaut. En présence d’un défaut d’amplitude d(k) quel-

conque, on peut expliciter le vecteur de mesure sous la

forme :

x(k) = x
o(k) + ǫ(k) + ξfd(k) (11)

Le vecteur des résidus (10) s’écrit alors :

t̃m−ℓ(k) = P̃T
m−ℓ x

o(k)
︸ ︷︷ ︸

=0

+P̃T
m−ℓ ǫ(k) + P̃T

m−ℓ ξfd(k)

(12)

En absence de défauts, l’espérance mathématique du

résidu est nulle. Par contre, en présence de défauts,

l’espérance mathématique du résidu n’est plus nulle et

le défaut affecte toutes les composantes du vecteur des

résidus :

Esp(t̃m−ℓ(k)) = P̃T
m−ℓ ξfd(k)

On peut noter le rôle important joué par la matrice

P̃T
m−ℓ ξf qui indique la façon dont les résidus sont in-

fluencés par le défaut considéré. L’examen du rang de

cette matrice et de ses colonnes est révélateur de l’in-

fluence de ce défaut.

Localisation de défauts par reconstruction

Pour localiser la ou les variables du vecteur x(k) qui sont

en cause, c’est-à-dire retrouver la direction ξf , nous al-

lons tout à tour reconstruire chaque variable de ce vecteur

à partir du modèle ACP établi précédemment et des autres

variables [13],[17], [18].

Etudions la propagation d’un défaut sur le vecteur des

reconstructions xj(k) dans la direction j, c’est-à-dire :

xj(k) = Gj(x
o(k) + ǫ(k)) + Gj ξfd(k) (13)

qui se réduit naturellement à :

xj(k) = Gj(ǫ(k)) + Gj ξfd(k) (14)

Si la variable en défaut est la variable reconstruite (j = f)
alors, compte tenu de la définition de Gj , on peut montrer

que :

Gj ξf = 0 (15)

A partir de l’équation (15), on constate que si la re-

construction se fait dans la direction du défaut (c’est-à-

dire quand j = f), l’effet du défaut est éliminé sur xj

puisque :

Esp(xj(k)) = Gj ξfd(k) = 0

Ainsi, l’analyse des amplitudes des différents résidus

obtenus par reconstruction dans toutes les directions

(j=1..m) est révélatrice de la présence de défauts et per-

met de déterminer la composante de la donnée affectée

par ce défaut.

Remarque – Cette méthode peut être utilisée pour la

localisation de défauts multiples en reconstruisant simul-

tanément les variables supposées en défauts [13].
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2.2 Extension : ACP robuste

L’ACP est essentiellement basée sur la mise en

évidence de relations linéaires ou quasi-linéaires entre les

variables et présente un caractère d’optimalité uniquement

au sens d’un critère portant sur l’erreur quadratique d’es-

timation en valeur moyenne (MSE). Il est bien connu que

l’estimation basée sur l’utilisation de critère de type MSE

est moins robuste aux valeurs aberrantes que celle issue

d’autres critères comme celui de l’erreur en valeur abso-

lue.

Pour préciser ce point, rappelons que l’approche

classique de l’ACP utilise un calcul préliminaire de la

moyenne des données et de leur matrice de covariance ;

la moyenne et la variance sont sensibles à la présence

de valeurs aberrantes, et les résultats obtenus s’avèrent

souvent inexploitables car trop biaisés par l’influence

de ces valeurs aberrantes. Afin de réduire la sensibilité

de l’ACP aux valeurs aberrantes, nous avons privilégié

une technique consistant à réaliser l’ACP directement sur

les données éventuellement contaminées par des valeurs

aberrantes en recherchant des directions principales in-

sensibles à ces valeurs aberrantes. Dans [6], les auteurs

définissent une matrice de covariance ”locale” qui tend

à privilégier la contribution d’observations proches au

détriment d’observations éloignées, l’éloignement étant

dû à la présence de valeurs aberrantes. Cette matrice est

définie de la façon suivante :

Σ̃ =

N−1∑

i=1

N∑

j=i+1

wi,j (x(i) − x(j)) (x(i) − x(j))
T

N−1∑

i=1

N∑

j=i+1

wi,j

(16)

où les poids wi,j sont eux-mêmes définis par :

wi,j = exp

(

−β

2
(x(i) − x(j))

T
Σ−1 (x(i) − x(j))

)

(17)

β étant un paramètre à régler pour obtenir effectivement

une réduction de l’influence des observations éloignées.

l’ACP peut alors être conduite sur cette ”nouvelle” ma-

trice de covariance réputée robuste vis-à-vis des valeurs

aberrantes grâce à la présence de poids adaptés wi,j .

3 Réconciliation des données

3.1 Principe de base

La réconciliation de données a pour but de rendre

compatibles les mesures effectuées sur un système avec

son modèle. A ce titre, les méthodes de réconciliation

se rapprochent parfaitement des méthodes d’estimation

d’état. Une conséquence importante de la réconciliation

est la détection de valeurs de mesures aberrantes. En effet,

les valeurs réconciliées peuvent être comparés aux me-

sures ; les écarts constatés peuvent être analysés, les plus

grands d’entre eux pouvant témoigner de la présence de

mesures aberrantes.

La validation de données peut être effectuée sur la

base de modèles plus ou moins complexes selon la

connaissance dont on dispose sur une installation. Comme

nous l’avons mentionné précédemment, l’établissement

de bilans matière élémentaires sur des durées d’observa-

tion suffisamment importantes conduit à des modèles sta-

tiques linéaires. En pratique, dans ce cas, les grandeurs

sujettes à validation sont des cumuls ou des moyennes des

mesures des grandeurs physiques sur une fenêtre d’obser-

vation temporelle. La prise en compte de bilans énergie

ou de bilans par espèces chimiques ou minérales, par

exemple, nécessite l’usage de modèles non linéaires. La

validation de données peut également être effectuée, à

chaque instant, en utilisant des modèles dynamiques ; en

fait, les méthodes développées dans le cadre des modèles

statiques peuvent être ré-utilisées pour les modèles dy-

namiques. Pour cette raison, les principes généraux de

la validation de données sont exposés pour le cas des

modèles statiques. On considère donc un système pouvant

être décrit par :

– un ensemble de contraintes statiques représenté par

une fonction vectorielle (linéaire ou non linéaire)

d’un vecteur d’état inconnu :

F (X∗) = 0 (18)

où F (X∗) est de dimension n et X∗, le vecteur

d’état du système, est de dimension v ;

– une équation d’observation liant un vecteur de me-

sure Z aux états :

Z = H(X∗) + ε (19)

où Z est de dimension m, H(X∗) caractérise le

système de mesure et ε, de dimension m, est un vec-

teur aléatoire d’erreurs de mesure caractérisées par

des lois de distributions de probabilité connues.

Historiquement, la loi de Laplace-Gauss a

précisément été élaborée à partir de l’observation sta-

tistique d’erreurs de mesure.

Pour une variable aléatoire continue scalaire, la den-

sité de probabilité d’une telle loi s’écrit :

f(x) =
1√
2πσ

exp

(

1

2

(
x − µ

σ

)2
)

(20)

où µ et σ représentent respectivement l’espérance

et l’écart-type de la distribution. Cette expression se

généralise dans le cas d’une variable aléatoire vectorielle

X ∈ IRm sous la forme :

f(X) =
1

(2π)m/2|V |1/2
exp

(

−1

2
‖X − Esp(X)‖2

V −1

)

(21)
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où, par définition, l’écriture ‖U‖2
T correspond à UT TU .

Pour un échantillon de N observations indépendantes

Zi = H(X∗) + εi, pour i = 1, . . . , N , la fonction de

vraisemblance s’écrit comme le produit des densités de

probabilité des erreurs :

v =
1

(2π)Nm/2|V |k/2

N∏

i=1

exp

(

−1

2
‖Zi − H(X∗)‖2

V −1

)

(22)

Au sens du maximum de vraisemblance, le meilleur

estimé X̂ est celui qui maximise la fonction de vrai-

semblance tout en respectant les contraintes du modèle

F (X̂) = 0.

Compte tenu de la forme de cette fonction de vrai-

semblance et du fait que la fonction logarithme est une

fonction monotone, on peut maximiser le logarithme de

la fonction de vraisemblance qui possède son maximum

pour les mêmes valeurs d’argument que la fonction de

vraisemblance :

ln(v) = −N

2
(ln(2πm|V |)) − 1

2

N∑

i=1

‖Zi − H(X∗)‖2
V −1

(23)

En supprimant le terme constant, le problème d’esti-

mation revient donc à chercher le minimum, par rapport à

X∗, du critère :

φ =
N

2
ln(|V |) +

1

2

N∑

i=1

‖Zi − H(X∗)‖2
V −1

sous les contraintes F (X∗) = 0

(24)

Selon le degré de connaissance de la matrice de

variance-covariance V des erreurs de mesure, la solu-

tion peut être explicitée davantage. L’hypothèse la plus

communément employée consiste à supposer que la ma-

trice de variance des erreurs de mesures est connue. En

effet, celle-ci peut être déduite de la connaissance des

précisions avec lesquelles les mesures sont effectuées.

Fréquemment, cette matrice est également supposée dia-

gonale, c’est-à-dire que l’on formule l’hypothèse que les

erreurs de mesure sont statistiquement indépendantes. Le

problème précédent [24] se ramène alors à la recherche

du minimum, par rapport à la grandeur inconnue X∗, du

critère :

φ =
1

2

N∑

i=1

‖(Zi − H(X∗)‖2
V −1

sous les contraintes F (X∗) = 0

(25)

Il s’agit donc d’un problème classique d’optimisation

sous contraintes égalité [37]. La difficulté de résolution

de ce problème dépend étroitement de la structure et de

la dimension des équations du modèle, de la structure des

contraintes et du nombre d’observations. Dans le cas de

contraintes et d’équations d’observation linéaires, les so-

lutions sont analytiques [40]. Dans tous les autres cas,

il faut utiliser les techniques de calcul hiérarchisé, de

linéarisation, de changement de variables ou même des

solutions approchées. De nombreux travaux présentent

ces techniques, par exemple [44], [27].

3.2 Extension : réconciliation robuste

De nombreux développements complètent le principe

de base que nous venons de rappeler. Ils sont nés de la

nécessité de pouvoir appliquer ce principe à des situations

et des données réelles, situations qui ne respectent pas

toujours les hypothèses de base précédemment utilisées.

C’est ainsi que des extensions ont permis de s’intéresser

aux systèmes dynamiques [10], à la présence d’erreurs

de mesure bornées [35], [39], [38], à la présence de pa-

ramètres mal connus [4], à l’estimation de la précision des

mesures [26], à la réconciliation des données de façon si-

multanée à l’estimation des paramètres du système [31],

à la localisation de défauts de mesure [33] [34], à la

conception de réseaux de capteurs pour la surveillance des

systèmes [24],[5].

Dans ce paragraphe, le point particulier de la robus-

tesse de la réconciliation vis-à-vis des mesures aberrantes

est abordé. Pour introduire cette problématique, rappe-

lons que la réconciliation repose sur la minimisation d’un

critère formé à partir des écarts pondérés entre estimés et

mesures, les pondérations étant proportionnnelles aux va-

riances des erreurs de mesure. La validité et le caractère

optimal de cette approche sont éminemment liés à l’hy-

pothèse forte de normalité des erreurs de mesure. Dans

la pratique, cette hypothèse peut être mise en défaut en

présence de grosses erreurs qui constituent des valeurs

aberrantes. On apporte donc plus de réalisme en posant

le problème de réconciliation de la façon suivante. A par-

tir de mesures x̃i estimer les grandeurs vraies x∗

i d’un

système à modèle linéaire, sachant que :

x̃i = x∗

i + ǫi + gi, i = 1..v (26a)

v∑

j=1

ai,jx
∗

j = 0, i = 1..n (26b)

les mesures étant affectées par des erreurs de faibles et

de grosses amplitudes ǫi et gi, ces dernières n’étant pas

connues a priori. Pour prendre ces erreurs en compte, plu-

sieurs approches ont été envisagées.

Partant de l’hypothèse que le nombre de grosses

erreurs est faible, la première technique procède par

réconciliation des mesures par moindres carrés (donc avec

l’hypothèse de normalité des erreurs), puis détecte et lo-

calise les grosses erreurs (analyse des termes correctifs),

et enfin reconduit la procédure de réconciliation en affec-

tant une variance très grande aux mesures pour lesquelles
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des grosses erreurs ont été localisées. Le défaut majeur de

cette a‘pproche réside dans la première réconciliation qui

peut s’avérer fortement erronnée en raison de la présence

des grosses erreurs ; ceci peut rendre ensuite difficile la

localisation des grosses erreurs en analysant les termes

correctifs.

La seconde approche cherche à prendre en compte

directement la présence des grosses erreurs au moyen

d’une loi de distribution plus appropriée. La classe des

M-estimateurs fournit des estimées robustes vis-à-vis des

grosses erreurs. Le critère d’estimation est pris sous la

forme :

Φr = −
N∑

i=1

log (f(ǫi)) (27)

où f est habituellement une distribution dite contaminée,

c’est-à-dire prenant en compte la présence des erreurs de

faibles amplitudes et les grosses erreurs [41]. Par exemple,

avec des distributions normales :

f(ǫi) = µp1,i(ǫi) + (1 − µ)p2,i(ǫi) (28)

p1,i(ǫi) =
1√

2πσ1,i

exp

(

−1

2

(
x∗

i − x̃i

σ1,i

)2
)

(29)

p2,i(ǫi) =
1√

2πσ2,i

exp

(

−1

2

(
x∗

i − x̃i

σ2,i

)2
)

(30)

Les écart-types σ2,i seront choisis plus grands que σ1,i

afin de marquer la disparité entre les deux types d’er-

reur. Dans la pratique, on pourra choisir une dépendance

linéaire entre les écart-types des deux distributions σ2,i =
A.σ1,i. Le coefficient µ, encore appelé paramètre de

mélange traduit la proportion de grosses erreurs dans les

mesures. C’est un coefficient connu a priori ou dans le cas

contraire qui peut être estimé.

Finalement, avec le critère (27) et compte tenu

des définitions (28, 29, 30) et des contraintes (26), la

réconciliation des données résulte donc d’une procédure

d’optimisation sous contraintes. La forme du critère à op-

timiser limite ici les approches analytiques qui doivent

être substituées par des approches numériques souvent

itératives [41], [42].

3.3 Applications

La réconciliation de mesures est un moyen largement

répandu et appliqué au niveau industriel pour mettre en

évidence la cohérence ou l’incohérence des mesures, et

dans le deuxième cas, pour corriger ces incohérences.

Dans l’article [3], les auteurs présentent un exemple

d’application de la réconciliation de données à des me-

sures fournies par les capteurs installés sur un four de

durcissement de boulettes d’oxyde de fer. Les résultats

montrent que la technique utilisée permet d’estimer des

débits de gaz dans des conduites de plusieurs mètres

de diamètre à partir de mesures de pression et de

température, en plus de permettre d’identifier des me-

sures imprécises ou biaisées de capteurs. Les résultats

peuvent aussi être utilisés pour le développement de cap-

teurs virtuels pour relier la puissance de ventilateurs au

débit de gaz poussé par ces derniers.

On trouve des applications semblables dans le do-

maine de l’industrie papetière [19], [5], de l’industrie

nucléaire [11], de l’industrie minérale [2], [25], de l’hy-

draulique [10], [31], [28], [43], de l’énergie [21], de la

sidérurgie [49], [38], du génie chimique [34], [39], [44].

Toutes ces applications mettent en évidence l’intérêt des

procédures de réconciliation de données qui fournissent

une critique des données et des mesures, qui restituent à

l’utilisateur des données cohérentes pouvant ensuite être

utilisées dans des procédures de contrôle des processus.

4 Diagnostic à base d’observateurs

Cette section présente quelques méthodes de diagnos-

tic de systèmes exploitables lorsque l’opérateur dispose

d’un modèle du système à superviser. Ce modèle est un

ensemble de relations mathématiques faisant intervenir les

variables d’entrée et de sortie du système, ainsi que des

variables internes caractéristiques de l’état du système.

Un tel modèle est obtenu, soit à partir des lois de com-

portement des éléments constitutifs du système, soit par

identification à partir de la mesure en fonctionnement des

signaux d’entrée et de sortie.

Une fois le modèle du système établi, il est possible de

l’utiliser pour avoir une meilleure connaissance de l’état

dans lequel est le système. Généralement l’opérateur a

accès aux mesures des grandeurs d’entrée et de sortie,

en revanche, les grandeurs internes peuvent être inacces-

sibles à la mesure. Afin de pallier ce manque, on peut

chercher à construire un filtre, qui permet de déduire la

valeur des grandeurs internes à partir des grandeurs me-

surées, on parle alors d’observateur.

Le principe général du diagnostic à base d’observa-

teurs est que le modèle du système représente son fonc-

tionnement sain, c’est à dire exempt de tout défaut. Autre-

ment dit, l’estimation obtenue en utilisant un observateur

donne les valeurs des grandeurs internes en l’absence de

défaut et l’estimation des variables d’état permet, à l’aide

du modèle, d’estimer les variables de sorties. Il est alors

possible de comparer les sorties mesurées et les sorties

estimées. L’éventuel écart entre les grandeurs mesurées et

estimées met en évidence un écart entre le fonctionnement

réel et le fonctionnement sain du système. En d’autres

termes, cet écart peut être considéré comme un résidu,

c’est à dire un indicateur de l’occurrence d’un dysfonc-

tionnement.

Les dysfonctionnements affectant un système sont

souvent modélisés par des signaux inconnus qui peuvent
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être de deux natures. D’une part les signaux de défauts,

qui représentent le mauvais fonctionnement d’un compo-

sant, par exemple la déviation d’un capteur ou la varia-

tion d’un paramètre due à l’usure mécanique d’une pièce.

D’autre part, des signaux de perturbations induits par les

différentes sources d’incertitudes, par exemple des erreurs

commises lors de la modélisation ou des imprécisions de

mesures. L’objectif du diagnostic est de pouvoir mettre en

évidence la présence des défauts malgré la présence des

perturbations.

Dans la suite, nous détaillerons ces techniques dans

le cas des systèmes décrits par un modèle dynamique

linéaire. Malgré l’apparente simplicité de cette classe de

modèles, cette approche permet de décrire une grande

variété de processus. Par la suite, le diagnostic d’autres

classes de modèles sera évoqué.

4.1 Diagnostic de systèmes linéaires

Synthèse d’observateur

Dans cette partie, il est supposé que le processus à sur-

veiller peut être décrit par un modèle dynamique linéaire

défini par :







dx(t)
dt = Ax(t) + Bu(t)
y(t) = Cx(t)
x(0) = x0

(31)

où u(t) ∈ R
p est le vecteur des entrées de commande du

système, x(t) ∈ R
n est le vecteur des variables internes

du système, aussi appelé vecteur d’état, et y(t) ∈ R
m est

le vecteur des sorties mesurées. Les matrices A ∈ R
n×n,

B ∈ R
n×p et C ∈ R

m×n sont des matrices constantes et

connues.

L’observateur est un filtre actif qui permet de recons-

truire l’état x(t) à partir des grandeurs connues u(t) et

y(t). Les estimées de l’état et des sorties sont notées res-

pectivement x̂(t) et ŷ(t) et sont définies par le système

suivant :






dx̂(t)
dt = Ax̂(t) + Bu(t) + K(y(t) − ŷ(t))
ŷ(t) = Cx̂(t)
x̂(0) = x̂0

(32)

Cette structure, proposée par [22], peut être intuitivement

perçue comme un système évoluant en parallèle selon le

modèle connu du système et qui, de plus, comporte un

bouclage sur l’erreur de sortie (terme K(y(t)− ŷ(t)) afin

de corriger l’erreur d’estimation de l’état. Cela se vérifie

analytiquement, en étudiant l’évolution de l’erreur d’esti-

mation de l’état, x̃(t) = x(t) − x̂(t). Cette erreur obéit à

l’équation suivante, obtenue avec (31) et (32) :

dx̃(t)

dt
= (A − KC)x̃(t) (33)

Si la matrice K est choisie telle que A − KC est stable,

alors l’erreur d’estimation converge vers 0 quelles que

soient les valeurs x0 (inconnue) et x̂0 (fixée arbitraire-

ment). Autrement dit, même si la valeur initiale de l’état

est inconnue, l’observateur donnera une estimation juste

de l’état, après un régime transitoire court dépendant du

choix de K.

Application au diagnostic

Afin d’illustrer l’utilisation d’un observateur pour le diag-

nostic, on considère à présent un modèle linéaire décrivant

un processus affecté de défauts de capteur fc(t) définis

par :






dx(t)
dt = Ax(t) + Bu(t)
y(t) = Cx(t) + Ccfc(t)
x(0) = x0

(34)

Dans ce cas l’erreur d’estimation de l’état x̃(t) et de la

sortie ỹ(t) = y(t) − ŷ(t) sont définies par :







dx̃(t)
dt = (A − KC)x̃(t) − KCcfc(t)
ỹ(t) = Cx̃(t) + Ccfc(t)
x̃(0) = x0 − x̂0

(35)

En l’absence de défaut, les signaux x̃(t) et ỹ(t) tendent

asymptotiquement vers 0. En revanche, à l’apparition de

fc(t), les erreurs d’estimation de l’état ou des sorties vont

s’écarter de 0. Les variables internes étant généralement

inconnues de l’opérateur, il est donc impossible de former

l’écart x̃(t) ; néanmoins il est possible de calculer ỹ(t).
Une valeur de ỹ(t) significativement différente de 0

est un indicateur de l’occurrence d’un défaut, autrement

dit permet la détection de défaut. Pour obtenir une infor-

mation plus précise, en particulier être capable de savoir

quel défaut est apparu, il faut étudier plus précisément la

structure de l’observateur. Par exemple il est possible de

choisir le gain K de l’observateur dans le but de rendre

une composante du vecteur ỹ(t) particulièrement sensible

à un défaut donné, il s’agit du placement de structure

propre [?].

Les caractéristiques statistiques de ỹ(t) peuvent

également être exploitées. En effet, si un comportement

aléatoire de ỹ(t) peut s’expliquer par la présence de bruits

de mesure (généralement modélisés par un bruit blanc de

variance constante), il est anormal que la moyenne ou la

variance de ỹ(t) change brutalement. Différentes tech-

niques de test de caractères aléatoires ou de détection de

saut de moyenne ou de variance sont exposées dans [37].

Diagnostic à base de bancs d’observateurs

Dans l’étude précédente, un observateur unique est

construit à partir de toutes les grandeurs mesurées, donc

l’estimation des sorties est affectée par tous les défauts

de capteurs. Dans le but de discerner quel est le défaut

présent, on préférera construire un banc de m observa-

teurs, où chacun dépend uniquement d’une sortie. Dans

ce cas, l’erreur d’estimation des sorties de chaque obser-

vateur ne sera sensible qu’à un seul défaut de capteur,

il est alors facile de déduire que la mesure en défaut est
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celle correspondant à une erreur d’estimation des sorties

non nulle. Cette méthode est applicable sous des condi-

tions d’observabilité du système relativement fortes, pour

relaxer ces conditions, on peut construire un banc d’obser-

vateurs où chacun utilise toutes les sorties sauf une. Dans

ce cas une logique de décision simple permet de mettre en

évidence le défaut apparu [?].

4.2 Quelques extensions

Dans ce paragraphe, on présentera quelques

méthodes permettant d’étendre les résultats présentés

précédemment lorsque le modèle n’est pas connu avec

exactitude, ou lorsqu’il n’est pas linéaire.

Prise en compte des incertitudes

Les incertitudes de modélisation ou de mesure sont

généralement modélisées sous la forme de signaux

d’entrée inconnus da(t) et dc(t) affectant le système :







dx(t)
dt = Ax(t) + Bu(t) + Bdda(t)
y(t) = Cx(t) + Ccfc(t) + Cddc(t)
x(0) = x0

(36)

Dans le cas où les signaux de perturbations sont in-

connus, sous certaines hypothèses de découplage, il est

possible de décomposer le système en deux parties : une

soumise aux entrées inconnues et l’autre indépendante de

ces entrées [16] [8]. En utilisant exclusivement le sous

système exempt de perturbation, on obtient une erreur

d’estimation des sorties ne dépendant que des défauts à

détecter.

Si les conditions de découplage parfait ne sont pas

vérifiées, il est souhaitable d’atténuer l’influence des per-

turbations sur l’erreur d’estimation. Il faut alors définir

une norme pour quantifier cette influence. La synthèse

d’observateur se ramène alors au calcul des gains de l’ob-

servateur minimisant la norme de la fonction de trans-

fert des perturbations vers l’erreur d’estimation. Les deux

normes couramment utilisées sont les normes H2 et H∞,

permettant respectivement de minimiser l’énergie de l’er-

reur d’estimation et l’amplification maximale entre les

perturbations et l’erreur d’estimation [45], [14].

Dans le cas où le processus est affecté par des per-

turbations modélisées par des variables aléatoires (de

moyennes nulles, non corrélées entre elles et de variances

connues), on utilise généralement le filtre de Kalman [20]

[32]. Le filtre de Kalman donne une estimation sans biais

(la moyenne de l’estimée est égale à la valeur réelle à es-

timer) et de variance minimale (la dispersion des estima-

tions autour de la valeur réelle est minimisée).

Si les caractéristiques statistiques des perturbations

sont inconnues, mais que leurs plages de variation sont

connues, on peut utiliser l’arithmétique des intervalles afin

de calculer une enveloppe contenant de manière sûre la

valeur réelle de l’état et des sorties. La procédure de diag-

nostic consiste alors à générer une alarme lorsque les in-

tervalles obtenus pour les sorties possibles (calculées à

partir des mesures et des bornes des perturbations) et les

sorties estimées sont disjoints [23].

Dans le cas où le modèle n’est pas exactement connu,

les incertitudes de modélisation peuvent être compensées

par l’utilisation d’un observateur proportionnel intégral

[47].

Certains modèles font apparaı̂tre simultanément des

équations dynamiques et des équations statiques (rela-

tions de maillage, bilan de matière), on parle alors de

systèmes singuliers [7]. La synthèse d’observateurs pour

ce type de systèmes est proche de la synthèse d’observa-

teurs pour systèmes à entrées inconnues en effet la partie

statique d’un tel système peut être considérée comme une

perturbation [9]. De ce fait de nombreuses techniques de

diagnostic ont été étendues à ce type de systèmes [29],

[30].

Diagnostic de systèmes non linéaires

Très peu de systèmes sont réellement linéaires, de ce

fait le modèle linéaire ne représente correctement le com-

portement du système qu’autour d’un point de fonction-

nement donné. Afin de s’affranchir de cette limitation, on

peut déterminer un ensemble de modèles valables chacun

en différents points de fonctionnement. Un modèle valide

autour de l’ensemble des points de fonctionnement est ob-

tenu par pondération entre tous les modèles, on parle de

modèle polytopique ou flou [48]. Dans ce cas, la synthèse

d’un observateur est effectuée en mélangeant différents

observateurs, dédiés à chacun des modèles linéaires [?].

L’étude de l’erreur d’estimation des sorties ainsi obte-

nue permet d’étendre les techniques de diagnostic aux

systèmes flous [1].

Dans le cas des systèmes non-linéaires, des hy-

pothèses sur la nature des non-linéarités (systèmes bi-

linéaires, présence de non-linéarités lipschitziennes, ...)

permettent généralement d’utiliser des techniques de

synthèse proches de celles existant pour le cas linéaire

afin de construire des observateurs particuliers (observa-

teurs bilinéaires [46], observateurs à modes glissants [15],

observateurs adaptatifs [50], ...).

5 Conclusion

La surveillance des systèmes, le diagnostic étant l’un

des éléments importants de cette fonction, est sans doute

l’un des domaines de recherche auquel une très grande

attention est donnée. En effet, après la construction d’un

processus d’ordre technologique, il convient d’assurer son

exploitation et en particulier de garantir que son fonction-

nement est celui pour lequel il a été conçu. Le diagnostic a

précisément comme objectif de déterminer l’état de fonc-

tionnement de ce processus. Dans cet exposé, nous nous
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somme limité à trois aspects importants relatifs à la vali-

dation de données et la détection de défauts, sachant qu’il

existe bien d’autres facettes à ce problème et notamment

les stratégies de pronostic (prédiction de l’évolution des

défauts), de détection de changement de modes de fonc-

tionnement, de réaction face aux défauts.
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[5] Brown D., Maréchal F., Heyen G., Paris J. Data

Reconciliation and Sensor System Design of a Pa-

per Deinking Process. ESCAPE-13, Lappeenranta,

2003.

[6] Caussinus H., S. Hakam, A. Ruiz-Gazen, Projec-
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