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Chasseneuil Cedex, France

‡ Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
(Received 00 Month 200x; in final form 00 Month 200x)

We present a new technique which makes it possible to determine mobility properties of dislocations with first principles accuracy without
having to apply corrections for the influence of boundary conditions. The Nudged Elastic Band method is used together with periodic
boundary conditions and all dislocations included in the simulated cell are coherently displaced during the calculations. The method
is applied to the displacement of a non-dissociated shuffle screw dislocation in silicon along two different directions. Peierls energies as
well as dislocation structure as a function of the dislocation position in the lattice have been obtained. We have determined the Peierls
stresses for both directions, in excellent agreement with previous determinations. Finally, we discuss the advantages of the technique
over other methods.

1 Introduction

Dislocations modelling has first been developed in the framework of linear elasticity theory, not only
because of historical reasons, but also because this approach has been able to capture most of their physical
properties [1]. However, this approach is inadequate to deal with the severe lattice distortion near the core of
a dislocation. In consequence, it is not suited for describing important properties governed by the structure
of the core, such as dislocation mobility or dislocation interactions at short distances. Major improvements
have been obtained thanks to the Peierls-Nabarro (PN) model and its recent developments [2–4], since
it combines elasticity theory with the discrete nature of the lattice. This model removes the artificial
divergence at the core originating from the continuum description, allowing to determine several key
quantities such as the core width, the Peierls energy and the Peierls stress. Nevertheless, while this approach
has be proved to be successful in many cases, it is not accurate enough for several classes of materials such
as covalent or ionic materials, in which dislocation cores are very narrow or reconstructed. Although the
PN model has been recently improved [4], it intrinsically includes some limitations by construction [5].

A full atomistic treatment of the dislocation is expected to yield better results. Hence, accurate values
can be determined in case of f.c.c. metals, for which reliable classical interatomic potentials are available.
However, for other materials such as semiconductors or ceramics, energetic properties of dislocation cores
are poorly described by potentials. This point has been brought to light in the case of silicon for exam-
ple [6]. Another option is to use first principles density functional theory (DFT) calculations which give
an accurate description of most materials even those including unusual and unfavorable bonding configu-
rations. The problem with these methods, however, is that the simulated systems are limited in size, and
as a consequence boundary conditions require careful and special treatments [7–9], or the use of multiscale
modelling methods [10, 11]. This is especially true for Peierls stress determination. Recently, Pizzagalli
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Figure 1. (color online) Effect of boundary conditions on Peierls energy variation as a function of the dislocation core position. For
fixed conditions, the interaction between the single dislocation and the surface cluster ranges from E1

f
to E2

f
(dash-dotted line). By

combining periodic conditions and NEB, and by displacing the dislocations coherently, the interaction Ep between dislocations remains
constant (dashed line) and does not affect the deduced Peierls stress and activation energy.

and Beauchamp have calculated the Peierls stress of screw dislocation in silicon using reduced systems
and both periodic and fixed conditions [12]. This work shows that Peierls stress determination using first
principles accuracy is possible, but that corrections are required to compensate for boundary effects.

In this paper, we propose a method allowing an accurate determination of the Peierls stress, without
the need for boundary corrections. Also, the calculations provide the full energy curve for the movement
of the dislocation through lattice, i.e. the whole Peierls barrier, as well as the associated core structure
configurations. The method is based on the combination of the nudged elastic band (NEB) method for
finding a minimum energy path (MEP) [13] of a transition and first principles density functional theory
(DFT) calculations of the atomic forces subject to periodic boundary conditions. Previously, the NEB
method has been used in a few studies of dislocation mobility but only in combination with empirical
potentials and fixed atom boundaries in finite systems [14–17]. By using periodic boundary conditions,
as we do here, smaller systems can be used in the calculation and it becomes easier to make use of first
principles DFT methods. In the following we first describe errors coming from fixed boundaries in small
system, and we show how this effect is greatly reduced using NEB and periodic boundaries. Then, the
Peierls energy and stress are determined with first principles accuracy in the case of a screw dislocation
in silicon, moving along two different directions. Finally we discuss the advantages and the limitations of
this method, compared to previous models.

The straightforward approach to computational studies of dislocations is to construct a system that
contains one dislocation and fixed atoms at the boundaries of the system. In that case, boundary conditions
will introduce errors in the energy variation as a function of dislocation position, especially in the case
of small systems. This is schematically depicted in figure 1. The initial and final configuration states
include the dislocation-surface interaction energy E1

f , positive (negative) for a fixed (free) surface. For

the transition state, ideally located in the center of the system, the interaction energy E2
f is different, i.e.
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Figure 2. (color online) Ball-and-stick representation of the zinc-blende structure ((1̄01) plane). The path D’ (D”) is defined by a
dislocation displacement from A to A’ (A to A”). Dashed lines show bonds linking atoms used for calculating the disregistry due to the
dislocation core. In particular, atoms located in dislocation cores for saddle configurations are marked by numbers (1 and 2 for D’, and

2 and 3 for D”).

E2
f 6= E1

f . As a result, the calculated curve will be different from the real one (Fig. 1). For a screw, the
energy change ∆E due to fixed cylindrical boundaries is proportional to the square of the ratio between the
dislocation distance from the cell center and the cell size, with a factor depending on the shear modulus
and the anisotropy of the material [18]. For silicon and cluster sizes considered in first principles DFT
calculations, ∆E is about 50 meV. This effect could be reduced by considering larger cluster systems [17].

Here, we propose to use periodic boundary conditions, which is well suited for standard plane-waves first
principles DFT calculations, and as such have been widely used for investigating dislocations [19–24]. The
initial configuration is a system including an even number of dislocations, with a zero Burgers vectors sum
(Figure 1). The final configuration is then obtained by a simple translation equal to the investigated dislo-
cation displacement. Finally, a standard NEB calculation between these two configurations is performed.
The important point here is that distance between dislocations remain constant along the whole path. This
condition is fullfilled at the beginning, if the initial MEP is built from linear interpolation between the end
point configurations. We have found that if the springs linking adjacent replicas in the NEB are chosen to
be stiff enough and a direct minimization method is used to relax the system to the MEP closest to the
initial guess, then the the distance remains constant during the full relaxation until convergence has been
reached. The advantage of the method is illustrated in figure 1. Since distances between all dislocations
remain constant throughout the NEB calculation, the energy variation as a function of position is simply
shifted by a constant term, provided that the total interaction between dislocations Ep is elastic. As a
result, the shape of the curve is the same as the real one.

2 Model and methods

We apply this method to a non-dissociated screw dislocation in silicon, with an initial stable shuffle
configuration [6]. This choice has two motivations. First, in a previous study, the Peierls stress has been
determined with first principles DFT and corrections due to periodic and fixed boundary conditions [12].
Second, in the same work, it has been shown that interatomic potentials for silicon are not reliable enough
for this particular problem. We have then an interesting system, for which first principles accuracy is
required, and with available data for comparison. We considered a system similar to that used in [12],
including a dipole of dislocations, a cell geometry of 12 × 12 × 1 (144 atoms) corresponding to an infinite
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quadrupolar arrangement [12]. First principles DFT calculations have been performed with the VASP
distribution [25,26], with 2 special k-points along the dislocation line direction, an ultrasoft pseudopotential
for Si [27], a plane waves energy cutoff of 140 eV, and the GGA functional PW91 [28]. System relaxation is

stopped when all forces are lower than 3×10−3 eV Å−1. With these parameters, a lattice constant of 5.475 Å
and a bulk modulus of 99.7 GPa have been obtained, in good agreement with experiments [29]. The NEB
calculations have been performed with both improved tangent and climbing images algorithms [30, 31].
Figure 2 shows the zinc-blende structure, and two dislocation displacements, investigated in this work. D’
corresponds to the easiest path for displacing a non-dissociated screw, while D” is the direct path allowing
the screw to cross-slip from shuffle to glide {111} planes.

In order to obtain the Peierls stress from the energy variation, an accurate determination of the disloca-
tion position relative to the lattice is required. Distances between images computed in configuration space,
as output by NEB, are useless in that case because the dislocation position does not linearly follow the
configuration space coordinates. As stated in [32], dislocation centers can not be derived uniequivocally
from the atomic positions. Dislocation centers are then determined according to a well-known procedure.
Relative displacements of atoms on both sides of the plane perpendicular to {1̄01} and including the dis-
location displacement vector are first calculated. Figure 2 shows the bonds linking these atoms for D’ and
D”. Then, the dislocation centers are determined by fitting relative displacements using the elastic expres-
sion b/2π arctan((x − x0)/∆), ∆ allowing to define a dislocation core width [1]. This approach assumes
that the whole dislocation can still be described as a Peierls dislocation throughout its displacement in
the lattice. As a check, the distance between the two dislocations in the dipole has been determined for all
relaxed NEB images. The maximum deviation is 3 × 10−2 Å, i.e. less than 1% of the total displacement.
This shows that the two dislocations have been coherently displaced, as assumed.

3 Results

The Peierls energy, i.e. the energy variation associated with the displacement of a dislocation in a crystalline
lattice, is represented in figure 3 for two paths, D’ and D”. Note that a multiplying factor of 1/2 has
been applied since two dislocations are included in our cell. For both paths, starting from the stable
configuration, the energy is smoothly increasing until a halfway maximum, then decreasing to the next
stable configuration. In the initial configuration A, the bond linking atoms 1 and 2 is markedly stretched
(Fig. 2 and Fig. 4). When the dislocation moves along D’, this stretching intensifies until the bond breaks at
the saddle configuration (Fig. 4), which is a high symmetry position at the intersection of shuffle and glide
planes. A simple force relaxation of this configuration indicates it is metastable. In previous, DFT/LDA
calculations, we have found that this configuration was weakly stable [6], with an energy difference of
0.32 eV per Burgers vector, in good agreement with the value of 0.41 eV/b obtained in this work. Finally,
atoms 1 and 2 form bonds with neighbor atoms to displace the dislocation core in A’. The D’ migration is
then done by the breaking and reforming of a stretched bond, explaining why this mechanism is the easiest.
For D”, we found that the migration mechanism is totally different. Initially, the bond between atoms 2
and 3 is slightly stretched and out of the (101) plane (Fig. 2 and Fig. 4). This bond is progressively twisted
when the dislocation moves along D”, until it belongs to the (101) plane at the saddle point (Fig. 4). This
corresponds to a screw in the glide set, with a sp2 hybridized core [6]. Actually, it is rather a weakly stable
configuration, not seen here due to our limited NEB images number. We have then two totally different
mechanisms, in one case, the dislocation is displaced via bond breaking and reforming in one case (D’), and
via severe bond twisting in the other (D”). It is also interesting to compare calculated Peierls energies with
classical models. In fact, it is common to use a phenomenological expression W sin2(x) for approximating
the Peierls energy [1]. Introducing our calculated maximum Peierls energy in this simple model, we obtain
a correct estimation of our computed energy curves, in particular for the D’ path.

The Peierls stresses can be accurately obtained as the extrema of the derivative of the spline-fitted
energy variations (Figure 3), divided by b2, b being the Burgers vector. For the D’ path, the Peierls stress

is 2.47 eV Å−3, in excellent agreement with the value 2.6 ± 0.2 eV Å−3, obtained from DFT calculations
of sheared systems combined with boundary corrections [12]. For the D” path, the calculated value is
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Figure 3. (color online) Energy (in eV/Burgers vector, top graph), stress (derivative of the plotted energy curves, middle graph), and
core width variation (bottom graph) as a function of the dislocation core position in the lattice for paths D’ (full lines) and D” (dashed

lines).

4.05 eV Å−3. Obviously, comparing energy barriers and Peierls stresses shows that dislocation displacement
would be easiest along the D’ path, so that the dislocation remains in the shuffle plane. Shuffle-glide
transition by dislocation cross-slip along the D” path is then unlikely. This is also in agreement with
previous calculations showing that even if a shear stress favoring the D” displacement is applied on the
system, the dislocation is always displaced along the D’ path [12].

Figure 3 also represents variation of the core width ∆ as a function of the dislocation displacement in the
lattice. In both cases D’ and D”, the core is widened, with a maximum increase of about 20%, corresponding
approximately to the maximum Peierls energy. The D” curve shows a local minimum compared to the D’
curve. A possible explanation is related to the weak stability of the transition configuration along the D”
path, for which the dislocation core is slightly narrowed, whereas for D’, the transition configuration is a
true saddle point.
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D’ : A−>A’ 

D" : A−>A" 

Figure 4. (color online) Differential displacement maps corresponding to screw dislocation displacements along D’ (left) and D”
(right), between A and the saddle configurations. The arrows are proportional to the out-of-plane [1̄01] shifts between neighbouring

atoms introduced by the dislocation.

4 Concluding discussion

Our approach combining NEB and first principles DFT calculations allows to determine the energy of a
dislocation translated in a crystalline lattice, as well as the associated Peierls stress, without the need for
any corrections. In particular, the calculated Peierls stress for a screw dislocation in silicon is in excellent
agreement with published results [12]. In addition to the Peierls energy determination, our approach has
several other advantages compared to previous models. In particular, we have access to the dislocation
structure during its displacement. Another advantage is the possibility of easily investigating several pos-
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sible paths, such as the D” path corresponding to a shuffle-glide cross-slip. We have shown recently that
the latter could not be obtained by simply stressing the system [12]. Also, it has been shown recently
that the more stable structure of a non-dissociated screw dislocation in the glide set exhibits a 2 × 1
reconstruction along the dislocation line [33]. Using our approach, it should be possible to investigate a
transition between the single-period shuffle to the double-period glide screw dislocation, provided that the
initial system dimension along the dislocation line is 2b, and that the reconstruction path is simple enough
to be obtained with a small number of images in the NEB band.

In our approach, what is really calculated is the coherent displacement of a periodic arrangement of
dislocations in a crystalline lattice. One may wonder whether this situation is equivalent to the displacement
of a single dislocation. Obviously, even if the distance between dislocations remains constant, the core
structure, and then the dislocation core field, is varying during the displacement. So the interaction between
dislocations is not constant during the displacement. However, this effect is expected to be negligible and
lower than surface-dislocation interactions present in fixed boundary calculations, even in small cell. This is
the same assumption done in standard calculations when comparing the stability of several dislocation core
configurations, where a constant elastic interactions is assumed between dislocations, independently of the
core. In order to get an estimation of this effect, we have performed dislocation calculations with classical
potentials and periodic boundary conditions, comparing energy differences between two core configurations
as a function of cell size. In all cases, we have found that for the cell size considered here, i.e. 12× 12, the
core field interaction energy is lower than 1% of core energy differences. The error is then in the range of
standard first principles accuracy, and can be safely neglected.

Another question concerns the fact that during the NEB calculations the coherency of the collective
displacement is retained. In fact, it is likely that it is energetically more favorable to first displace one
dislocation in the dipole system, then the other. This is especially true in hard materials with covalent
bonds for which a strong interaction is expected between close dislocations. However, we usually found
in our calculations for silicon that the dislocations were coherently displaced. The key explanation lies in
the the fact that a relaxation algorithm such as steepest descent or the velocity Verlet algorithm with
damped dynamics [13] brings the NEB to the minimum energy path that is nearest to the initial guess
even though this may not be the global minimum energy path. While such convergence to the nearest local
minimum rather than the global minimum is often a problem when dealing with systems represented by
a complex energy surface, it is an advantage here because one can select out the right minimum energy
path by choosing the initial path correctly. In order to keep the coherency, it is important that initial
and final configurations in the band are well relaxed, with symmetric dislocation cores. We found that if
this condition is not fulfilled, a non-coherent displacement could occur. It is also better to use systems
including two dislocations instead of four, since it is easier to keep the coherency in the former case. In
NEB calculations, we used standard spring constants (i.e. 5.0 eV Å−2). It is possible that using slightly
stiffer springs would also help for keeping coherent displacements.

In conclusion, we propose a new method for investigating the mobility of dislocations using periodic
boundary conditions and first principles accuracy. With this method, the Peierls energy and stress, and
the dislocation structure during the displacement could be investigated, as well as high energy barriers,
out of reach of standard calculations. In principle, the approach could be used for all kind of dislocations
and for all materials, as long as dislocations in the computational cell are stable towards each other.

Acknowledgements

The authors are grateful to Dr. Ladislas Kubin for a critical reading of the manuscript. One of us (L.P.)
thanks the Poitou-Charentes region and the University of Iceland Research Fund for financial support
during his stay in Reykjavik.



December 10, 2007 9:12 Philosophical Magazine Manuscript˙Pizzagalli

8 L. PIZZAGALLI, P. BEAUCHAMP and H. JÓNSSON
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