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[1] We estimate the rate of aftershocks triggered by a heterogeneous stress change, using
the rate-and-state model of Dieterich. We show that an exponential stress distribution
Pt(t) � exp(�t/t0) gives an Omori law decay of aftershocks with time �1/tp, with an
exponent p = 1 � Asn/t0, where A is a parameter of the rate-and-state friction law and sn
is the normal stress. Omori exponent p thus decreases if the stress ‘‘heterogeneity’’ t0
decreases. We also invert the stress distribution Pt(t) from the seismicity rate R(t),
assuming that the stress does not change with time. We apply this method to a synthetic
stress map, using the (modified) scale invariant ‘‘k2’’ slip model (Herrero and Bernard).
We generate synthetic aftershock catalogs from this stress change. The seismicity rate on
the rupture area shows a huge increase at short times, even if the stress decreases on
average. Aftershocks are clustered in the regions of low slip, but the spatial distribution is
more diffuse than for a simple slip dislocation. Because the stress field is very
heterogeneous, there are many patches of positive stress changes everywhere on the fault.
This stochastic slip model gives a Gaussian stress distribution but nevertheless produces
an aftershock rate which is very close to Omori’s law, with an effective p � 1, which
increases slowly with time. We obtain a good estimation of the stress distribution for
realistic catalogs when we constrain the shape of the distribution. However, there are
probably other factors which also affect the temporal decay of aftershocks with time. In
particular, heterogeneity of Asn can also modify the parameters p and c of Omori’s law.
Finally, we show that stress shadows are very difficult to observe in a heterogeneous stress
context.

Citation: Helmstetter, A., and B. E. Shaw (2006), Relation between stress heterogeneity and aftershock rate in the rate-and-state

model, J. Geophys. Res., 111, B07304, doi:10.1029/2005JB004077.

1. Introduction

[2] Much progress has been made in describing earth-
quake behavior based on the predictions of rate-and-state
friction. The rate-and-state model explains the 1/t decay of
aftershock rate as a function of the time t since the main
shock (Omori’s law) independent of the main shock mag-
nitude, the scaling of aftershock duration with stressing rate,
and the slow diffusion of aftershocks with time [Dieterich,
1994]. This success led several authors to provide time-
dependent earthquake probabilities using this model [Toda
et al., 1998, 2005; Toda and Stein, 2003]. Many other
physical mechanisms have been proposed to explain Omori
law, such as subcritical crack growth [Das and Scholz,
1981; Shaw, 1993], viscous relaxation [Mikumo and
Miyatake, 1979], static fatigue [Scholz, 1968; Narteau et
al., 2002], postseismic slip [Schaff et al., 1998], or pore

fluid flow [Nur and Booker, 1972]. The rate-and-state
model of Dieterich [1994] is probably the best candidate,
however, because it only relies on a rate-and-state–depen-
dent friction law observed in laboratory experiments.
[3] At the same time, a number of fundamental puzzles

remain. One of the most striking is the abundance of
aftershocks on the rupture surface, where indeed most
aftershocks occur. This is in stark contrast with simple
pictures of the rupture process, which suggest stress should
have decreased on the rupture surface and there should
therefore be a dearth of aftershocks there. A second funda-
mental puzzle concerns the time dependence of aftershocks.
Here, subtle but significant deviations from an inverse time
decay of the rate of aftershocks is seen in averages of
aftershock rates [Helmstetter et al., 2005]. While Dieterich
[1994] explained this as a consequence of the spatial
dependence of stress as it decreases away from the fault,
or as a change of stressing rate with time, such mechanisms
do not seem to properly explain the aftershocks occurring
on the rupture area. Thus both the spatial and temporal
distribution of the majority of aftershocks have yet to be
fully explained. Here, we show how an extension of the
rate-and-state formulation, which takes as its foundation a
heterogeneous stress field, can explain these observations.
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We then use this model to estimate stress heterogeneity from
aftershock rates.
[4] Our work builds off of the pioneering work of

Dieterich [1994], who derived a relation between seismicity
rate and stress history, for a population of faults obeying
rate-and-state friction. For a uniform positive stress step, the
rate-and-state model gives an Omori law decay of the
seismicity rate R(t) � t�p with p = 1 for intermediate
times. At very short times, smaller than a characteristic
time c, which depends on the stress change, the seismic-
ity rate is constant. Dieterich [1994] also computed the
aftershock rate for a dislocation, with a uniform stress
decrease on the rupture area, and a positive stress change
outside the rupture, decaying as t � 1/

ffiffi
r

p
in the near

field, and t � 1/r3 in the far field for r � L. As distance
from the fault increases, the characteristic time c
increases. Integrating over the fault, the seismicity rate
approximately obeys Omori law R(t) � 1/tp, with an
apparent exponent p < 1.
[5] Dieterich et al. [2000, 2003] used the rate-and-state

model of seismicity to invert stress history from seismicity
rate, and apply this method to Hawaii seismicity. They
discretize the space, with a grid size of about 1 km, and
assume that the stress is uniform in each cell. This method
then gives the stress history in each cell. The assumption
that the stress is uniform at scales of a few km is reasonable
for the stress change induced by a dyke intrusion, as in
[Dieterich et al., 2000, 2003], or for the coseismic stress
change induced by a large earthquake in the far field.
However, the coseismic stress change on the main shock
fault plane, where most aftershocks occur, is probably very
heterogeneous at all scales [Herrero and Bernard, 1994].
[6] In this paper, we investigate how heterogeneity of the

Coulomb stress change and of the normal stress modifies
the temporal decay of aftershocks with time, both on the
fault and off the fault. We assume that the stress changes

instantaneously after the main shock, and we neglect the
relaxation of stress on the fault due to aseismic slip or
viscous relaxation. We also neglect the stress change, and
seismicity rate change, induced by aftershocks. We then try
to invert for the stress distribution on the fault plane from
the aftershock rate, using the rate-and-state model, and
assuming the main source of heterogeneity is the coseismic
stress change.

2. Relation Between Stress Distribution and
Seismicity Rate

[7] Dieterich [1994] derives a differential equation which
gives the seismicity rate R(t, t) as a function of the stress
history t(t). His model assumes an infinite population of
faults which obeys rate and state friction, with the same
properties for all faults.
[8] The state variable g is related to the stress t by

@g ¼ 1

Asn
@t � g@t½ �; ð1Þ

where t is the ‘‘modified’’ Coulomb stress change [Dieterich
et al., 2000], and sn is the normal stress. The state variable g
is a function of the seismicity rate R(t, t)

R t; tð Þ ¼ Rr

g t; tð Þ _tr
; ð2Þ

where Rr is the steady state seismicity rate at the reference
stressing rate _tr. From laboratory experiments, coefficient A
generally has values between 0.005 and 0.02, for various
temperature and pressure conditions [Dieterich, 1994].
[9] Dieterich [1994] used expression (1) to derive the

seismicity rate R(t, t) triggered by a single stress step t. We
assume that stress rate after the stress step is constant dt/dt =
_tr, and that the seismicity rate before the main shock is equal
to the reference seismicity rate Rr. Using (1), the seismicity
rate following the stress step is

R t; tð Þ ¼ Rr

e�t=Asn � 1ð Þe�t=ta þ 1
; ð3Þ

where ta is the duration of the aftershock sequence

ta ¼
Asn
_tr

: ð4Þ

This relation (3) is illustrated in Figure 1 for different values
of the stress change. For each positive stress value, the
seismicity rate is constant for t � tae

�t/Asn, and then
decreases with time for tae

�t/Asn � t � ta according to
Omori law with an exponent p = 1. For a negative stress
change, the seismicity rate decreases after the main shock.
In both cases, the seismicity rate recovers its reference value
R = Rr for t � ta. The goal of this work is to extract the
stress distribution from the seismicity rate. This is a difficult
problem, because, as shown in Figure 1, the seismicity rate
does not depend on the stress change over a relatively large
time interval.

Figure 1. Seismicity rate R(t, t) (normalized by the
reference seismicity rate Rr) as a function of time (normal-
ized by the aftershock duration ta), given by the rate-and-
state model (3) with a uniform stress step, for different
values of the stress change, ranging from t/Asn = �30
(bottom) to t/Asn = 30 (top).
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[10] For a heterogeneous stress field t(~r), with a distri-
bution (probability density function) Pt(t), the seismicity
rate integrated over space is

R tð Þ ¼
Z

R t; t ~rð Þð Þ d~r ð5Þ

R tð Þ ¼
Z1
�1

R t; tð ÞPt tð Þ dt ð6Þ

R tð Þ ¼
Z1
0

R t; cð ÞPc cð Þ dc ð7Þ

where c = tae
�t/Asn is a characteristic time of the aftershock

rate, such that R(t, c) � 1/c for t � c and R(t, c) � 1/t for
c � t � ta.
[11] Equation (7) is a Fredholm integral equation of the

first kind. It has, at most, one solution [Riele, 1985].
Equation (7) has a simple approximate solution in the case
when the stress change has an exponential distribution

Pt tð Þ � e�t=t0 ; ð8Þ

where t0 is a positive scaling stress parameter, which
characterizes the width of the stress distribution. This
corresponds to a power law distribution of ‘‘corner times’’ c

P cð Þ ¼ Pt tð Þ dt
dc

¼ c�1þAsn=t0 : ð9Þ

We also consider an approximate expression for the
seismicity rate (3) valid for short times t � ta

R t; tð Þ � Rr

e�t=Asn þ t=ta
¼ Rrta

cþ t
: ð10Þ

Substituting (9) and (10) in (7), we get

R tð Þ ¼
Z1
0

Rrtac
�1þAsn=t0

cþ t
dc � 1

t1�Asn=t0
; ð11Þ

Expression (11) corresponds to Omori law with an exponent

p ¼ 1� Asn
t0

: ð12Þ

Because equation (6) has at most one solution, the
exponential stress distribution is the only distribution which
produces a pure Omori law decay for t � ta, without any
cutoff or crossover at short times. However, other distribu-
tions, e.g., a Gaussian, produce aftershock rate that is very
close to Omori’s law, over a very large time range. The
stress distribution for small or negative values is not
constrained by the seismicity rate at short times t � ta, so
deviations from an exponential for negative stresses do not
produce deviations from Omori law at short times.
[12] Expression (12) shows that Omori exponent depends

on stress heterogeneity. The parameter t0 represents the

width of the stress distribution for t > 0. The more
heterogeneous the stress is (larger t0), the larger p is (closer
to 1). Figure 2 illustrates how the rate-and-state model with
a heterogeneous stress distribution produces a power law
decay with an exponent p < 1.
[13] Helmstetter et al. [2005] found that for stacked

aftershock sequences in Southern California, Omori expo-
nent is close to 0.9, for times ranging between a minute (but
possibly even less) and one year, and for main shock
magnitudes between 2 and 7.5. This suggests that the stress
distribution is close to exponential in the tail, with a
characteristic stress t0 � 10Asn. Assuming that A = 0.01
(as measured in laboratory friction experiments [Dieterich,
1994]) and sn = 100 MPa (corresponding to the lithostatic
pressure at a depth of about 5 km), this gives Asn = 1 MPa
and t0 = 10 MPa, a value larger than the typical stress drop
s0 = 3 MPa [Ide and Beroza, 2001], but of the same order of
magnitude. However, a few studies tried to estimate Asn
directly from earthquake catalogs, and obtained values
smaller than the ones derived from the laboratory value of
A. Dieterich [1994] found Asn = s0/20, from the relation
between aftershock duration and the recurrence time (assum-
ing characteristic earthquakes). This gives Asn = 0.15 MPa
assuming a stress drop of 3 MPa. Cochran et al. [2004] used
the rate-and-state model to model tidal triggering of earth-
quakes, and obtained a preferred value of Asn = 0.064 MPa,
and an acceptable range 0.048 < Asn < 0.11 MPa.

Figure 2. Seismicity rate R(t, t) for a uniform stress
change t (thin colored lines), ranging from t = 0 (blue flat
curve) to t = 50 MPa (red curve), weighted by the
probability Pt(t), using Asn = 1 MPa. The stress
distribution is given by Pt(t) � exp(�t/5) with t > 0.
The solid black line is the total seismicity rate R(t) =R
0
1R(t, t)Pt(t)dt. The superposition of curves R(t, t)

with a power law distribution of crossover times c = ta
exp(�t/Asn) gives rise to a power law decay of R(t) with
an exponent p � 0.8. The dashed lines are Omori laws
with p = 1 (bottom) and p = 0.8 (top).
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[14] The rate-and-state model with a uniform stress step (3)
cannot explain an Omori law decay with p > 1. Equation (7)
does not have a solution withPt(t) > 0 and t� ta in this case.
Some aftershock sequences, however, have an Omori
exponent larger than one. The only solution in order to
obtain a p value larger than one in the rate-and-state model
is to have a variation of stress with time, which may be
due to postseismic slip or viscous relaxation [Dieterich,
1994]. Other explanations for Omori’s law do allow for
larger p values [Mikumo and Miyatake, 1979; Shaw, 1993;
Narteau et al., 2002].

3. Estimating the Stress Distribution From
Aftershock Rate

[15] We have shown above that according to the rate-and-
state model, the Omori exponent provides some information
on the stress heterogeneity (but only if p < 1). Furthermore,
we can (in theory) obtain the complete stress distribution
(in the region where we measure the seismicity rate) from
the temporal evolution of the seismicity rate. Expression (6)
indeed provides a method for estimating the full distribution
Pt(t), provided we observe the seismicity rate R(t) over a
wide enough time interval.
[16] We first discretize the integration over stress and

times, using a linear sampling for stress, and a logarithmic
sampling for times, using the same number N of points.
Equation (6) is then similar to the system of N linear
equations

R tj
� �

¼
XN
i¼1

R tj; ti
� �

Pt tið Þ tiþ1 � tið Þ: ð13Þ

We divide both sides of equation (13) by R(tj) to stabilize
the problem. Equation (13) thus becomes

1 ¼
XN
i¼1

R tj; ti
� �
R tð Þ Pt tið Þ tiþ1 � tið Þ ¼ M � P; ð14Þ

where M is a N � N matrix M(i, j) = (ti+1 � ti) R(tj, ti)/R(tj)
and the vector P is the stress distribution at points t1,..,tN.
[17] The inversion of the stress distribution from (14) is

an ill-posed problem, i.e., the solution is very sensitive to
noise. We thus use the regularization method of Riele
[1985]. We introduce an additional constraint to (13),
minimizing either the first derivative jP0(t)j, the smoothness
kP00(t)k, or the distance between Pt(t) and an initial guess
P0(t). (e.g., a Gaussian distribution). Instead of solving
directly (14), we minimize the quantity

k M P � 1 k2 þa k L Pð Þ k2 ; ð15Þ

where a > 0 is the regularization parameter, and L is a linear
operator, e.g., L(P) = P � P0, L(P) = P0 (first derivative), or
L(P) = P00 (second derivative). We also impose that the
stress distribution is positive. We thus search for the positive
vector P that minimizes equation (15), using the nonlinear
least squares fitting program given by Lawson and Hanson
[1974].

[18] In practice, the estimation of Pt(t) for large t is
limited by the minimum time tmin at which we can reliably
estimate the seismicity rate. The largest stress we can
resolve is of the order of tmax = �Asnlog(tmin/ta). Practi-
cally, this time tmin may be as low as a few seconds, if we
correct from catalog incompleteness shortly after the main
shock (Z. Peng et al., Anomalous seismicity rate immedi-
ately before and after main shock rupture from high-
frequency waveforms in Japan, submitted to Journal of
Geophysical Research, 2006). For negative stress, we are
limited by the maximum time tmax after the main shock, and
by our assumptions that secondary aftershocks are negligi-
ble, and that the stress does not change with time (e.g.,
neglecting postseismic relaxation). In order to resolve Pt(t)
for negative values, we need to know the seismicity rate for
times larger than the aftershock duration ta (i.e., usually at
least a few years). Indeed, the seismicity rate after a stress
decrease is close to zero for t � ta, so that the measure of
R(t) for t � ta does not provide any information on Pt(t)
for t < 0.

4. Application of the Method to a Stochastic
Slip Model

4.1. Stochastic k2 Slip Model

[19] We have tested the rate-and-state model on a realistic
synthetic slip pattern. Herrero and Bernard [1994] proposed
a kinematic, self-similar model of earthquakes. They as-
sumed that the slip distribution at small scales, compared to
the rupture length L, does not depend on L. This led to a slip
power spectrum for high wave number equal to

u kð Þ ¼ C
s0
m

L

k2
for k > 1=L ; ð16Þ

where s0 is the stress drop (typically 3 MPa), m is the
rigidity (typically 3300 MPa in the lower crust), and C is a
shape factor close to 1. For wavelengths larger than the
rupture length L, the power spectrum is constant

u kð Þ ¼ C
s0
m
L3 for k < 1=L : ð17Þ

This model (16) reproduces the 1/f 2 power spectrum of
seismograms for large frequencies [Herrero and Bernard,
1994].

4.2. Shear Stress Change and Seismicity Rate
on the Fault

[20] We have used the k2 model to generate a synthetic
slip pattern, and compute the shear stress change on the
fault from the slip [Andrews, 1980; Ripperger and Mai,
2004]. Note that the seismicity rate given by (3) depends on
the Coulomb stress change, which is equal to the shear
stress change on the fault because the normal stress change
on a planar fault is zero. If we analyze off-fault aftershocks
or complex rupture geometries, we would have to consider
changes in normal stress as well.
[21] We have modified the k2 model in order to have a

finite standard deviation of the stress distribution. The k2

model (16) produces a shear stress change with a power
spectrum t(k) � k�1 for large k, because the stress is
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approximately the derivative of the slip. As a consequence,
the shear stress change for the k2 model is extremely
heterogeneous, with an infinite standard deviation. The
exponent n = 2 in the k2 model (16) is thus a minimum
physical value for the slip power spectrum [Herrero and
Bernard, 1994]. Using u(k) � k�2 produces a shear stress
change with a standard deviation which diverges logarith-
mically as the maximum wave number increases. Thus
Omori p value for this slip model tends to 1 as the grid
resolution increases. We have thus replaced the exponent n =
2 in (16) by n = 2.3, and smoothed the crossover at k = 1/L,
using

u kð Þ ¼ C
s0
m

L3

kLþ 1ð Þn : ð18Þ

[22] We have computed the stress change on the fault from
this synthetic slip model, for a fault of 50 � 50 km, with a
resolution dx = 0.1 km, and a stress drop s0 = 3 MPa (i.e., the
average stress change on the fault is �3 MPa). The maps of
the slip and stress on the fault are shown in Figure 3. The
stress field has large variations, from about �90 to 90 MPa,
due to slip variability. We did not constrain the slip to be
positive. This could be done by changing the phase of the
lowest mode, and tapering the slip close to the edges, so that
the maximum slip is at the center [Herrero and Bernard,
1994]. Doing so introduces small deviations of the stress
distribution from a Gaussian distribution for t � 0 but does
not introduce significant changes on the seismicity rate.
[23] We have then estimated the seismicity rate on the

fault predicted by the rate-and-state model, by integrating
numerically (5) using the observed stress map, and Asn =
1 MPa. While the stress on average decreases on the

fault, the seismicity rate shows a huge increase after the
main shock (by a factor 1010, but, of course, the
seismicity rate at short times, smaller than the duration
of the earthquake, has no physical sense) (see Figure 4).
It then decays with time approximately according to
Omori law, with an apparent exponent p = 0.93. At large

Figure 3. (a) Stochastic slip model, with a power spectrum u(k) = 1/(kL + 1)2.3 (where L = 50 km is the
rupture length), a stress drop s0 = 3 MPa, and a cell size dx = 0.1 km. (b) Shear stress change (parallel to
the slip direction).

Figure 4. Seismicity rate given by the rate-and-state
model [Dieterich, 1994], for the stress change shown in
Figure 3, assuming Asn = 1 MPa, and without earthquake
interactions. The solid red line is the seismicity rate
estimated from the simulated earthquake catalog (see model
1 in Table 1). The dashed black line is a fit by Omori’s law
for t < ta/100, with exponent p = 0.93. The crosses show the
fit with the rate-and-state model assuming a Gaussian Pt(t).
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times t � ta, the seismicity rate decreases below its
reference rate due to the negative stress values.
[24] Marsan [2006] reached similar conclusions, using

the same model: the main effect of stress heterogeneity on
the fault is to produce a short-term increase of the seismicity
rate, and to delay the seismic quiescence on the fault by
months to years.

4.3. Synthetic Aftershock Catalog

[25] We have generated synthetic earthquake catalogs
according to the rate-and-state model, using the (modified)
k2 model (18) to generate the stress change. We have
simulated aftershock sequences triggered by this heteroge-
neous stress change, without including earthquakes inter-
actions (i.e., without coseismic stress changes induced by
aftershocks), using the method of Dieterich et al. [2003].
We assume a nonstationary Poisson process with an average
seismicity rate R(t, t) given by (3). We generate aftershocks
in each cell independently of the other cells, assuming that
the stress is uniform in each cell. We do not need to generate
event magnitudes, because we do not include secondary
aftershocks in our simulation. We consider that each after-
shock does not modify the stress field or the seismicity rate.
[26] In each cell, we generate events one after the other. If

the last event in the cell occurred at a time ti after the main
shock, the probability that the next earthquake will occur at
a time smaller than ti + dt is given by

F dt; tið Þ ¼ exp �
Z tiþdt

ti

R t0; tð Þdt0
� �

: ð19Þ

The function F(dt, ti) increases from 0 to 1 as dt ranges from 0
to1. To determine the time ti+1 = ti + dt of the next event, we
generate a random number z between 0 and 1, and we solve
forF(dt, ti) = z.We have generated six synthetic catalogs from
the stress field shown in Figure 3, usingAsn = 1MPa orAsn =
0.1 MPa. We used different values of the reference rate Rr,
and of time interval tmin � tmax (see Table 1), in order to test
how the inversion method depends on the quality of the
catalog.
[27] Figure 5 shows a seismicity map, for a synthetic

catalog generated with Asn = 1 MPa. Aftershocks are
clustered in the regions of low slip, where the stress has
increased after the main shock. This pattern is very different

from simple dislocation models, which produce a uniform
stress drop on the rupture area. Therefore these simple slip
models produce aftershocks only around the rupture area. In
contrast, the complex slip model shown in Figure 3 produces
many spots of stress increase on the rupture area. It thus
explains why, in real data, most aftershocks are located on or
very close to the rupture area.

4.4. Inversion of Stress History From Seismicity Rate

[28] We have first applied the method of Dieterich et al.
[2000, 2003] on this synthetic stress field shown in
Figure 3b. Dieterich et al. [2000, 2003] estimate the stress
history t(t) at any point on a grid, assuming that the stress
change is homogeneous in each cell, but may change with
time. The stress history is obtained from the seismicity rate

Table 1. Parameters of the Synthetic Aftershock Catalogsa

Catalog N tmin tmax p �s0 Asn �s0,g/Asn t* t*g/Asn ta ta,g

1 154,447 10�10 100. 0.924 �3.01 1.0 �3.19 19.6 19.5 107 1.00 � 107

2 3,550 10�6 1. 0.938 �3.01 1.0 �3.14 19.6 20.6 107 0.95 � 107

3b 392 10�6 1. 0.929 �3.01 1.0 �9.45 19.6 20.8 107 1.58 � 107

3b 392 10�6 1. 0.929 �3.01 1.0 �1.19 19.6 18.3 107 1.00 � 107c

3b 392 10�6 1. 0.929 �3.01 1.0 �3.01c 19.6 18.7 107 1.12 � 107

4 231 10�5 0.1 0.948 �3.01 1.0 �57.5 19.6 42.8 107 5.01 � 107

4 231 10�5 0.1 0.948 �3.01 1.0 �3.01c 19.6 24.1 107 0.90 � 107

4 231 10�5 0.1 0.948 �3.01 1.0 �6.03 19.6 25.8 107 1.00 � 107c

5 203,998 10�10 100. 0.995 �3.01 0.1 �30.8 19.6 195. 107 1.00 � 107c

6 3,857 10�6 1. 0.992 �3.01 0.1 �45.9 19.6 133. 107 1.21 � 107

6 3,857 10�6 1. 0.992 �3.01 0.1 �29.2 19.6 171. 107 1.00 � 107c

6 3,857 10�6 1. 0.992 �3.01 0.1 �30.1c 19.6 125. 107 1.09 � 107

aNumber N of events, time interval [tmin tmax], Omori exponent p (measured by maximum likelihood from the simulated catalog for t/ta < 0.01), average
stress change �s0, value of Asn used for the simulations, and standard deviation t* (in MPa), and results of the inversion: s0,g, t*g, and ta,g, estimated
assuming a Gaussian stress distribution Pt(t). Stress values are in MPa.

bThis catalog is a subset of catalog 2, obtained by increasing the minimum magnitude by one unit.
cThe parameter was fixed to its real value in the inversion.

Figure 5. Seismicity map, for a synthetic catalog
generated using the rate-and-state model [Dieterich,
1994], for the stress change shown in Figure 3, assuming
Asn = 1 MPa, and without earthquake interactions. Only
events with t < ta are shown.
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by solving equation (1). We wanted to apply this method on
this synthetic stress model to test how stress heterogeneity
affects the inverted stress change. The results are shown in
Figure 6. The inverted stress change at short times is close
to the maximum stress change �100 MPa, and then
decreases down to a value close to the average stress change
��3 MPa at large times t > ta. Dividing the fault into
smaller size cells would not improve the results very much.
Because this slip model is self-similar, there are almost
everywhere some parts of the fault where the stress (and
thus the seismicity rate) increases. This shows that a small-
scale stress heterogeneity, without any time dependence, is
interpreted by this method as a variation of stress with time.
Also, it shows that a stress decrease cannot be resolved if it
is mixed with a stress increase, unless looking at very long
times. This may explain why stress shadows are so difficult
to observe [Felzer and Brodsky, 2005].

4.5. Inversion of Stress Distribution From
Seismicity Rate

[29] This test shows that variability with time is hard to
distinguish from small-scale heterogeneity in space based
on the temporal evolution of the seismicity rate.
[30] In order to characterize the coseismic stress change

on the fault plane, we thus need to neglect one effect (small-
scale heterogeneity) or the other (time variation). Our
method estimates the stress distribution on the fault from
the seismicity rate, assuming that stress does not change
with time. In theory (if we had an infinite time interval, a
huge number of aftershocks, no foreshocks or secondary
aftershocks, and if we knew the parameters Rr, ta, and Asn),
this method provides the distribution of stress on the fault. If
the fault is divided into smaller cells, this method gives a
map of the average stress change in each cell, as well as its
variability.
[31] For each synthetic catalog, we have measured the

seismicity rate on the fault by smoothing aftershock times.

We used a kernel method to estimate R(t) from aftershocks
time ti, with i = 1 to N, with a lognormal filter

R tð Þ ¼
XN
i¼1

1

ht
ffiffiffiffiffiffi
2p

p exp � log10 tð Þ � log10 tið Þð Þ2

2h2

 !
ð20Þ

with a kernel width h = 0.08.
[32] We then used the inversion method described previ-

ously to estimate the stress distribution Pt(t) from the
seismicity rate. We used the regularization condition L(P) =
P0 in (15), i.e., minimizing the derivative of Pt(t), using a =
104 (decreasing a produces huge fluctuations of Pt(t)).
[33] We have also estimated the Gaussian stress distribu-

tion that best fits the observed seismicity rate. We evaluate
the mean �s0, and the standard deviation t* of the
Gaussian function, as well as the aftershock duration ta,
using a maximum likelihood approach. We maximize the
log likelihood function defined by

L ¼
X
i¼1;N

logR tið Þ �
Ztmax

tmin

R tð Þdt ; ð21Þ

where the seismicity rate is given by

R tð Þ ¼
Z1
�1

R t; tð Þ e
� tþs0ð Þ2=2t�2

t*
ffiffiffiffiffiffi
2p

p dt : ð22Þ

The log likelihood function is maximized when the rate
estimate R, weighted logarithmically, is large when events
occur at times ti, and when the total rate estimate integrated
over time is low.
[34] Table 1 gives the parameters of each simulation, and

the results of the inversion. Figures 7 and 8 show the real
stress distribution (evaluated from the stress map shown in
Figure 3b) and the inverted one, for each synthetic after-

Figure 6. Shear stress change, as a function of the time
after the main shock, estimated from the seismicity rate
using Dieterich et al.’s [2000, 2003] method. We solved
equation (1) for the stress history, assuming that the stress is
uniform in space but changes with time.

Figure 7. Stress distribution estimated directly from the
stress map shown in Figure 3b (circles) and inverted from
the seismicity rate shown in Figure 4. The solid black line is
the solution of equation (15)). The best fitting Gaussian
distribution is shown as a blue dashed line.
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shock catalog. We test both inversion methods, either
solving (15) for Pt(t) for 80 < t < 80 MPa, or assuming
a Gaussian stress distribution.
[35] Figure 4 compares the theoretical seismicity rate

given by (5) using the observed stress field, with
the seismicity rate estimated from the seismicity catalog
using (20), and with the reconstructed seismicity rate
estimated using (6) from the inverted stress distribution.
For this synthetic catalog, the seismicity rate is almost
indistinguishable from an Omori law with an exponent p =
0.93 for t/ta < 10.
[36] In the first 2 catalogs in Table 1, with more than

several thousands events, we obtain a very good estimation
(error less than 6%) on all parameters t*, s0 and ta. If the
number of events decreases to 392 events, without changing
the time interval, we still obtain a rather good estimation of
ta and t*, but the error on the stress drop increases (see
model 3 in Table 1). For a shorter catalog (catalog 4 in
Table 1), with 292 events and only 4 ranges of magnitude in
time, the stress drop is not constrained, unless we fix the
aftershock duration to its true value. Alternatively, we can
fix the stress drop and obtain a rather good estimation of t*
and ta. This shows that the main effect in recovering s0, t*
and ta is the catalogue time interval, which needs to extend
over a reasonable fraction of ta. This is because very
different values of ta and s0 can produce very similar
seismicity rate R(t) for t < ta/100, as can be shown in
Figure 9. If we decrease Asn, keeping t* fixed, the Omori
exponent becomes closer to 1, and the error on all param-
eters increases (see models 5 and 6).
[37] When inverting for the complete distribution Pt(t),

the results are pretty good for the first simulation, with an
unrealistic large time interval and number of events. There
are, however, deviations in the tails, for t > 30 MPa, which
correspond to very short corner times c = ta exp(�t/Asn) =
10�13, much smaller than the minimum time tmin/ta = 10�10

used for the inversion of Pt(t). For catalogs 2–4 in Table 1,
the distribution of Pt(t) is not constrained for t < 0, and for
t � 1, because of the limited time interval. The results are
very poor for both simulations 5 and 6 in Table 1, with Asn =
0.1 MPa and Omori exponent p = 0.993. In this case, we
have almost no resolution on Pt(t) for t < 0. This method
only provides a rough estimate of the width of the distribu-
tion for t > 0. Thus, in practice, unless one has a very long
catalogue in time, and significant deviations from Omori
law, little can be said about the stress shadow regions.

4.6. Off-Fault Aftershocks

[38] We can make simple estimates of the stress change
and seismicity rate off of the fault plane. For mode III
rupture, static elasticity reduces to a Laplacian 4u = 0. For
a Laplacian, a Fourier mode with wave number k along an
infinite fault decays exponentially into the bulk proportional
to k times the distance y to the fault. With these basis
functions, we can easily extrapolate off of the fault,
although since it neglects rupture end effects, it is valid
only for distances less than the rupture length L and in areas
along side the main shock rupture area, and not extending into
the lobes of increasing stress beyond the finite rupture length.
Thus we are looking at regions which would be in the stress
‘‘shadow’’ of a simple rupture. Within this region, at a
distance y < L from the fault, the power spectrum of the
displacement for the modified slip model (18) becomes u(k, y)
� (kL + 1)�n exp(�ky). The power spectrum of the stress
change is given by

t k; yð Þ � k u k; yð Þ � e�ky

kLþ 1ð Þn�1
: ð23Þ

Figure 9. Seismicity rate given by the rate-and-state
model [Dieterich, 1994], for the stress change shown in
Figure 3, assuming Asn = 1 MPa, and without earthquake
interactions. The solid red line is the seismicity rate
estimated from the simulated earthquake catalog (see
catalog 4 in Table 1). The crosses show the fit with the
rate-and-state model assuming a Gaussian Pt(t) and
inverting for ta, s0, and t*. The circles are the fit assuming
a Gaussian Pt(t) with the stress drop fixed to its real value.

Figure 8. Stress distribution estimated directly from the
stress map shown in Figure 3b (circles) and inverted from
the seismicity rate shown in Figure 9 (see model 4 in Table 1).
The solid black line is the solution of equation (15). The best
fitting unconstrained Gaussian distribution is shown as a blue
dashed line. The green dash-dotted line shows the best fitting
Gaussian with fixed stress drop.
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This shows how the stress heterogeneity decays very rapidly
with distance from the rupture surface.
[39] Figure 10a shows the seismicity rate for different

values of the distance from the fault y/L, using the slip
model shown in Figure 3a. We computed the stress at a
distance y from the fault using t(k, y) = t(k, 0) exp(�ky),
i.e., multiplying the stress map shown in Figure 3b by
exp(�ky) in the Fourier domain. The stress distribution is
reasonably close to a Gaussian distribution at all distances.
Therefore we have used the best fitting Gaussian distribu-
tion in order to compute the seismicity rate shown in
Figure 10a. The standard deviation of the stress distribution
decreases very fast with the distance to the fault, which
produces a strong drop of the seismicity rate off of the
fault. The average stress decreases much slower with y.
Figure 10b shows the falloff with distance of these quantities.
For y/L > 0.1, the stress field is much more homogeneous and
mostly negative (the standard deviation is smaller than the
absolute mean stress). Therefore the seismicity rate for y/L >
0.1 is smaller than the reference rate at all times t < ta.Marsan
[2006] also used the rate-and-state model to investigate how
stress change heterogeneity modifies the rate of off-fault
aftershocks. He used a slightly different slip model, and
assumed the spatial dependence of the stress variability
decayed with the same form as the stress, as distance cubed.
With this assumption he found, not surprisingly, larger
distances of triggering.
[40] In practice, it is difficult to analyze the rate of off-

fault aftershocks, because the aftershock rate and the refer-
ence seismicity rate decrease with the distance from the
fault, and because of location errors. Also, secondary after-
shocks triggered by off-fault events will perturb the stress
field and seismicity rate with additional stress heterogeneity.
Our seismicity rate estimates here presume focal mecha-
nisms of aftershocks similar to the main shock focal
mechanism; other focal mechanisms could have different
rates, but optimally oriented plane estimates may not be the

best approach [McCloskey et al., 2003]. In any case, we do
see very rapid falloff of the seismicity with distance from
the fault, a point which deserves further observational
exploration. Note that Figure 10a shows the seismicity rate
normalized by the reference rate Rr. If Rr decreases with the
distance to the fault, the decrease of the aftershock rate with
y will be even faster than shown in Figure 10a.

4.7. Gaussian Versus Exponential Stress Distribution

[41] While the pure Omori law with p < 1 occurs for the
exponential distribution of stress changes, we find numer-
ically that a Gaussian stress distribution (which the k2 model
and many other models give), also gives realistic looking p
values over wide ranges of timescales. Some insight into
why this is the case can be gained by noting that for a
sufficiently wide range of values, a Gaussian is a good
enough approximation of an exponential. Taking the ratio of
a Gaussian to an exponential

exp � tþ s0ð Þ2

2t*2

 !
= exp

�t
t0

� �

¼ exp � 1

2

tþ s0
t*

� t*
t0

� �2

�s0
t0

þ t*2

2t20

" #
: ð24Þ

For t/t* = t*/t0 � s0/t* ± 1 this is within a factor exp(1)
of being constant. Thus, over an e-folding range of t*/t0 we
have something well approximated by an exponential.
[42] We can use this result to obtain an approximate

analytical expression for the effective Omori exponent pro-
duced by a Gaussian stress distribution. Expression (24)
shows that the exponential distribution closer to the
Gaussian one for a stress t has a characteristic parameter
t0 = t*2/(s0 + t). As Figure 2 illustrates, the more
important contribution to the aftershock rate at time t �
ta is due to stress values of the order of tc = �Asn log(t/ta).
If the stress change obeys a Gaussian distribution, stresses

Figure 10. (a) Seismicity rate for different values of the distance to the fault y/L decreasing from y/L = 0
(top) to y/L = 0.2 (bottom), using the slip model shown in Figure 3a, and assuming Asn = 1 MPa.
(b) Standard deviation (solid line) and absolute value of the mean (dashed line, the average stress change
is always negative) of the stress distribution as a function of the distance to the fault.
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larger than tc are less frequent than for t = tc, therefore
they have a smaller contribution to the seismicity rate at
time t. Smaller stress values t < tc are more frequent, but
the seismicity rate at time t is negligible compared to larger
stress values. We thus obtain the following relation between
the parameters s0 and t* of a Gaussian distribution, and the
parameter t0 of the exponential distribution which better
explains the aftershock rate at a given time t

t0 ¼
t*2

s0 � Asn log t=tað Þ : ð25Þ

Using expression (12), we obtain the following relation
between the effective Omori exponent at time t and the
parameters s0 and t* of a Gaussian stress distribution

p � 1� Asns0 � A2s2n log t=tað Þ
t*2

; ð26Þ

showing the slow increase of p with time. Figure 11
compares this approximate solution (26) with the variation
of p with time computed by integrating numerically (6),
using Asn = 1 MPa, for a Gaussian stress distribution with
s0 = 3 MPa and t* = 10 MPa. The approximate solution
(26) for Omori exponent is quite good for short times t� ta,
but the difference with the exact solution increases as time
approaches ta. This expression (26) also shows us the
inherent tradeoff between the mean stress change �s0 and
the variance of the stress change t* in affecting the p value.

5. Discussion

[43] We have considered above only heterogeneity of
the Coulomb stress change. However, there are other
important factors that affect the temporal evolution of the
seismicity rate, such as heterogeneity of the friction law

parameter A, normal stress, and stressing rate, multiple
interactions between aftershocks, foreshocks, and postseis-
mic relaxation.

5.1. Heterogeneity of the Friction Parameter A, Normal
Stress, Stressing Rate, and Reference Seismicity Rate

[44] We have shown that Coulomb stress change hetero-
geneity modifies the temporal evolution of the seismicity
rate, compared to a uniform stress change. However, other
kinds of heterogeneity may also impact the aftershock decay
with time, in particular the normal stress. Normal stress
heterogeneity enters the problem in two ways, through the
‘‘modified’’ Coulomb stress change t, and through the Asn
term in the denominator.
[45] Slip on a rough fault will produce coseismic changes

of the normal stress [Dieterich, 2005]. For coseismic
changes of the normal stress which are small compared to
the normal stress, we can assume that Asn does not change
with time, and account for coseismic changes of sn only in
the coseismic Coulomb stress change t. For larger coseis-
mic changes of normal stress, we have to use a more
complex form for the relation (1) between stress history
and seismicity rate [Dieterich, 1994], and equation (3) is no
more valid.
[46] In addition to coseismic stress changes of sn, there

are also spatial fluctuations of Asn. For instance, we expect
both A and sn to change with depth. With a wide variety of
materials making up fault zones and the presence of fluids,
there is probably no lower bound on Asn. The first effect of
introducing heterogeneity of Asn is to increase the fluctua-
tions of the normalized stress t/Asn, i.e., the standard
deviation of t/Asn is larger than t*/hAsni. Therefore Omori
exponent increases if Asn is more heterogeneous. Neglect-
ing the fluctuations of Asn will thus overestimate t*.
[47] The second effect is to introduce fluctuations of the

aftershock duration ta, which scales with Asn. Fluctuation of
Asn thus decrease the apparent aftershock duration. The
value of ta, inverted assuming t/Asn is uniform, is smaller
than its average value ta. Also, Asn heterogeneity widens
the duration of the quiescence (time period when R(t) < Rr).
[48] We have illustrated the effect of normal stress het-

erogeneity in Figure 12, which compares the seismicity rate
with and without fluctuations of Asn. Fluctuations of
coseismic Coulomb stress changes are modeled by a Gauss-
ian distribution of mean �s0 = �3 MPa and standard
deviation t* = 5 MPa. For Asn, we use a lognormal
distribution of mean hAsni = 1 MPa and standard deviation
std(Asn) = 7.3 MPa. The main effects of Asn heterogeneity
is to increase the apparent Omori exponent (measured for
t < 0.01 yr) from 0.44 to 0.91, and to decrease the
apparent aftershock duration, (defined as the time when
the aftershock rate decreases below its reference value)
from 0.2 to 0.05 yr.
[49] Inverting for the Coulomb stress distribution from

R(t), assuming that Asn = 1 MPa everywhere, gives t*g =
15.7 MPa, s0,g = 9.9 MPa and ta,g = 0.15 yr, instead of the
true value t* = 5 MPa, s0,g = 3 MPa and htai = 1 yr. The
errors in the inverted parameters t*g, s0,g, ta,g are negligible
when the Coulomb stress change t is more heterogeneous
than Asn, i.e., if t* � std(Asn). The fit of the aftershock
rate with Asn assumed constant gives a reasonably good fit
to the seismicity rate computed including Asn heterogeneity.

Figure 11. Variation of the effective Omori exponent with
time, for a Gaussian stress distribution of mean �s0 =
�3 MPa and standard deviation t* = 10 MPa. The
dashed line is the exact solution (given by integrating
numerically (6)), and the solid line is the approximate
analytical solution (26).
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The misfit will probably be within the noise level for real
data set. This shows that with the time dependence of the
seismicity alone being the source of information, we cannot
distinguish between heterogeneity of t or Asn. Finding
other effects which might be able to separate out these
contributions of shear stress heterogeneity and normal stress
heterogeneity remains an area worthy of further inquiry.
[50] The fact that Asn heterogeneity increases the Omori

exponent may explain why very low p values are seldom
observed, even outside the main shock rupture area, where
Coulomb stress change is relatively uniform (see Figure 10b).
This also explains why the crossover time c for off-fault
aftershocks is usually very short, as for on-fault aftershocks.
It also makes stress shadows even more difficult to detect.
Even in the regions where stress change is negative and not
too heterogeneous (t* < s0), fluctuations of Asn produce an
increase of the seismicity rate at short times, while a uniform
value of Asn gives a quiescence at all times.
[51] Another parameter that affects the seismicity rate is

the reference stressing rate, which modifies the aftershock
duration ta. Heterogeneity of the stressing rate will thus also
yield an error in the inverted values of t* and s0. In
contrast, the seismicity rate does not depend on the spatial
fluctuations of the reference seismicity rate, but depends
only on the average value of Rr. In practice, Rr is measured
from the average seismicity rate over a long time period
before the main shock. The uncertainty on Rr is generally of
a factor of about 2. This could induce large relative errors
on the stress drop estimate s0,g, but does not affect too much
the inverted values of t* and ta.

5.2. Foreshocks

[52] An assumption of our model is that the seismicity
rate before the main shock is equal to the reference
seismicity rate. However, most main shocks are preceded
by foreshocks, so that the seismicity rate R0 before the main
shock is usually larger than the reference rate Rr. Using the

results of Dieterich [1994], we can take into account this
effect by replacing the term e�t/Asn in (3) by

Rr

R0

exp � t
Asn

� �
¼ exp � t

Asn
� log

R0

Rr

� �� �
: ð27Þ

The effect of increasing R0 is thus equivalent to shifting the
stress distribution toward larger values, by the amount Asn
log(R0/Rr). Not correcting for this effect will thus over-
estimate the stress change.

5.3. Secondary Aftershocks

[53] We have neglected in this study the role of after-
shocks in changing the seismicity rate and redistributing the
stress. We know that most aftershocks may be secondary
aftershocks, triggered by previous aftershocks [Felzer et al.,
2003; Helmstetter and Sornette, 2003]. Ziv and Rubin
[2003] studied a quasi-static fault model that is governed
by rate- and state-dependent friction. They have shown that
if the main shock is modeled as a uniform stress increase,
the main effect of secondary aftershocks in the rate-and-
state model is to renormalize the seismicity rate without
changing its time dependence (i.e., without changing Omori
p value). If the stress change induced by the main shock is
nonuniform, multiple interactions between earthquakes
modify the spatial distribution of aftershocks [Ziv, 2003].
[54] Marsan [2006] also performed numerical simulations

to model the effect of multiple interactions. He modeled the
stress change induced by each aftershock by aGaussian white
noise of zero mean, i.e., assuming all aftershocks have the
same size, and neglecting spatial correlation of the stress
field. He concluded that the main effect of multiple inter-
actions is to increase the reference rate, but also to decrease
the ratio of the aftershock and background rates. The exis-
tence of multiple interactions also decreases the apparent
aftershock duration, but does not change theOmori exponent.
[55] Therefore secondary aftershocks should not change

the value of the width of the stress distribution inverted
from the aftershock decay on the main shock fault, which is
controlled by Omori exponent. However, multiple interac-
tions may bias the value of the average stress change and
aftershock duration. Developing more realistic models for
multiple interactions remains an area worthy of further
inquiry, but beyond the goals of this paper.

6. Conclusion

[56] We have shown how a new extension of the rate-and-
state friction formulation for seismicity rates, which takes as
its foundation a heterogeneous stress field, can explain the
most prevalent and puzzling of aftershocks, those which
occur on the main shock rupture area, where the stress
decreases on average after the main shock. With this point
of view, subtle but significant deviations from the pure
inverse time Omori exponent are mapped onto measures of
stress change heterogeneity on the fault. This contrasts with
the established methodology of Dieterich et al. [2000,
2003], in which these deviations are mapped onto time
dependent stress changes following the main shock.
[57] Taking the point of view that stress heterogeneity can

be quite large at the local scale on the fault surface which
ruptured, we have gained insights into a number of topics of
relevance to stress heterogeneity’s and earthquake behavior.

Figure 12. Seismicity rate for a Gaussian stress distribu-
tion (s0 = �3 MPa, t* = 5 MPa), without (solid line) and
with (crosses) heterogeneity of Asn. Normal stress fluctua-
tions are modeled by a lognormal distribution of average
1 MPa and standard deviation 7.3 MPa. The dashed line is a
fit by the rate-and-state model (3), assuming Asn is uniform.
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Regarding stress shadows, we have seen how they are very
difficult to detect in a heterogeneous stress context, relying
on subtle details in the seismicity rates at times of order ta,
subtleties which would become even more difficult to detect
if ta were nonuniform.
[58] Regarding stress heterogeneity relative to mean

stress changes, we have found in our efforts to model
seismicity changes with scale invariant slip distributions
that typical stress changes are actually larger than mean
stress drops on faults, so that a picture of a very rough stress
distribution on a fault which has broken is a much better
picture than standard crack-like models, which tend to
concentrate aftershocks at the edges of ruptures. This
provides important constraints on physical models of earth-
quakes. Finally, we have shown that modest catalogue
lengths allow an accurate inversion for some stress hetero-
geneity parameters, if the only source of heterogeneity is the
Coulomb stress change.
[59] However, there are probably other important factors

that affect the temporal evolution of the seismicity rate, such
as heterogeneity of the friction law parameter A, effective
normal stress, and stressing rate, multiple interactions be-
tween aftershocks, and postseismic relaxation. In particular,
heterogeneity of Asn may explain why Omori exponent and
characteristic time c does not seem to depend on stress
change amplitude [Felzer, 2005]. We have shown that
earthquake triggering is not only controlled by the average
values of the Coulomb stress change, or of the effective
normal stress, but rather by their heterogeneity. Particularly,
short time aftershock rate is mainly controlled by the
maximum stress change in this region, rather than by its
average value. Estimation of coseismic slip from seismo-
grams or geodesy is not accurate enough to estimate small-
scale variations of the stress change on the fault plane.
Therefore we need to couple large-scale deterministic slip
models with small-scale stochastic slip models, in order to
reproduce the spatiotemporal distribution of triggered earth-
quakes. This also shows the difficulty of inverting the stress
field from the spatiotemporal variations of the seismicity
rate. Real data is limited in number of events, catalog
duration, and location accuracy; and we have only rough
estimates of the large-scale average value of the friction
parameters, normal stress and stressing rate. With the
limited information given by the seismicity rate, it is hard
to characterize the different factors that control earthquake
triggering, especially on or close to the fault, where stress
and material properties are very heterogeneous.
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