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ABSTRACT

Context. The M dwarf Gliese 581 has recently been found to harbour two super Earths in addition to an already known close-in Neptune-mass
planet. Interestingly, these two planets are considered aspotentially habitable, and recent theoretical works give further credit to this hypothesis,
in particular for the outermost planet (Gl 581 d).
Aims. In this paper, we address the issue of the dynamical stability evolution of this planetary system. This is important because the basic
stability ensures that a 3-planet model is a physically adequate description of the radial-velocity (RV) data. It is also crucial when considering
the planets’ habitability because the secular evolution ofthe orbits may regulate their climate, even in the case wherethe system is stable.
Methods. We have numerically integrated the planetary system over 108 yrs, starting from the present fitted solution. We also performed
additional simulations where i) we vary the inclination of the system relative to the line of sight, ii) assume eccentricities at the upper limit
of the error bars in the radial velocity fit and where iii) we consider additional (yet undetected) outer planets. We also compute Lyapunov
exponents to quantify the level of dynamical chaos in the system.
Results. In all cases, the system appears dynamically stable, even inclose to pole-on configurations. The system is actually chaotic, but
nevertheless stable. The semi-major axes of the planets areextremely stable, and their eccentricities undergo small amplitude variations. The
addition of potential outer planets does not affect this result.
Conclusions. Consequently, from the dynamical point-of-view, a 3-planet model is an adequate description of the present RV-data set. Only a
limited range of inclinations can be excluded for coplanar orbits (i < 10◦). The climate on the planets is expected to be secularly stable, thus
not precluding the development of life. Gl 581 remains the best candidate for a planetary system with planets that potentially bear primitive
forms of life.

Key words. Planetary systems – Methods: N-body simulations – Celestial mechanics – Stars: Gliese 581 – Astrobiology – Stars: low-mass,
brown dwarfs

1. Introduction

The M dwarf Gliese 581 has been the subject of a recent in-
vestigation with the identification of its 3-planet system.One
of the planets (Gl 581 b), a Neptune-mass object orbiting the
star on a 5.4-day orbit, has already been known for two years
(Bonfils et al. 2005). Recently, Udry et al. (2007) have reported
the discovery of two additional super Earths (Gl 581 c and d),
revolving around the star in 12.9 and 83 days (see details in
Table 1). Considering Gl581’s luminosity, Udry et al. (2007)
inferred the equilibrium temperature of both planets and con-
clude they may lie within the habitable zone of the star.

Detailed further modeling by von Bloh et al. (2007) and
Selsis et al. (2007) addresses the habitability of the planets.
Likewise, von Bloh et al. (2007) find that the greenhouse ef-
fect increases Gl 581 c temperature so much that they no longer
consider the planet to be in the habitable zone. For similar rea-
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sons, Selsis et al. (2007) find that Gl 581 c’s surface tempera-
ture is very likely higher than the equilibrium temperaturecal-
culated by Udry et al. (2007). However, they do not rule out
habitability for this planet, as a large cloud coverage (> 75%)
would cool down the planet enough. Conversely, both studies
agree that the outermost planet (Gl 581 d) is a good candidate
for habitability (although close to the outer edge of the hab-
itable zone) and actually consider it as the better of the two
candidates.

An important and unsettled issue about this system con-
cerns its dynamical behaviour. It is first important to know
whether the planetary system is dynamically stable and for
which range of orbital inclinations. If verified, the basic sta-
bility of the system ensures that the model used (3 planets) is a
physically adequate description of the observations (the radial-
velocity measurements). If not verified, the planet detections
are not necessarily invalidated (as RV periodogrammes clearly
show that three coherent signals sum up at specific periods).It
would instead mean that either not enough data were collected
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Table 1. Orbital parameters of the Gl 581 planetary system, as derived from the fit of Udry et al. (2007)

Planet Period (days) Semi-major axis (AU) Eccentricity ω (deg) tp (JD− 2400000) Mass (M⊕)

Gl 581 b 5.36843± 0.00031 0.04061± 0.16× 10−6 0.01374± 0.01405 273.21195± 60.54198 52998.74631± 0.90393 15.82± 0.25
Gl 581 c 12.92648± 0.00723 0.07295± 2.7× 10−4 0.15926± 0.05981 257.41189± 24.37209 52993.40770± 1.00130 5.073± 0.31
Gl 581 d 83.22730± 0.65845 0.2525± 0.013 0.12118± 0.12034 317.01021± 41.79575 52946.80339± 11.49888 7.804± 0.69

to converge toward the “true” parameters of the system or that
the model (3 planets) is not complex enough to describe the
data. Further varying the orbital inclination, we expect tofind
that below a given value – or, equivalently, above given masses
for the planets – the system becomes unstable. Not valid phys-
ically, this range of inclinations should be rejected amongthe
possible solutions. This partially constrains the sini degeneracy
inherent to radial-velocity detections.

Beyond the basic stability, the secular evolution of the or-
bits may play an important role regarding planets’ habitabil-
ity. All climate calculations (von Bloh et al. 2007; Selsis et al.
2007) have been done with the currently determined orbits. The
secular evolution of the orbits has the potential of affecting the
climate on the planets. A given planet may lie within the hab-
itable zone but, if subject to significant eccentricity changes,
it can undergo strong climate variations that eventually pre-
clude life development. The presently determined eccentrici-
ties (Table 1) are small enough to ensure climate stability.But
one needs to know which maximum values they reach due to
secular perturbations.

In the present paper, we numerically investigate the secu-
lar evolution of the Gl 581 system, starting from the solution
of Table 1. In Sect. 2, we study this solution (that we subse-
quently refer to as the nominal case). In Sect. 3, we perform
other integrations, assuming different inclinations from edge-
on and letting the initial eccentricities of the planets reach their
maximum values within their error bars. In order to quantify
the dynamical chaos in this system, we compute Lyapunov ex-
ponents for all these solutions in Sect. 4. In Sect. 5, we investi-
gate the perturbing action of potentially additional outerplan-
ets that have not been detected yet, provided their contribution
to the radial velocity signal is small enough compared to the
residuals of the 3-planets fit. Our conclusions are presented in
Sect. 6.

2. The nominal case

The best 3-planet orbital fit for Gl 581 is explained in Table 1.
This solution with the assumptions of coplanarity and sini = 1
(i = 90◦, an edge-one system) will constitute our nominal
case. We numerically integrate this system taking 0.31M⊙
for the mass of Gl 581. The integration is performed using
the symplecticN-body code SyMBA (Duncan et al. 1998),
which handles close encounters. The initial timestep is fixed to
2× 10−4 yr = 0.18 day, i.e. 1/30 of the smallest orbital period.
Symplectic integration schemes usually ensure energy conser-
vation with 10−6 relative accuracy as soon as the timestep is
taken to∼ 1/20 of the smallest orbital period (Levison &
Duncan 1994). The integration is carried out over 108 yr. On
more limited timespans, we checked that taking a significantly

Fig. 1. Fractional errors on the total energyE with respect to the
initial oneE0 (black curve), and on the total angular momentum
H with respect to the initial oneH0 (grey curve), as a function
of time over the 108 yr integration

Table 2. Precession frequencies for the nominal solution, as
computed from the linear secular theory

Name Frequency (′′/yr) Period (yr)

g1 3300.9 392.62
g2 539.04 2404.2
g3 38.199 33945.

smaller timestep does not change the result. In Fig. 1, we dis-
play the fractional errors on the total energy and angular mo-
mentum over the 108 yr integration. The energy is preserved to
less than 10−7 relative accuracy. Hence we are confident in our
integration. Figure 2 shows the first 104 years of the integra-
tion. We see that the secular variations of the 3 planetary or-
bits are very regular. The eccentricities undergo quasi-periodic
modulations, while the longitudes of periastra precess regu-
larly. This solution is in fact very close to the one we can com-
pute with a linear secular theory (Laplace – Lagrange), such
as described the one by Bretagnon (1974, 1990). In the linear
approximation, the secular evolution of the eccentricity vectors
of the 3 planets is a combination of sine and cosine terms with
3 characteristic frequencies (gi, i = 1, 2, 3) that are listed in
Table 2. These frequencies are obtained by solving the linear
secular equations for their eigenvalues. We obviously see these
characteristic frequencies in Fig. 2. An interesting outcome is
that these precession frequencies are much higher than in the
Solar System, which do not exceed 25′′/yr, andg1 is basically
the main precession frequency of the periastron of Gl 581 b
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Fig. 2. The 104 first years of the integration of the nominal solution. The upper plots show the temporal evolution of the eccen-
tricity of the three planets Gl 581 b,c, and d, from left to right, respectively; the lower plots are the same for the longitude of
periastron̟

Table 3. Variation ranges for some orbital parameters fo the 3 planets over the 108 yr integration.

Planet Semi-major axis Eccentricity Periastron Apoastron
(AU) (AU) (AU)

Gl 581 b 0.040609 – 0.046185 0.01 – 0.095 0.0368 – 0.0402 0.041– 0.0445
Gl 581 c 0.072885 – 0.073 0.07 – 0.16 0.0614 – 0.0678 0.078 – 00846
Gl 581 d 0.2522 – 0.2528 0.1200 – 0.1246 0.2207 – 0.2227 0.2823– 0.2843

and Gl 581 c. This is obviously due to the much smaller size
of the system. Given the error bar on the fits of the arguments
of periastra (ω1, ω2), the secular motion should be detectable
within ∼ 30 years, and probably less if the orbital fits get more
constrained in the near future thanks to further monitoring.

In Table 3, we list the maximum evolution ranges for the or-
bital elements of the three planets. The semi-major axes areex-
tremely stable, revealing a regular dynamics out of any mean-
motion resonance configuration. The evolution ranges of the
eccentricities are narrow, so that we may claim than the system
is stable with a high level of confidence. While the time span
of the integration is 108 yr, most of the characteristic features
of the secular evolution of the orbital parameters occur on a
104 yr-time scale. Therefore, even if the star is believed to be
older than 2×109 yr, the current integration clearly explores all
the dynamical possible outcomes of the system. Actually, due
to the short orbital periods of the planets (and to the high pre-
cession frequencies), integrating the Gl 581 over 108 yr is basi-
cally equivalent to integrating the Solar System over∼ 100 Gyr
!

Interestingly, the present-day eccentricity of Gl 581 c
roughly corresponds to its maximum values along its secular
evolution, and the eccentricity of Gl 581 d only has small vari-
ations. Hence we expect the climate of both outer planets to be
secularly stable.

3. Other solutions

The nominal solution corresponds to an inclinationi = 90◦ (so
the lowest possible planetary masses) and to the orbital parame-
ters of the discovery paper (Table 1). Lower inclinations and/or
parameter’s values slightly outside the best solution may lead
to different dynamical behaviours that are worth investigating.

In a first set of additional simulations, we assume various
inclinations ranging from 0 (pole on) to 90◦ (edge on), but still
holding the initial eccentricities to their nominal values. The
mass of each planet is augmented by a factor 1/ sini with re-
spect to the nominal case. In a second set of simulations we
assume different inclinations and, moreover investigate the im-
pact of eccentricities larger than in the nominal case (as less
stability is only expected if the eccentricity is larger). For that
set, we take the initial eccentricities for the three planets at the
upper limit of their error bars (we add 1σ to the eccentricities)
For both sets of integrations, we plot the width of the evolution
ranges obtained over the 105 yr integration for both the semi-
major axis and the eccentricities of the three planets (Fig.3).

As can be seen from Fig. 3, when the inclination decreases,
the dynamical interactions increase accordingly and we ex-
pect the system to become unstable below a given inclination.
As for the nominal case, the integrations are carried out over
105 yr. They naturally show that both the semi-major axis and
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Fig. 3. Stability of the three-planet system in various configurations. The maximum variation range for the semi-major axes
(upper plots) and for the eccentricities (lower plots) is displayed as a function of the assumed viewing inclination of the system
with respect to pole-on. Each cross corresponds to a single simulation. The left plots correspond to simulations with the nominal
eccentricities as initial conditions, and the right plots to simulations with eccentricities increased by 1σ relative to the error bars
given in Table 1.

the eccentricity take a wider range of values than in the nom-
inal case with decreasing inclinations. In the first set of inte-
grations (nominal initial eccentricities), the system nonetheless
remains stable down toi = 10◦. Almost pole-on configurations
(i < 10◦) are unstable and should be rejected from possible so-
lutions. Although, such low inclinations are very improbable,
and from the statistical point-of-view, the actual masses of the
planets are probably close to those listed in Table 1.

In the second set of simulations (1σ augmented initial ec-
centricities), the dynamical interactions are slightly enhanced
and the semi-major axis and the eccentricity take a wider range
of values than for the first set of additional simulations. The
system is therefore found unstable below larger inclinations
(< 20◦).

In all cases, the instability appears very unlikely. If we
assume that the rotation axis of the system is randomly dis-
tributed in space,i > 20◦ occurs with a probability of 0.94.
In conclusion, irrespective of its actual inclination, theGl 581
planetary system is very probably stable.

Fig. 4. Progress of the calculation of the partial Lyapunov ex-
ponents as a function of the integration time, in the nominal
case for Gl 581 (zero inclination, nominal eccentricities). At
t = 104 yr, the three exponents have stabilised.
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Fig. 5. Lyapunov exponents as a function of the inclinationi, computed for all the simulations described in Fig. 3.Left plot :
simulations with nominal eccentricities;Right plot : simulations with 1σ increased eccentricities.

4. Lyapunov exponents

Looking for variation ranges for the orbital elements is a ba-
sic tool for investigating the stability of a planetary system.
A more sophisticated way for quantifying chaos is to com-
pute Lyapunov exponents. For all simulations decribed above,
we compute the maximum Lyapunov exponents (MLE) for the
three planets, following the technique by Benettin et al. (1978)
(see also Morbidelli 2002). The exponents are computed by
integrating fictitious bodies having initial conditions that are
very close to those of the planets and estimating their exponen-
tial diverge rate. We coupled this algorithm with the SyMBA
integrator.

When we start integrating the bodies with initial coordinate
vector p0 (holding for the positions and velocities of all the
bodies), we also integrate another system of bodies with iden-
tical masses, but with initial coordinate vectorp0 + δp0, where
||δp0|| ≪ ||p0||. After a fixed normalization timetnorm, we com-
pute the error vectorδp(tnorm) as the difference att = tnorm (af-
ter integration) between the coordinate vector of the fictitious
bodies and of the regular bodies. We then compute

s1 =
||δp(tnorm)||
||δp0||

and δp1 =
δp(tnorm)

s1
. (1)

We then useδp1 as a new initial error vector for the ficti-
tious bodies relative to the coordinates vector of the regular
bodies attnorm, and we iterate the above process. Eachtnorm,
the error vector is renormalized this way, and we obtain a
sequences1, s2, . . . of renormalization factors. Benettin et al.
(1978) proved that the MLEL can be computed as

L = lim
n→+∞

1
n tnorm

n
∑

i=1

si ≡ lim
n→+∞

Ln . (2)

The result is independent of the choice oftnorm, provided it
is chosen small enough to avoid too large an exponential di-
vergence. During the integration, we compute logLn for every
tnorm, and we try to derive an asymptotic behaviour. Two cases
can occur: i) logLn converges towards a finite limit. Then the
system is chaotic and we have reachedL > 0 within our in-
tegration time. ii) Or logLn keeps decreasing monotonically

at the end of the integration. This means that the orbit is very
probably regular or, more precisely, less chaotic than a given
level that depends on the integration time.

In practice we compute MLEs for all the individual bod-
ies in the integration: for each orbit we compute the associated
(partial) error vector, and perform individual renormalizations.
Each body has its own sequence ofsi’s. Note that more than the
absolute values of the MLE derived, the comparison between
the values derived for the individual bodies and between dif-
ferent integrations is more relevant. This shows clearly which
orbits are the most chaotic.

In our example applications, we integrate over 104 yr to
compute the MLEs.tnorm has been fixed to 0.02 yr, i.e., 100
times the timestep. The progress of the computation of the
MLEs in the nominal case for the three planets is plotted as
a function of the integration time in Fig. 4. We see that they
have all converged towards finite limits att = 104 yr, showing
that the orbits are actually chaotic.

The global result of MLE calculation is shown in Fig. 5,
where we have computed the MLEs for the three planets for
all the simulations described in Fig. 3 (stopping att = 104 yr).
In all cases, we obtain non-zero exponents, showing that the
system is actually chaotic.

We see that the MLEs slowly increase with decreasing in-
clinations, showing as expected that solutions at smaller incli-
nations are more chaotic, due to higher planetary masses. We
nevertheless note that the variation is small except fori < 20◦.
The system is not much more chaotic ati = 20◦ than ati = 90◦.
This confirms that there is no real dynamical constraint on the
inclination. We also note that solutions with 1σ increased ec-
centricities are not more chaotic than those with nominal ec-
centricities. As a result the dynamical stability does not put
any additional constraint on the planet eccentricities other than
those derived from the radial velocity analysis.

From Fig. 5, it also becomes clear that the two inner plan-
ets (Gl 581 b and c) are much more chaotic than the outer one
(Gl 581 d) (the exponent is smaller). In fact, the two inner plan-
ets are significantly chaotic. This does not prevent them from
being stable. Actually, chaos does not necessarily mean insta-
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Table 4. Semi-major axis and eccentricity variation ranges for
the 3 known planet of Gl 581, plus additional outer planets (see
text), computed over 105 yr integrations

Planet Semi-major axis (AU) Eccentricity

With a 1MJ planet at 5 AU :

Gl 581 b 0.04060120 – 0.04061199 0.00367502 – 0.0895939
Gl 581 c 0.07286312 – 0.0729903 0.09259277 – 0.164875
Gl 581 d 0.25222823 – 0.25281971 0.11884516 – 0.1228305

With a 29.6 M⊕ planet at 5 AU :

Gl 581 b 0.04060139 – 0.04061188 0.00347993 – 0.0895106
Gl 581 c 0.07286522 – 0.0729892 0.09258738 – 0.1647922
Gl 581 d 0.25222915 – 0.2528203 0.11887163 – 0.1226443

With a 26.5 M⊕ planet at 4 AU :

Gl 581 b 0.04060141 – 0.04061174 0.00354749 – 0.08949917
Gl 581 c 0.07286447 – 0.07298892 0.09258812 – 0.16479787
Gl 581 d 0.25222689 – 0.25282013 0.11884819 – 0.1226468

With a 22.9 M⊕ planet at 3 AU :

Gl 581 b 0.04060137 – 0.04061170 0.00372438 – 0.0895144
Gl 581 c 0.07286369 – 0.07298806 0.09258945 – 0.16479738
Gl 581 d 0.25222659 – 0.25281951 0.11884226 – 0.12267108

With a 18.7 M⊕ planet at 2 AU :

Gl 581 b 0.04060140 – 0.04061177 0.00405747 – 0.08955927
Gl 581 c 0.07286632 – 0.07298852 0.09259499 – 0.16492574
Gl 581 d 0.25222099 – 0.25281587 0.11886586 – 0.12266511

With a 13.2 M⊕ planet at 1 AU :

Gl 581 b 0.04060131 – 0.04061176 0.00475611 – 0.08969945
Gl 581 c 0.07286289 – 0.07298820 0.09258994 – 0.16491917
Gl 581 d 0.25222239 – 0.25280011 0.11882570 – 0.12246267

bility. The Solar System is known to be chaotic (but on longer
timescales), yet it is nevertheless stable.

5. Other planets

Our simulations were made with the three known planets orbit-
ing Gl 581. However, the system may harbour additional, un-
known planets. The presence of these planets may affect the
stability of the whole system. There are upper limits to the
presence of additional (mainly outer) planets. The maximum
amplitude of the residuals in the 3-planet fits of Udry et al.
(2007) is±2.1 m s−1. Any additional planet should not gener-
ate a radial velocity with a larger amplitude, otherwise it would
have already been detected. Assumingi = 90◦ and a circular
orbit, this puts severe constraints on the massm and distanced
of the unseen planet. We derive

m
1 M⊕

≤ 13.227×
√

d
1 AU

. (3)

This constraint holds if the unseen planet generates full-
amplitude variations within the timespan of the radial veloc-
ity data, i.e.,∼ 1000 days (Udry et al. 2007). This means that
the orbital period of the unseen planet must not exceed∼twice

this time span to account for this constraint, i.e. an orbital dis-
tanced ≤ 5.5 AU. For more distant planets, the constraint is
much weaker. In fact, this upper limit is probably already too
large. Dynamically speaking, we do no expect any hypothetical
planet orbiting at 5.5 AU to significantly affect the dynamics of
the inner system located inside 0.25 AU. We are thus confident
in the conclusions we derive below, as all potentially destabi-
lizing configurations have been explored.

We thus performed new simulations, each of them with the
nominal conditions, but to which we add an additional planet
orbiting the star on a circular orbit at an arbitrary distance d,
and with the maximum mass allowed by Eq.(3). All the in-
tegrations were carried out over 105 yr. We did 5 simulations
with d = 5, 4, 3, 2, and 1 AU. This gives masses of 29.6, 26.5,
22.9, 18.7, and 13.2 M⊕, respectively. We also added a simula-
tion with a 1 Jupiter mass (MJ) planet orbiting the star at 5 AU,
as the constraint (3) is less severe at this distance. Note that
this case is by far the worst possible disturbing configuration
that is still compatible with the constraints. More distantcom-
panions, even massive, are less destabilizing. In a first-order
approximation, the perturbing effect of a distant planet of mass
m orbiting at distanced on an inner planet orbiting at distance
r scales as the tidal stripping effect on the orbit, i.e.∝ mr/d3.
Hence a 1MJ planet at 5 AU is as disturbing as a 8MJ planet
at 10 AU and a 32MJ brown dwarf at 20 AU. The AO surveys
would likely have already detected such a massive companion.

In all cases, the whole system appears just as stable as with-
out any additional planet. The result concerning the stability
is summarised in Table 4 where we give the semi-major axis
and eccentricity variation ranges for the three known planets.
The results are very similar among the 6 different integrations,
even in the case of a Jovian planet, showing that the additional
planet has little influence on the stability of the inner system.
Moreover, Table 4 is easily compared to Table 3. The varation
ranges are very similar. Therefore, we may stress that any ad-
ditional outer planet that fits into the constraint of the radial
velocity residuals does not affect the stability of the 3-planet
system. Note that the maximum eccentricity values in Table 4
are actually slightly lower than those in Table 3. This couldap-
pear surprising, since the integration in Table 3 is made with-
out any additional perturber. Recall, however, that it extends
over 108 yr instead of 105 for those in Table 4. This shows con-
versely that if we were entending the integrations of Table 4
up to 108 yr, we should expect slightly wider variation ranges.
The basic conclusion nevertheless remains: the stability of the
system is not affected.

6. Discussion

We have computed the secular evolution of the Gl 581 plane-
tary system in various possible configurations. The main con-
clusion is that the system is almost always stable. It is stable for
inclinations as low as∼ 20◦ and even if the initial eccentricities
are augmented by their 1-σ error bars.

As expected for any planetary system with regular dynam-
ics, the semi-major axes vary very little and the three planets
are expected to remain at their current location with respect to
the star. Meanwhile, the eccentricities of the two outer plan-
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ets (both considered for habitability) reach values that are sig-
nificantly above the Earth’s value. Concerning Gl 581 c, the
present-day eccentricity is close to its maximum value. This
planet is not expected to get much farther away from its parent
star and, to maintain a surface temperature cool enough to al-
low the presence of liquid water, a high water-cloud coverage
(∼75%) would be required at any time. Regarding Gl 581 d, the
nominal eccentricity is non negligible (∼ 0.12) and also found
to be very stable. It is significantly above the maximum value
reached by the Earth throughout its secular evolution (∼ 0.06,
see e.g. Laskar 1988) and corresponds to a 24% variation of
the radiation flux received from the star between apoastron and
periastron. The anomalistic season effects should therefore be
strong, if not damped by the short orbital period (83 days). If
we compare the periastron and apoastron values of Gl 581 d to
the habitable zone calculations by Selsis et al. (2007) and von
Bloh et al. (2007), we see that Gl 581 d is outside the habitable
zone at apoastron but well inside at periastron. As pointed out
by Selsis et al. (2007), the average stellar flux received by an
eccentric orbit is enhanced by a factor 1/

√
1− e2 with respect

to a circular orbit with the same semi-major axis. This can help
maintaining Gl 581 d in the habitable zone. What we show here
is that this effect is secularly permanent.

Now, if the obliquity of the rotation axis of this planet is
non-zero, this should combine with the obliquity’s seasonal ef-
fect and lead to climate differences between the hemispheres of
this planet, much like Mars presently. The obliquity of Gl 581 d
is of course unknown, but Selsis et al. (2007) and von Bloh et
al. (2007) agree in claiming that, given the estimated age of
the star (>2 Gyrs), the rotation of Gl 581 d should already be
tidally locked with the orbital motion. In that case, we would
expect the obliquity to have been set to zero by tidal effects,
and there should instead be climate differences between the
night and day hemispheres. This could help in maintaining
the day hemisphere habitable. Selsis et al. (2007) also show
that tidal locking does not contradict the non-zero eccentricity
of the orbit. Tides usually tend to both synchronize the rota-
tion and circularize the orbit. The circularization time isalmost
always longer than the synchronization time (Hut 1981). For
Gl 581 d, Selsis et al. (2007) estimate the synchronization time
to 10 Myrs and the circularization time to 10 Gyrs, i.e. well
above the present age of the system.
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