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Abstract

We consider the problem of forecasting earthquakes on two different time scales: years, and days.
We evaluate some published forecast models on these time scales, and suggest improvements in
forecast models on both time scales. For time scales of several years, we modify the smoothed
seismicity method of Kagan and Jackson [1994; 2000] by smoothing the locations of magnitude 2
and larger earthquakes. Kagan and Jackson used only magnitude 5 and larger. The new
long-term model outperforms the best known published models in a retrospective test on
magnitude 5 and larger, primarily because it has much higher spatial resolution. We have also
developed a model to estimate daily earthquake probabilities in southern California, using the
Epidemic Type Earthquake Sequence model [Kagan and Knopoff, 1987; Ogata, 1988; Kagan and
Jackson, 2000]. The forecasted seismicity rate is the sum of a constant background seismicity
and of the aftershocks of all past earthquakes. The background rate is estimated by smoothing
past seismicity. Each earthquake triggers aftershocks with a rate that increases exponentially
with its magnitude and decreases with time following Omori’s law. We use an isotropic kernel to
model the spatial distribution of aftershocks for small (m ≤ 5.5) mainshocks, and by smoothing
the location of early aftershocks for larger mainshocks. The model also assumes that all
earthquake magnitudes follow the Gutenberg-Richter law with a uniform b-value. We use a
maximum likelihood method to estimate the model parameters and test the short-term and
long-term forecasts. A retrospective test using a daily update of the forecasts between 1985/1/1
and 2004/3/10 shows that the short-term model increases the average probability of an
earthquake occurrence by a factor 11.5 compared to the long-term time-independent forecast.
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Introduction

The best indicator of earthquake probability is
the occurrence of recent earthquakes. Several stud-
ies show that many earthquakes are triggered in part
by preceding events. Aftershocks are the most obvi-
ous examples, but many large earthquakes are pre-
ceded by smaller ones. Also, many events are appar-
ently triggered through a cascade process in which
triggered quakes trigger others in turn. Typically,
the seismicity rate just after and close to a large
m ≥ 7 earthquake can increase by a factor 104 and
more, and stay above the background level for sev-
eral decades especially in regions of low tectonic de-
formation. These large fluctuations of seismicity rate
provide a way to improve earthquake forecasting sig-
nificantly compared to time-independent forecasts.
Small earthquakes also have a significant contribu-
tion in earthquake triggering because they are much
more numerous than larger ones [Helmstetter, 2003;
Helmstetter et al., 2005]. As a consequence, many
large earthquakes are triggered by previous smaller
earthquakes (“foreshocks”), which can be useful to
improve the forecasting of large earthquakes [Kagan
and Knopoff, 1987; Reasenberg and Jones, 1989; Ka-
gan, 1991; Reasenberg, 1999].

Short-term clustering has been recognized for some
time, and several quantitative models of clustering
have been proposed [Kagan and Knopoff, 1987; Ogata,
1988; Reasenberg and Jones, 1989; Kagan, 1991; Ka-
gan and Jackson, 2000; Helmstetter and Sornette,
2003a; Ogata, 2004]. Short-term forecasts based on
earthquake clustering have already been developed.
Kagan and Knopoff [1987] performed retrospective
tests using the California seismicity. Jackson and Ka-
gan [1999] and Kagan and Jackson [2000] calculate in
real time short-term hazard estimates for the north-
west and southwest Pacific regions since 1999 (see
http://scec.ess.ucla.edu/∼ykagan/predictions index.html).
More recently, Gerstenberger et al. [2004] developed
a method to provide daily forecasts of seismic hazard
in southern California. However, these forecasts have
not yet been fully optimized and tested.

We have devised and implemented a new method
for issuing daily earthquake forecasts for southern
California. Our forecasts are updated daily and avail-
able on-line (http://moho.ess.ucla.edu/∼helmstet/-
forecast.html). Short-term effects may be viewed as
temporary perturbations to long-term earthquake po-
tential. This long-term forecast could be a Poisso-
nian process or a time-dependent process including,

for example, stress shadows. It can include any ge-
ologic information based on fault geometry and slip
rate, as well as data from geodesy or paleoseismicity.
As a first step, we have measured the long-term seis-
mic activity using historical seismicity only. We show
that this simple model performs better than a more
sophisticated model which incorporates geology data
and characteristic earthquakes [Frankel et al., 1997].

We use the Epidemic Type Earthquake Sequence
(ETES) model [Kagan and Knopoff, 1987; Ogata,
1988] to obtain short-term earthquake forecast in-
cluding foreshocks and aftershocks. This model is
usually called “Epidemic Type Aftershock Sequence”
(ETAS), but in addition to aftershocks this model also
describes background seismicity, mainshocks and fore-
shocks, using the same laws for all earthquakes. We
use a maximum likelihood approach to estimate the
parameters by maximizing the forecasting skills of the
model [Kagan and Knopoff, 1987; Schorlemmer et al.,
2005].

Time-independent forecasts

Definition of the model

We have developed a method to estimate the long-
term probability of an earthquake as a function of
space and magnitude, from historical seismicity. We
estimate the density of seismicity µ(~r ) by declus-
tering and smoothing past seismicity. We use the
composite seismicity catalog from the Advanced Na-
tional Seismic System (ANSS), available at http://-
quake.geo.berkeley.edu/anss/catalog-search.html. We
selected earthquakes above m0 = 3 for the time pe-
riod 1932-1979 and above m0 = 2 since 1980. We
computed the background density of earthquakes on
a grid which covers southern California with a res-
olution of 0.05◦ × 0.05◦. The boundary of the grid
is [32.45◦N − 36.65◦N ] in latitude and [121.55◦W −
114.45◦W ] in longitude. Before computing the den-
sity of seismicity, we need to decluster the catalog,
to remove the largest clusters of seismicity, which
would give large peaks of seismicity which do not
represent the long-term average. We used Reasen-
berg’s [1985] declustering algorithm with parameters
rfact = 20, xmeff = 2.00, p1 = 0.99, τmin = 1.0 day,
τmax = 10.0 days, and with a minimum cluster size of
5 events.

The declustered catalog is shown in Figure 1. Note
that there is a better method of declustering, which do
not need to specify a space-time window to define af-
tershocks, and uses an ETES-type model to estimate
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the probability that each earthquake is an aftershock
[Kagan and Knopoff, 1976; Kagan, 1999; Zhuang et
al., 2004]. This method is however more complex to
use and time-consuming for a large number of earth-
quakes.

The background density µ(~r ) at point ~r is given
by the sum over all past earthquakes 1 ≤ i ≤ N of
the kernel Kd(~r ) of each earthquake

µ(~r ) =
∑

i=1

Kdi
(~r − ~ri) . (1)

We use an isotropic kernel Kd(r) given by

Kd(r) =
C(d)

(r2 + d2)1.5 , (2)

where C(d) is a normalizing constant, and d is the
bandwidth of the kernel.

We use adaptive kernels with a bandwidth d which
depends on the density of earthquakes, so that we
have a better resolution (smaller d) where the density
is higher, but a larger d were the density of seismicity
is smaller. Specifically, the bandwidth of the kernel
for earthquake i is given by [Izenman, 1991]

di =
d0

√

µ(~ri)
and di > dmin . (3)

The background density defined by (1) and (3) has
spatial variations at scales smaller than the resolution
of the grid (0.05◦) used for the forecasts. Therefore,
we need to integrate the value of µ(~r ) defined by (1)
over each cell to obtain the background rate in this
cell. The advantage of the function (2) is that we can
compute analytically the integral of Kd(x, y) over one
dimension x or y, and then compute numerically the
integral in the other dimension.

The function (3) has two adjustable parameters d0

and the minimum value dmin. We estimate these pa-
rameters by optimizing the likelihood of the model.
We use the data from 1932 to 1995 to compute the
density µ(r) on each cell, and the data since 1996 to
evaluate the model. We estimate d0 and dmin by max-
imizing the log likelihood of the model given by the
sum over all cells

LL =

Nx
∑

ix=1

Ny
∑

iy=1

log pµ(ix, iy, n) , (4)

where n is the number of events that occurred in the
cell (ix, iy), and the probability pµ(ix, iy, n) of having

n events in the cell (ix, iy) is given by (assuming a
Poisson process)

pµ(ix, iy, n) = [T µ(ix, ix)]
n exp[−µ (ix, iy)T ]

n!
, (5)

where µ(ix, iy) represents the density of seismicity in
the cell ix, iy per unit time and T is the duration of
the catalog used to test the model. For each value
of the parameters d0 and dmin we compute iteratively
µ and d using expressions (1), (2) and (3), starting
with d = dmin for all earthquakes. After each it-
eration we get a smoother density µ. We stop the
iteration when the likelihood LL of the model starts
to decrease. The optimization gives d0 = 0.0225 and
dmin = 0.5 km (minimum allowed value equal to lo-
cation accuracy). We used 3 iterations to compute
iteratively µ and d before the likelihood decreased.
The background density, estimated using the above
parameters and the declustered catalog up to 2003, is
shown in Figure 2.

Comparison with other long-term models

We have compared this model with other long-term
forecasts for southern California, the model of Kagan
and Jackson [1994] (see also http://moho.ess.ucla.edu/-
∼kagan/s cal tbl new.dat) and the model of Frankel
et al. [1997].

Kagan and Jackson [1994; 2000] forecasts .
Kagan and Jackson [1994; 2000] (KJ94) used a similar
smoothing method to estimate the long-term seismic-
ity rate in southern California (see also Kagan et al.
[2003b]). The main differences between their algo-
rithm and the present work are that

• KJ94 use largerm ≥ 5.5 earthquakes since 1850,
without declustering the catalog.

• KJ94 introduce a weight proportional to the log-
arithm of the moment of each earthquake, while
we use the same weight for all earthquakes.

• KJ94 use an anisotropic power-law kernel (max-
imum density in the direction of the earth-
quake rupture), with a slower decay with dis-
tance K(r) ≈ 1/(r + Rmin). Because the inte-
gral of K(~r ) over the space does not converge,
they truncate the kernel function after a dis-
tance Rmax = 200 km. Their kernel has a larger
bandwidth Rmin = 5 km than the present model
(smoother density).
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• KJ94 add a constant uniform value to take
into account “surprises”: earthquakes that oc-
cur were no past earthquake occurred.

• KJ94 use extended sources instead of a point
source: each m ≥ 6.5 earthquake is replaced by
the sum of smaller scale ruptures (see http://-
moho.ess.ucla.edu/∼kagan/cal fps2.txt).

We modified our model to compare with KJ94
model, in order to use the same grid with the same
resolution of 0.1◦. Both models were developed by us-
ing only data before 1990 to estimate the parameters
and the long-term density of seismicity µ. We esti-
mated the parameters d0 and dmin (defined in (3)) of
our long-term model by using the data until 1986/1/1
to compute µ and the data from 1986/1/1 to 1990/1/1
to estimate the likelihood LL of the model. The
optimization of the LL gave the parameters values
d0 = 0.02 and dmin = 0.5 km. We then used those
parameters and the data until 1990/1/1 to estimate
the long-term density µ(~r).

We use the log likelihood defined in (4) to com-
pare KJ94 model with our long-term model. Be-
cause we want to test only the spatial distribution
of earthquakes, not the predicted total number, we
normalized both models by the observed number of
earthquakes (N = 56). We obtain LL = −463 for
KJ94 model and LL = −389 for our model. Both
models are shown in Figure 3 together with the ob-
served m ≥ 5 earthquakes since 1990. The present
work thus improves the prediction of KJ94 by a fac-
tor (ratio of probabilities) exp((−389+463)/56) = 3.7
per earthquake, despite being much simpler (isotropic
and point-source model). This suggests that includ-
ing small earthquakes (m ≥ 2) to predict larger ones
(m ≥ 5) considerably improves the predictions, be-
cause large earthquakes occur generally at the same
place as smaller ones [Kafka and Levin, 2000].

Frankel et al. [1997] forecasts. Frankel et al.
[1997] (F97) model is a more complex model which
includes both a smoothed historical seismicity (us-
ing m ≥ 4 earthquakes since 1933 and m ≥ 6 since
1850) and characteristic earthquakes on known faults,
with a seismicity rate constrained by the geologic slip
rate, and with a rupture length controlled by the
fault length. The magnitude distribution follows the
Gutenberg-Richter (GR) law with b = 0.9 for small
magnitudes (m ≤ 6) and a bump for m > 6.2 due to
characteristic events. We adjusted our model to use
only data before 1996 to build the model and the same
grid as F97 with a resolution of 0.1◦. We assumed a

GR distribution with b = 1 and with an upper magni-
tude cut-off at m = 8. We used the ANSS catalog for
the time period 1932-1995 to estimate the long-term
rate of m ≥ 4 earthquakes (without declustering the
catalog). We then assumed a GR law with b = 1
to estimate the long-term rate of m ≥ 5 earthquakes
from the number of m ≥ 4 events. We use m ≥ 5
earthquakes in the ANSS catalog that occurred since
1996 to compare the models. Both models are illus-
trated on Figure 4, which represents the density of
seismicity above m = 5.

We test how each model explains the number of
observed events, as well as their location and magni-
tude, by comparing the likelihood of each model. The
log likelihood is defined by

LL =

Nx
∑

ix=1

Ny
∑

iy=1

Nm
∑

im=1

log pµ(ix, iy, im, n) , (6)

where n is the number of events that occurred in
the cell (ix, iy) and in the magnitude bin im (the
magnitude range [5.0 − 8.0] is divided in bins of 0.1
unit). The log likelihood is LL = −155 for our model
and LL = −161 for F97 model. We thus obtain a
probability gain of 1.5 per earthquake for our model
compared to F97. Our model thus better predicts
the observed earthquake occurrence since 1996 than
F97 model. F97 however better predicts the observed
number than our model, because the number ofm ≥ 5
earthquakes in the time period 1996-2004 was smaller
than the long-term (1932-1995) rate (predicted num-
ber N = 14.6 for F97 and N = 26.6 for our model,
compared to the observed number N = 15). The
difference in likelihood between the two models in
mainly due to the choice of the kernel and of the
minimum magnitude used to estimate the rate of seis-
micity from historical seismicity. F97 use a smoother
kernel, with a fixed characteristic smoothing distance
of 10 km and with a ∼ 1/r decay, and use only m ≥ 4
earthquakes for smoothing.

Focal mechanisms

In addition to the location and magnitude of earth-
quakes, seismic hazard estimation also requires the
specification of earthquake focal mechanisms. Kagan
and Jackson [1994] have developed a method to es-
timate focal mechanisms based on catalogs of focal
mechanisms (see http://moho.ess.ucla.edu/∼kagan/-
s cal tbl new.dat for the forecasts for southern Cali-
fornia). They used the same catalog (m ≥ 5) and the
same kernel to estimate the rate of seismicity and the
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average focal mechanisms in each cell (see section ).
We would like to redo this analysis by applying the
same smoothing kernel than for estimating the rate,
including smaller m ≥ 2 earthquakes, and optimiz-
ing the forecast using a maximum likelihood method.
This analysis will be presented in another paper.

Time dependent forecasts

Definition of the ETES model

The ETES model is based on two empirical laws of
seismicity, which can also be reproduced by a multi-
tude of physical mechanisms, the Gutenberg-Richter
law to model the magnitude distribution, and Omori’s
law to characterize the decay of triggered seismic-
ity with the time since the mainshock [Kagan and
Knopoff, 1987; Ogata, 1988; Kagan, 1991; Kagan
and Jackson, 2000; Helmstetter and Sornette, 2003a;
Rhoades and Evison, 2004]. This model assumes that
all earthquakes may be simultaneously mainshocks,
aftershocks and possibly foreshocks. Each earthquake
triggers direct aftershocks with a rate increasing expo-
nentially ∼ 10αm with the earthquake magnitude m,
and that decays with time according to Omori’s law
∼ 1/(t + c)p. We also assume that all earthquakes
have the same magnitude distribution, which is in-
dependent of the past seismicity. Each earthquake
has thus a finite probability of triggering a larger
earthquake. An observed “aftershock” sequence in
the ETES model is the sum of a cascade of events in
which each event can trigger more events.

The global seismicity rate λ(t, ~r,m) is the sum of
a background rate µ(~r ), usually taken as a spatially
non-homogeneous Poisson process, and the sum of af-
tershocks of all past earthquakes

λ(t, ~r,m) = µ(~r)Pm(m)+Pm(m)
∑

ti<t

φmi
(~r−~ri, t−ti) ,

(7)
where Pm(m) is a time-independent magnitude dis-
tribution. The function φm(~r, t) gives the spatio-
temporal distribution of triggered events at point ~r
and at time t after an earthquake of magnitude m

φm(~r, t) = ρ(m)ψ(t) f(~r,m) , (8)

where ρ(m) is the average number of earthquakes trig-
gered directly by an earthquake of magnitudem > m0

ρ(m) = K 10α(m−m0) , (9)

the function ψ(t) is Omori’s law normalized to 1

(
∫

∞

0
ψ(t)dt = 1)

ψ(t) =
(p− 1) cp−1

(t+ c)p
, (10)

and f(~r,m) is the normalized distribution of horizon-
tal distances ~r relative to the mainshock of magnitude
m. We have tested different choices for f(~r,m), which
are described in section .

The exponent α has been found equal or close
to 1.0 for the southern California seismicity [Felzer et
al., 2004; Helmstetter et al., 2005], equal to the GR b-
value, showing that small earthquakes are collectively
as important as larger ones for seismicity triggering.
Note that we consider in the sum in (7) only earth-
quakes above the detection magnitude m0. Smaller
undetected earthquakes may also have an important
contribution to the rate of triggered seismicity. These
undetected earthquakes may thus bias the parame-
ters of the model, i.e., the parameters estimated by
optimizing the likelihood of the models are “effective
parameters”, which more or less account for the influ-
ence of undetected small earthquakes with m < m0.

The ETES model assumes that each primary af-
tershock may trigger its own aftershocks (secondary
events). The secondary aftershocks may themselves
trigger tertiary aftershocks and so on, creating a cas-
cade process. The exponent p, which describes the
time distribution of direct aftershocks, is larger than
the observed Omori exponent, which characterizes the
whole cascade of direct and secondary aftershocks
[Helmstetter and Sornette, 2002].

As a first step, we use a simple GR magnitude
distribution

Pm(m) ∼ 10−b(m−m0) , (11)

with a uniform b-value equal to 1.0, a upper cut-off
at mmax = 8 [Bird and Kagan, 2004], and a mini-
mum magnitude m0 = 2. If we want to predict rel-
atively small m ≤ 4 earthquakes, we must take into
account the fact that small earthquakes are missing in
the catalog after a large mainshock. The procedure
described for correcting for undetected small earth-
quakes is described in section .

The background rate µ in (7) is estimated by
smoothing the historical seismicity, using the long-
term forecast described by equations (1) and (2) in
section . Alternatively, our short-term forecast model
can be included in a more complex interdisciplinary
model, which can include information from geodesy,
including GPS, paleo-seismicity and fault slip rates.



6

We can build a composite model by adding the short-
term component to any long-term forecast. For this,
we simply need to replace the background rate µ
in (7) by the long-term forecast, multiplied by the
fraction of time-independent events so that the total
predicted seismicity rate (time-independent and trig-
gered events) will be equal to the observed seismicity
rate.

We use the QDDS (ftp://clover.wr.usgs.gov/pub/-
QDDS/QDDS.html) and the QDM (ftp://clover.wr.usgs.gov/-
pub/QDM/QDM.html) java applications to obtain
the data (time, locations and magnitude) in real time
from several regional networks (southern and north-
ern California, Nevada) and to create a composite
catalog. We automatically update our forecast each
day and we put our results on our web site (http://-
moho.ess.ucla.edu/∼helmstet/forecast.html). The model
parameters are estimated by optimizing the predic-
tion (maximizing the likelihood of the model) using
retrospective tests. The inversion method and the re-
sults are presented in section .

The basic idea of our work is the same as the STEP
model of Gerstenberger et al. [2004]. Both models are
based on spatio-temporal clustering of earthquakes,
but there are several significant differences between
the two approaches:

• STEP model uses Frankel et al. [1997] forecasts
for the background rate, while we estimate the
background rate by declustering and smoothing
the seismicity;

• In STEP model, the seismicity rate on each cell
is the sum of the background rate plus the rate
of aftershocks of only one mainshock, the previ-
ous earthquake which has the largest influence
on this cell. If the rate of aftershocks of the
mainshock is smaller than the background rate,
then the seismicity rate is equal to the back-
ground rate. In our model, the seismicity rate
on each cell is given by the sum of the back-
ground rate and of the aftershock rate of all
past earthquakes.

• STEP model assumes than the rate of after-
shocks scales as ∼ 10αm with α = b, while we
use α < b;

• STEP model (in their more complex version)
adjusts the parameters p, K (aftershocks pro-
ductivity) and c of Omori’s law for each after-
shock sequence and for each cell (if the num-
ber of aftershocks is sufficient), using a fit by

a maximum likelihood method. If the number
of events is too small to adjust the parameters,
the generic aftershock model of Reasenberg and
Jones [1989] is used. In our model, we use the
same parameters p, K and c for all earthquakes,
which are estimated by optimizing the model
using the whole catalog.

• STEP model introduces a variability of the GR
b-value in time and in space, while we use a
constant value b = 1.0. Bird and Kagan [2004]
argue that the b-value has a uniform value 0.9−
1.0 for global M ≥ 5.6 earthquakes in various
tectonic provinces.

We will compare our model with STEP and other
time-dependent models as part of the Regional Earth-
quake Likelihood Model (RELM) project to test in
real time daily and long-term models for California
[Kagan et al. 2003a; Jackson et al. 2004; Schorlem-
mer et al. 2005].

Application of ETES model for
time-dependent forecasts

By definition, the ETES model provides the aver-
age instantaneous seismicity rate λ(t) at time t given
by (7), if we know all earthquakes that occurred up to
time t. To forecast the seismicity between the present
time tp and a future time tp + T , we cannot use di-
rectly expression (7), because a significant fraction of
earthquakes that will occur between time tp and time
tp + T will be triggered by earthquakes that will oc-
cur between time tp and time tp + T (see Figure 5).
Therefore using expression (7) to provide short-term
seismicity forecasts, with a time window T of 1 day,
may significantly underestimate the number of earth-
quakes. Helmstetter and Sornette [2003a] have tested
several methods of prediction on synthetic catalogs
generated by the ETES model. They have shown that
the use of (7) to predict the number of earthquakes in

the next day estimated by Np =
∫ tp+T

tp
λ(t) dt, using

the exact parameters of the ETES model to compute
λ(t), may underestimate the number of earthquakes
by a factor 2, because it does not take into account
the contribution of yet unobserved seismicity in the
seismicity rate λ(t).

To solve this problem, Helmstetter and Sornette
[2003a] proposed to generate synthetic catalogs with
the ETES model in order to predict the seismicity for
the next day, by averaging the number of earthquakes
over all scenarios. This methods provides a much bet-
ter estimation of the number of earthquakes than the
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direct use of (7), but is much more complex to ap-
ply. It is practically not useful if we want to predict
not only the number of earthquakes, but also their lo-
cation and magnitude, because this would require to
generate a huge number of scenarios. Helmstetter and
Sornette [2003a] have shown that, for synthetic ETES

catalogs, the use of Np =
∫ tp+T

tp
λ(t) dt to predict the

number of earthquakes between tp and tp+T underes-
timates the number of actually occurred earthquakes
by an approximate constant factor, independent of
the future events number. This means that the effect
of yet unobserved seismicity is to amplify the after-
shock rate of past earthquakes by a constant factor.

This result suggests a simple solution to take into
account the effect of yet unobserved earthquakes. We

can use Np =
∫ tp+T

tp
λ(t) dt to predict the number of

earthquakes between tp and tp +T but using effective
parameters K, µs and α, which may be different from
the true (i.e., tp = t) parameters of the ETES model.
Instead of using the likelihood of the ETES model to
estimate these parameters, as done by Kagan [1991],
we will estimate the parameters of the model by opti-
mizing the likelihood of the forecasts, defined in sec-
tion . These effective parameters will depend on the
duration (horizon) T of the forecasts.

Threshold Magnitude

An important problem when modeling the occur-
rence of relatively small earthquakes m ≤ 4 in Cali-
fornia is that the catalog is not complete after large
earthquakes [Kagan, 2004]. One effect of missing
earthquakes is that the model will over-estimate the
observed number of earthquakes, because small earth-
quakes are not detected. But another effect of miss-
ing early aftershocks is to underestimate the predicted
seismicity rate, because we miss the contribution from
these undetected small earthquakes in the future seis-
micity rate estimated from the ETES model (7). In-
deed, secondary aftershocks (triggered by a previous
aftershock) represent an important fraction of after-
shocks [Felzer et al., 2003; Helmstetter and Sornette,
2003b].

We have developed a method to correct from both
effects of undetected small aftershocks. We first need
to estimate the threshold magnitude as a function of
the time from the mainshock and of the mainshock
magnitude. We analyzed all aftershock sequences of
m ≥ 6 earthquakes in southern California since 1985.
We propose the following relation between the thresh-
old magnitude mc(t,m) at time t (in days) after a

mainshock of magnitude m

mc(t,m) = m− 4.5 − 0.76 log10(t)

and mc(t,m) ≥ m0 = 2 . (12)

Of course, there are some fluctuations between one
sequence and another one, but the above relation is
correct within ≈ 0.2 magnitude units. The above
relation is illustrated on Figure 6 for Joshua-Tree
m = 6.1, San-Simeon m = 6.5 and Landers m = 7.3
aftershock sequences.

We use expression (12) to estimate the detection
magnitude magnitude mc(t) at the time t of each
earthquake. The time-dependent detection thresh-
old mc(t) is larger than the usual threshold m0 for
earthquakes that occurred at short times after a large
m ≥ 5 earthquake. We select only earthquakes with
mi > mc(ti) to estimate the likelihood of the forecasts
(18).

We can also correct the forecasts for the second
effect: missing contribution from undetected after-
shocks in the sum (7). We can take into account
the effect of earthquakes below the detection thresh-
old mc(t) and above the minimum magnitude m0 by
adding a contribution to the number ρ(m) of after-
shocks of detected earthquakes m > mc(t), i.e., by
replacing ρ(m) in (9) by

ρ∗(m) = ρ(m)+
Kb

b− α
10b(mc(t)−m0)

[

1 − 10−(b−α)(mc(t)−m0)
]

.

(13)
where mc(t) is the detection threshold at the time t of
the earthquake, estimated by (12), due to the effect of
all previousm ≥ 5 earthquakes. The second contribu-
tion corresponds to the effect of all earthquakes with
m0 < m < mc(t) that occur on average for each de-
tected earthquake. Practically, for a reasonable value
of α ≈ 0.8, this correction (13) is of the same order as
the contribution from observed earthquakes, because
a large fraction of aftershocks are secondary after-
shocks [Felzer et al., 2003], and because small earth-
quakes are collectively as important as larger ones for
earthquake triggering if α = b.

Spatial distribution of aftershocks

We have tested different choices for the spatial
kernel f(~r,m), which models the distribution of dis-
tances between a mainshock of magnitude m and its
aftershocks. We used a power-law function

fpl(~r,m) =
Cpl

[ |~r |2 + d(m)2 ]
1.5 , (14)
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and a Gaussian distribution

fgs(~r,m) = Cgs exp

[

−
|~r |2

2 d(m)2

]

, (15)

where Cpl and Cgs are normalizing constants such
that the integral of f(~r,m) over an infinite surface is
equal to 1. The spatial regularization distance d(m)
accounts for the finite rupture size and for the location
errors. We assume that d(m) is given by

d(m) = 0.5 + fd × 0.01 × 100.5m km, (16)

where the first term accounts for location accuracy
and the second term represents the aftershock zone
length of an earthquake of magnitude m. The pa-
rameter fd is adjusted by optimizing the prediction
and should be close to 1 if the aftershock zone size
is equal to the rupture length as estimated by Wells
and Coppersmith [1994].

The Gaussian kernel (15), which describes the
density of earthquakes at point ~r, is equivalent to
the Rayleigh distribution ∼ exp[−(r/d)2/2]/r of dis-
tances |~r| used by Kagan and Jackson [2000]. The
choice of an exponent 1.5 in (14) is motivated by
recent studies [Ogata, 2004; Console et al., 2003;
Zhuang et al., 2004] who inverted this parameter in
earthquake catalogs by maximizing the likelihood of
the ETES model, and who all found an exponent close
to 1.5. This choice is also convenient because the func-
tion (14) is integrable analytically. It predicts that the
aftershock density decreases with the distance r from
the mainshock as 1/r3 in the far field, proportionally
to the static stress change.

For large earthquakes, which have a rupture length
larger than the grid resolution of 0.05◦ (≈ 5 km) and
a large number of aftershocks, we can improve the
model by using a more complex anisotropic kernel,
as done previously by Wiemer and Katsumata [1999],
Wiemer [2000] and Gerstenberger et al. [2004]. We
use the location of early aftershocks as a witness for
estimating the mainshock fault plane, and the other
active faults in the vicinity of the mainshock. We
compute the distribution of aftershocks of large m ≥
5.5 mainshocks by smoothing the location of early
aftershocks

f(~r,m) =
N

∑

i=1

f(|~r − ~ri|,mi) , (17)

where the sum is on the mainshock and on all earth-
quakes that occurred within a distance Daft(m) from
the mainshock, and at a time smaller than the present

time tp and not larger than Taft from the mainshock.
We took Daft(m) = 0.02× 100.5m km (approximately
2 rupture lengths) and Taft = 2 days.

The kernel f(r,m) in (17) used to smooth the loca-
tion of early aftershocks, is either a power-law (14) or
a Gaussian distribution (15), with an aftershock zone
length given by (16) for the mainshock, but fixed to
d = 2 km for the aftershocks. This way we recover
the same expression for f(~r,m) for a large m ≥ 5.5
earthquake as for a smaller earthquake if we com-
pute this term just after the mainshock has occurred
(N = 1 in (17)). At larger times after the main-
shock, when a sufficient number of aftershocks have
already occurred, f(~r,m) is given by the smoothed
density of aftershocks. The density of aftershocks es-
timated using (17) is shown in Figure 7 for the Lan-
ders earthquake, using a power-law kernel (a) or a
Gaussian kernel (b). The distribution of aftershocks
that occurred after more than two hours after Landers
(black dots) is in good agreement with the prediction
based on aftershocks that occurred in the first two
hours (white circles). In particular, the largest Big-
Bear aftershock (m = 6.4, latitude=34.2◦, longitude
=−116.8◦), which occurred about three hours after
Landers, was preceded by other earthquakes in the
first two hours after Landers, and is well predicted
by our method. The Gaussian kernel (15) produces
a density of aftershocks which is much more localized
than with a power-law kernel.

The advantage of using the observed aftershocks to
predict the spatial distribution of future aftershocks
is that this method is completely automatic, fast, and
uses only information from the time and location of
aftershocks which are available a few minutes after
the earthquake. It can provide an accurate prediction
of the spatial distribution of future aftershocks after
less than one hour after the mainshock when enough
aftershocks have occurred. Our method has also the
advantage of taking into account the geometry of the
active fault network close to the mainshock, which is
reflected by the spatial distribution of aftershocks.

Therefore, even if the spatial distribution of after-
shock is controlled by the Coulomb stress change, it
may be more accurate, much simpler and faster to
use the method described above rather than to com-
pute the Coulomb stress change. Indeed, Coulomb
stress change calculation requires to know the main-
shock fault plane and the slip distribution, which are
available only several hours or days after a large earth-
quake [Scotti et al., 2003; Steacy et al., 2004]. Felzer
et al. [2003] have already shown that a simple fore-
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casting model (simplified ETES model), based on the
time, location, and magnitudes of all previous after-
shocks better predicts the location of future after-
shocks than Coulomb stress change calculations.

Definition of the likelihood and estimation of
the model parameters

We use a maximum likelihood method to test the
forecasts and to estimate the parameters. For the
temporal distribution of aftershocks, we choose to fix
the c-value in Omori’s law (10) equal to 0.0035 day
(5 minutes). This parameter is not important as
long as it is much smaller than the time window
T = 1 day of the forecast. We estimate the param-
eter p of Omori’s law, the exponent α and the con-
stant K of the aftershock productivity ρ(m) defined
by (9). We write the background rate µ(~r) as the
product µs µ0(~r), where µ0(~r) is the background den-
sity normalized to 1 (see section ) and µs gives the
total number of background events per day. We have
thus 5 parameters to estimate: p (Omori exponent
defined in (10)), K and α (see eq. (9)), µs, and fd

(parameter defined by (16), which describes the size
of the aftershock zone).

The log likelihood (LL) of the forecasts is defined
by Kagan and Jackson [2000], Kagan et al. [2003b],
Schorlemmer et al. [2005]

LL =

Nt
∑

it=1

Nx
∑

ix=1

Ny
∑

iy=1

Nm
∑

im=1

log pNp
(it, ix, iy, im, n) ,

(18)
where n is the number of events that occurred in
the bin (it, ix, iy, im). We take a step of T = 1 day
in time, 0.05 degree in space and 0.1 in magnitude.
The forecasts are updated each day at midnight Los
Angeles time. We assume a Poisson process to es-
timate the probability pNp

(it, ix, iy, im, n) of having
exactly n events in each bin from the predicted num-
ber Np(it, ix, iy, im) of events in this bin:

pλ(it, ix, iy, im, n) = (Np(it, ix, iy, im))
n exp[−Np(it, ix, iy, im)]

n!
,

(19)
where Npp(it, ix, iy, im) is given by the integral over
each space-time-magnitude bin of the predicted seis-
micity rate λ(~r, t,m)

Np(it, ix, iy, im) =

im+1
∫

im

it+1
∫

it

ix+1
∫

ix

iy+1
∫

iy

λ(~r, t,m) dmdt dx dy .

(20)

We can simplify the expression of LL, by noting that
we need to compute the seismicity rate only in the
bins (ix, iy, im) that have a non-zero number of ob-
served events n. We can rewrite (18) and (19) as

LL =

Nt
∑

it=1

{

−Np(it) +
n>0
∑

ix

n>0
∑

iy

n>0
∑

im

n log[Np(it, ix, iy, im)] − log(n!)
}

, (21)

where Np(it) is the total predicted number of events
between tp and tp + T

Np(it) = µs +

it+1
∫

it

∑

ti<tp

fi ρ(mi)ψ(tp − ti) dt . (22)

The factor fi in (22) is the integral of the spatial
kernel fi(~r − ~ri) over the grid, which is smaller than
1 due to the finite size of the grid.

We maximize the log likelihood LL defined by (18)
using a simplex algorithm [Press et al., 1992, p. 402],
and using all earthquakes with m ≥ 2 since 1985/1/1
and until 2004/3/10 to test the forecasts. We take
into account in the seismicity rate (7) the aftershocks
of all earthquakes with m ≥ 2 since 1980/1/1 that
occurred within the grid ([32.45◦N − 36.65◦N ] in lat-
itude and [121.55◦W − 114.45◦W ] in longitude) or at
less than 1◦ outside the grid. There are 65,664 tar-
get earthquakes above the threshold magnitude mc in
the time and space window used to compute the LL.
We test different models for the spatial distribution
of aftershocks, a power-law kernel (14) or a Gaussian
(15).

We use the probability gain per earthquake G to
quantify the performance of the short-term prediction
by comparison to the long-term forecasts

G = exp

(

LL− LLLT

N

)

, (23)

where LLLT is the log-likelihood of the long-term
model, LL is the likelihood of the ETES model and
N is the total number of events. The gain defined by
(23) is related to the information per earthquake I
defined by Kagan and Knopoff [1977] (see also Daley
and Vere-Jones [2004]) by G = 2I .

A certain caution is needed in interpreting the
probability gain for the ETES model. Earthquake
temporal occurrence is controlled by Omori’s law
which diverges to infinity for time approaching zero.
Calculating the likelihood function for aftershock se-
quences illustrates this point: the rate of aftershock
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occurrence after a strong earthquake increases by a
factor of thousands. Since log(1000) = 6.9, one
early aftershock yields a contribution to the likeli-
hood function analogous to about 7 additional free
parameters. This means that the likelihood optimiza-
tion procedure as well as the probability gain value
is strongly dependent on early aftershocks. As Fig-
ure 6 demonstrates, many early aftershocks are miss-
ing from earthquake catalogs [Kagan, 2004], therefore
the likelihood function value substantially depends on
poor quality data in the beginning of aftershock se-
quence.

Similarly, earthquake hypocenters are concentrated
on a fractal set with a correlation dimension slightly
above 2.0 [Helmstetter et al., 2005]. Due to ran-
dom location errors for small inter-earthquake dis-
tances the dimension increases close to 3.0. This sig-
nifies that the likelihood function would substantially
depend on location uncertainty, since kernel width
Kd(~r) (Equations 1 and 2) can be made smaller if
a catalog with higher location accuracy is used.

Results and discussion

Model parameters and likelihood

The model parameters are obtained by maximiz-
ing the LL. The optimization converges after about
100 iterations. We have tried different values of the
initial parameters and we have checked that the final
values do not depend on the initial values. The re-
sults are given in Table 1 and in Figure 8. We have
tested different versions of the model (spatial kernel,
unconstrained or fixed α value, and different values
of the minimum magnitude).

An example of our daily forecasts (using model
3 in Table 1) is shown in Figure 9, for the day of
2004/10/23. All 6 earthquakes which occurred dur-
ing that day are located in areas of high predicted
seismicity rate (large values ofNp). All except one oc-
curred close enough in time and space from a recent
earthquake, so that the short-term predicted num-
ber Np(~r ) is larger than the long-term average rate
µLT (~r ). The probability gain (23) per earthquake for
this day is 26.

Figure 8 shows the LL of the daily forecasts, for
the time period from 1985/1/1 to 2004/3/10, and for
each iteration of the optimization as a function of the
model parameters. The variation of the LL with each
model parameter gives an idea of the resolution of
this parameter. The unconstrained inversion gives a
probability gain G = 11.7, and an exponent α = 0.43,

much smaller than the direct estimation α = 0.8 ±
0.1 [Helmstetter, 2003] or α = 1 [Felzer et al., 2004;
Helmstetter et al., 2005] using a fit of the number of
aftershocks as a function of the mainshock magnitude.
The optimization with α fixed to 0.8, closer to the
observed value, provides a probability gain G = 11.1
slightly smaller than the best model. Note that there
is a negative correlation between the parameters K
and α in Table 1: K is larger for a smaller α in order to
keep the number of forecasted earthquakes constant.

Comparison of predicted and observed
aftershock rate

Figure 10 compares the predicted number of events
following Landers mainshock, for the unconstrained
model 2 (see Table 1), and for models 3 and 5 with
α fixed to 0.8. Model 3 underestimates the number
of aftershocks, but predicts the correct variation of
the seismicity rate with time. In contrast, model 2
(with α = 0.43) highly underestimates the number
of aftershocks until 10 days after Landers, because
the low value of α yields a relatively small increase
of seismicity at the time of the mainshock. Model 2
then provides a good fit to the end of the aftershock
sequence, when enough aftershocks have occurred so
that the predicted seismicity rate increases due to the
importance of secondary aftershocks. The saturation
of the number of aftershocks at early times in Fig-
ure 10 (for both the model and the data) is due to the
increase of the threshold magnitude mc (see equation
(12)), which recovers the usual value mc = m0 = 2
about 10 days after Landers. Adding the corrective
term ρ∗(m) defined by (13), in order to account for
the contribution of undetected early aftershocks in the
rate of triggered seismicity, better predicts the rate of
aftershocks just after Landers, but gives on average a
smaller probability gain than without including this
corrective term (see models 3 and 5 in Table 1 and
Figure 10).

Figure 11 shows the predicted number of earth-
quakes and the probability gain (see equation (23)) in
the time window 1992−1995, for model 3. The model
underestimates the rate of aftershocks for Joshua-
Tree (m = 6.1) and Landers (m = 7.3) mainshocks,
slightly over-estimates for Northridge (m = 6.6) and
provides a good fit (not shown) for Hector-Mine (m =
7.1) and for San-Simeon (m = 6.5). All models over-
estimate by a factor larger than two the aftershock
productivity of the 1987 m = 6.6 Superstition Hills
earthquake. This shows that there is a variability
of aftershock productivity not taken into account by
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the model, which may partly be due to error in mag-
nitudes. This implies that a model which estimates
the parameters of each aftershock sequences (after-
shocks productivity, Omori p exponent and GR b-
value), such as the STEP model [Gerstenberger et
al., 2004] may perform better than the ETES model
which uses the same parameters for all earthquakes
(except for the increase in productivity ρ(m) with
magnitude).

Figure 12 shows the predicted number of m ≥ 2
earthquakes per day for model 3 (see Table 1) as a
function of the observed number. Most points in this
plot are close to the diagonal, i.e., the model generally
gives a good prediction of the number of events per
day. A few points however have a large observed num-
ber of earthquakes but a small value of the predicted
number. These points correspond to days for which
a large earthquake and its first aftershocks occurred
while the seismicity was close to its background level,
when the predicted seismicity rate was small.

We can complexify the model to take into account
fluctuations of aftershock productivity, as done in the
STEP model, by using early aftershocks to estimate
the productivity ρ(m) of large earthquakes. How-
ever, it needs to be investigated whether magnitude
errors, biases and systematic effects significantly con-
tribute to prediction efficiency. A method which ad-
just parameters to available data may seemingly per-
form better, especially in retrospective testing when
various adjustments are possible. But if aftershock
rate fluctuations are being caused by various techni-
cal factors and biases, this forecast advantage can be
spurious.

Proportion of aftershocks in seismicity

The background seismicity is estimated to be µs =
2.81 m ≥ 2 earthquakes per day for model 3, com-
pared to the long-term average rate µLT = 9.4 earth-
quakes, i.e., the proportion of triggered earthquakes
is 70%. This number under-estimates the actual frac-
tion of triggered earthquakes, because it does not
count the early aftershocks that occur a few hours af-
ter a mainshock, between the present time tp and the
end of the prediction window tp + T (see Figure 6).
We have also removed from the catalog aftershocks
smaller than the threshold magnitude mc(t,m) given
by (12).

Scaling of aftershock productivity with
mainshock magnitude

There may be several reasons for the small value
α = 0.43 selected by the optimization, compared to
the value α = 1 estimated by Felzer et al. [2004] and
Helmstetter et al. [2005]. A smaller α value corre-
sponds to a weaker influence of large earthquakes. A
model with a small α has thus a shorter memory in
time, and can adapt faster to fluctuations of the ob-
served seismicity. A smaller α predicts a larger pro-
portion of secondary aftershocks after a large main-
shock. Therefore, it can better account for fluctua-
tions of aftershock productivity. Indeed, if the rate of
early aftershocks is low, a model with a small α will
predict a small number of future aftershocks (less sec-
ondary aftershocks). In contrast, in case of a high rate
of early aftershocks, it will predict a high aftershock
activity due to the effect of secondary aftershocks. A
model with a smaller α is also less sensitive to error in
magnitudes. An error on the mainshock magnitude of
0.3 gives an error for the rate of direct aftershocks of
a factor two for α = 0.8, and a factor 1.3 for α = 0.4.
Finally, a model with a smaller α may provide a bet-
ter forecast for the spatial distribution of aftershocks.
Because the real spatial distribution of aftershocks is
significantly different from the isotropic model (used
for m ≤ 5.5 earthquakes), a model with a smaller
α may perform better than the model with the true
α. A small α gives more importance to secondary
aftershocks, and can thus better model the hetero-
geneity of the spatial distribution of aftershocks. In
contrast, a larger α value produces a quasi-isotropic
distribution at short times, dominated by the main-
shock contribution.

The corrective contribution ρ∗(m) > ρ(m) (13),
introduced to take into account the contribution of
missing aftershocks, can also bias the value of α.
Using this term ρ∗(m) with a value of α smaller
than the true value over-estimates the contribution of
small earthquakes just after a large earthquake when
mc > m0. For this reason we did not used this con-
tribution (except for model 5 in Table 1). We also
tried to use this method (13) to take into account the
fact that the minimum magnitude of triggering earth-
quakes m0 is probably below the detection threshold.
We found that this parameter m0 is not constrained
by maximizing the LL. The best fitting value of m0

is equal to the detection threshold m = 2, and the LL
is almost independent of m0. Therefore, we took m0

equal to the detection threshold m0 = 2.

The main interest of short-term forecasts is to pre-
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dict the rate of seismicity after a large mainshock,
when the best model with α = 0.4 clearly underesti-
mates the observations. Therefore, we choose to con-
strain the value of α = 0.8 (models 3 and 4 in Table 1).
This model gives a slightly smaller likelihood than the
best model, but provides a best fit just after a large
mainshock. Note that this value α = 0.8 is probably
still smaller than the true value; a direct estimation
of this parameter from a fit of the number of after-
shocks as a function of mainshock magnitude gives
indeed α = 1.05±0.1 [Helmstetter et al., 2005]. Using
for the forecasts a value of α smaller than the physi-
cal value allow us to improve the performance of the
model because a smaller α best accounts for fluctu-
ations in aftershock productivity as well as problems
in the earthquake catalogs (incompleteness, location
and magnitude errors).

Spatial distribution of aftershocks.

The power-law kernel (14) gives a slightly better
LL than the Gaussian kernel (15) (see Table 1) for
the unconstrained models 1 and 2 (α is adjustable
parameter), but the Gaussian kernel works a little
better when α is fixed to 0.8 (see models 3 and 4 in
Table 1). The parameter fd defined in (16) is the ra-
tio of the typical aftershock zone d(m) (16) and of the
mainshock rupture length L(m) = 0.01 × 100.5m km.
For the Gaussian kernel (15) fd ≈ 1, i.e., the average
distance between a mainshock and its (direct) after-
shocks is close to the mainshock rupture length.

For the power-law kernel (14), the average distance
is not defined. In this case, d(m) represents the scal-
ing distance at which fpl(r) starts to decrease with r.
The inversion of fd using a power-law kernel gives an
unrealistically small value of fd ≤ 0.06 for model 2
(see Table 1), so that d(m) ≈ 0.5 km (fixed minimum
value of d(m) equal to the location error) indepen-
dently of the magnitude of the triggering earthquake
for m ≤ 5. It gives short-range interactions, with
most of the predicted rate concentrated in the cell of
the triggering earthquake. Using a complex spatial
distribution of aftershocks for m ≥ 5.5 earthquakes
(obtained by smoothing the location of early after-
shocks, see section ) slightly improves the LL com-
pared to the simple isotropic kernel (see models 3 and
6 in Table 1).

Probability gain as a function of magnitude

Table 1 shows the variation of the probability gain
G as a function of the lower cut-off magnitude mmin.

We used m ≥ 2 earthquakes in models 7-11 to esti-
mate the forecasted rate of m ≥ mmin earthquakes,
with mmin ranging between 3 and 6, and using the
same parameters as in model 3 (but multiplying the
background rate µs by 10−(mmin−2.0) to estimate the
background rate for m ≥ mmin earthquakes). The
probability gain is slightly larger for mmin = 3 than
for mmin = 2, but then G decreases with mmin for
mmin ≥ 4. For mmin = 6 (only 8 earthquakes), the
long-term model (with a rate adjusted so that it pre-
dicts the exact number of observed events) performs
even better than the ETES model (G < 1) for model
#10 in Table 1.

We think that this variation with mmin does not
mean that our model predicts only small earthquakes
(“aftershocks”), or that larger earthquakes have a dif-
ferent distribution in space and time than smaller
ones, but that these results simply reflects the large
fluctuations of the probability gain from one earth-
quake to another one: the difference in likelihood be-
tween ETES and the long-term model is mainly due
to a few large aftershock sequences. We thus need a
large number of earthquakes and aftershock sequences
to compare different forecasts.

Table 2 compares the predicted seismicity rate at
the time and location of each m ≥ 6 earthquake, es-
timated for the ETES model and for the long-term
model. For each earthquake, we give two values of
the predicted number of earthquakes, using the same
parameters of the ETES model, but changing the
time at which we update the forecasts, either mid-
night (universal time) for model #10 (see line 10 in
Table 1) or at 13:00 for model #11. The large differ-
ences in the predicted seismicity rate between these
two models show that the forecasts are very sensitive
to short-term clustering, which has a large influence
on the predicted seismicity rate. This suggests that
the number of m ≥ 6 earthquakes in the catalog (8
earthquakes from 1985 to 2004) is too small to com-
pare our short-term and long-term models for this
magnitude range.

While some of these m ≥ 6 earthquakes are pre-
ceded by a short-term (hours) increase of seismicity
(Superstition-Hill, Joshua-Tree, Landers, Big-Bear,
Hector-Mine), the long-term model performs better
than the ETES model if the forecasts are not up-
dated between the foreshock activity and the main-
shock (e.g., with model #10, between Elmore-Ranch
and Superstition-Hill, and between Landers and Big-
Bear). Landers occurred about two months after
Joshua-Tree, and its hypocenter was just outside
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Joshua-Tree aftershock zone, so that the predicted
seismicity rate at the location of Landers hypocenter,
and before the precursory foreshock activity (which
started 6 hours before Landers) was slightly lower
than the long-term rate. Joshua-Tree had foreshocks,
which started two hours before the mainshock, and
thus were not included in the daily forecasted rate for
both ETES models. Hector-Mine was also preceded
by foreshocks, with m ≤ 3.6, which started about 20
hours before the mainshock. Therefore, the predicted
seismicity rate (using ETES model #10) is 120 larger
than the long-term rate for Hector-Mine. Other large
m ≥ 6 earthquakes (Elmore-Ranch, Northridge, San-
Simeon), were not preceded by any significant fore-
shock activity. Therefore the forecasted seismicity
was smaller than the long-term average.

Updating the forecasts more often (each hour, or
after each earthquake) would of course increase the
performance of our short-term forecasts. But opti-
mizing and testing the forecasts would then be much
more difficult and time consuming if the duration of
the forecasts (one day) is different from the time in-
terval between two forecasts. Moreover, preliminary
earthquake catalogs are much less accurate in the first
few hours, especially after a strong earthquake.

Conclusion

We have proposed a model for daily earthquake
forecasts in southern California. Our model is based
on empirical laws of seismicity: the Gutenberg-Richter
magnitude distribution, Omori’s law, and the expo-
nential increase of triggered seismicity with the main-
shock magnitude. Our model includes only data from
earthquake catalogs (time, magnitude and locations).

Including small m ≥ 2 earthquakes in long-term
forecasts significantly improves the predictions. Our
model performs better than a more complex one
which incorporates geological data, when tested on
m ≥ 5 earthquakes since 1996. Our model also fore-
casts well the spatial distribution of future aftershocks
by smoothing the locations of early aftershocks. We
can obtain a good forecast of the aftershocks within
a few hours of a large m ≥ 5.5 earthquake, based on
plentiful early aftershocks. Even if the spatial distri-
bution of aftershocks is controlled by Coulomb stress
changes, our empirical method may be more accurate,
and faster, than direct calculations of the Coulomb
stress change. Our method is accurate because the
distribution of early aftershocks represents well the
mainshock rupture surface, and because our method

accounts for secondary aftershocks.

Retrospective tests for m ≥ 2 earthquakes in the
time period 1985/1/1 to 2004/3/10 show that our
short-term model realizes a probability gain of 11.5
over a long-term stationary Poissonian forecast. Sev-
eral features of our model could be improved. First,
geologic slip rate and geodetic strain rate data could
be used to better constrain the long-term seismicity.
Second, a better estimate of the magnitude distribu-
tion, resulting from statistical studies of the relation-
ship between fault geometry and earthquakes, could
improve the forecasting of large quakes. Third, other
research [e.g. Gerstenberger et al. 2004] suggests that
aftershock productivity and magnitude distribution
may vary considerably from one sequence to another.
Comparing our model with others proposed to the Re-
gional Earthquake Likelihood Models (RELM) work-
ing group [Kagan et al. 2003a; Jackson et al., 2004;
Schorlemmer et al. 2005] should help to improve all
available models. For example, the STEP model of
Gerstenberger et al. [2004] can be compared directly
with our model.
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Table 1. Model parameters, log likelihood LL, and probability gain G. The
spatial kernel f(r) is either a Gaussian (‘gs’, see Eq. (15)) or a power-law (‘pl’,
see Eq. (14)).

model f(r) mmin α p K µs fd LL G
1 gs 2. 0.44 1.18 1.18 2.42 1.03 -430928 11.66
2 pl 2. 0.43 1.19 1.29 2.09 0.06 -430754 11.69
3 gs 2. 0.80a 1.18 0.45 2.81 0.41 -434301. 11.07
4 pl 2. 0.80a 1.18 0.45 2.83 0.006 -435180. 10.93
5b gs 2. 0.80a 1.20 0.38 2.98 0.44 -436103. 10.77
6c gs 2. 0.80a 1.18a 0.45a 2.81a 0.41a -436684. 10.68
7 gs 3. 0.80a 1.18a 0.45a 2.81 a 0.41a -55077. 11.94
8 gs 4. 0.80a 1.18a 0.45a 2.81 a 0.41a -7463. 8.46
9 gs 5. 0.80a 1.18a 0.45a 2.81a 0.41a -986. 4.41
10 gs 6. 0.80a 1.18a 0.45a 2.81a 0.41a -149.6 0.75
11d gs 6. 0.80a 1.18a 0.45a 2.81a 0.41a -135.9 4.16

aFixed parameter

bUsing the corrective term ρ
∗(m) defined by (13).

cUsing the same isotropic kernel for all earthquakes (including m ≥ 5.5 earth-
quakes).

dUpdating the forecasts at 13:00 instead of 0:00 (universal time).

Table 2. Comparison of the predicted number of m ≥ 6 events per day, for the days
when a m ≥ 6 earthquake occurred, at the location of the earthquake (i.e., within the cell
of 0.05o × 0.05o), for the ETES model (NETES , using models 10 and 11 in Table 1) and
for the long-term model (NLT ).

earthquake date time m NETES NLT NETES/NLT

Elmore-Rancha 1987/11/24 01:54 6.2 4.3 × 10−8 1.7 × 10−7 0.25
Elmore-Ranchb 4.5 × 10−8 0.26
Superstition-Hilla 1987/11/24 13:15 6.6 1.0 × 10−7 4.0 × 10−7 0.25
Superstition-Hillb 7.8 × 10−4 1950.
Joshua-Treea 1992/04/23 04:50 6.1 3.0 × 10−7 9.6 × 10−7 0.31
Joshua-Treeb 2.9 × 10−7 0.30
Landersa 1992/06/28 11:57 7.3 1.2 × 10−6 1.6 × 10−6 0.75
Landersb 1.4 × 10−6 0.87
Big-Beara 1992/06/28 15:05 6.5 1.7 × 10−7 6.2 × 10−7 0.27
Big-Bearb 5.5 × 10−3 8871.
Northridgea 1994/01/17 12:30 6.6 7.8 × 10−8 2.8 × 10−7 0.28
Northridgeb 7.9 × 10−8 0.28
Hector-Minea 1999/10/16 09:46 7.1 6.5 × 10−5 5.4 × 10−7 120.
Hector-Mineb 3.1 × 10−7 0.57
San-Simeona 2003/12/22 19:15 6.5 4.2 × 10−8 1.6 × 10−7 0.26
San-Simeonb 4.2 × 10−8 0.26
aForecasts updated each day at 00:00 universal time (model 10 in Table 1)

bForecasts updated each day at 13:00 universal time (model 11 in Table 1)
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Figure 1. Declustered catalog, obtained with Reasenberg’s [1985] algorithm, including 6861 m ≥ 3 earthquakes
in the time window 1932 − 1979, and 46,937 earthquakes with m ≥ 2 for 1980− 2003.
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Figure 2. Long-term density of seismicity µLT(~r ) obtained by declustering and smoothing the ANSS catalog.
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Figure 3. Long-term density of seismicity µLT(~r ) for the model by Kagan and Jackson [1994; 2000] (KJ94) (left)
and for the present work (right). White circles represent m ≥ 5 earthquakes that occurred between 1990 and 2004.
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Figure 4. Long-term density of m ≥ 5 earthquakes µLT(~r ) for the model by Frankel et al. [1997] (left) and for
our long-term model (right). White circles represent m ≥ 5 earthquakes that occurred between 1996 and 2004.
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Figure 5. Plot of the magnitude versus time for a few days in the ANSS catalog, which illustrates the fact that
a significant fraction of earthquakes that will occur in the next day (between the present time tp and tp + T ) may
be triggered by earthquakes that will occur in the next day (tp < t < tp + T ).
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(a)  Joshua−Tree M=6.1 (b) San−Simeon M=6.5 (c)  Landers M=7.3

Figure 6. Magnitude versus time since mainshock for aftershocks (a) of Joshua-Tree m = 6.1, (b) San-Simeon
m = 6.5, and (c) Landers m = 7.3 earthquakes. The continuous line represents the threshold magnitude estimated
from (12) and includes the effect of all m ≥ 5 earthquakes. The vertical lines in (c) are due to the increase of mc(t)
after large m ≥ 5 aftershocks. Dates of these earthquakes are shown in Table 2.



20

log
10

 earthquake density

−5  −4.5 −4  −3.5 −3  −2.5 −2  −1.5 −1  

longitude
la

tit
ud

e

−117 −116

34

35

longitude

la
tit

ud
e

−117 −116

34

35

 (a)  (b)

Figure 7. Density of aftershocks estimated by smoothing the location of early aftershocks (white circles) that
occurred less than two hours after Landers mainshock (m = 7.3, 1992/06/28), using either (a) a Gaussian kernel
(15) or (b) a power-law kernel (14).
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Figure 8. Results of the optimization of the log-likelihood LL for the unconstrained model 1, using a Gaussian
kernel. Value of LL as a function of each model parameter (a-e) and as a function of the number of iterations (f).
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Figure 9. (a) Forecasted number of events with m ≥ 2 per cell for the day of October 23rd 2004 (logarithmic
scale). Black circles represent observed earthquakes with m ≥ 2 which occurred during this day. Two of these
events are aftershocks of the m = 6.5 2003/12/22 San-Simeon earthquake (located at lat=35.7◦ and lon=−121.1◦),
three are associated with the m = 6 2004/09/28 Parkfield mainshock (lat=35.81◦ and lon=−120.37◦), and one
is an aftershock of a m = 3.7 2004/09/09 earthquake (lat=35.09◦ and lon=−117.52◦). The predicted number of
events for this day was 8.39 and the observed number was 6. Most of these earthquakes are better predicted by the
time-dependent ETES forecast than by the long-term model (i.e., Np(~r) > µLT(~r) in the cells within which these
earthquakes occurred). Only one event, which occurred at 11 km away from the San-Simeon earthquake (lat=35.81◦

and lon=−121.02◦), was better predicted by the long-term model, because it occurred just outside of the main
aftershock zone. (b) Ratio of the forecasted number of events estimated using the time dependent and long-term
model (logarithmic scale). High values of Np/µLT (up to 800) are associated with recent large earthquakes, such
as Parkfield, San-Simeon, Landers, Hector-Mine and Northridge.
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Figure 10. Observed (crosses), and predicted number of m ≥ 2 earthquakes per day as a function of the time since
Landers mainshock, for model 2 (circles), model 3 (pluses), and model 6 (diamonds). The saturation at t ≤ 10 days
is due to the incompleteness of the catalog for small magnitudes.
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Figure 11. (a) Observed (black) and predicted (gray) number of m ≥ 2 earthquakes per day in southern California
for model 3 (see Table 1). Dashed line is the background rate µs = 2.81/day. (b) Probability gain per earthquake
defined in (23).



23

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

observed number of M≥2 earthquakes per day

pr
ed

ic
te

d 
nu

m
be

r 
of

 M
≥2

 e
ar

th
qu

ak
es

 p
er

 d
ay

Figure 12. Predicted number of m ≥ 2 earthquakes per day for model 3 (see Table 1) as a function of the
observed number, for the time period 1985-2003. The dashed line represents the perfect fit. The horizontal line is
the background rate µs = 2.81/day.


