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Detecting abrupt changes of the long-range dependence or the self-similarity of a Gaussian process

In this paper, an estimator of m instants (m is known) of abrupt changes of the parameter of long-range dependence or self-similarity is proved to satisfy a limit theorem with an explicit convergence rate for a sample of a Gaussian process. In each estimated zone where the parameter is supposed not to change, a central limit theorem is established for the parameter's (of long-range dependence, self-similarity) estimator and a goodness-of-fit test is also built.

technique base sur le priodogramme. Notre approche est fonde sur l'analyse par ondelettes, ce qui prsente plusieurs avantages : c'est une technique non-paramtrique applicable pour des processus trs gnraux, robuste aux tendances polynomiales et, au moins dans le cadre gaussien, s'accompagnant de tests d'adquation de type χ 2 simples et intressants utiliser. Ainsi, un estimateur des m points de ruptures (m ∈ AE * , suppos connu) de la longue mémoire ou d'auto-similarité est conçu pour un échantillon de processus gaussien en se basant sur l'analyse par ondelettes, ce qui permet ensuite de mettre en place des tests d'adquation. Pour ce type de processus, cette méthode a été proposée pour la première fois dans [START_REF] Flandrin | Wavelet analysis and synthesis of fractional Brownian motion[END_REF], puis développée par exemple dans [START_REF] Abry | Long-range dependent: revisiting aggregation with wavelets[END_REF]. La convergence des estimateurs basés sur les ondelettes a été étudiée dans le cas du mouvement brownien fractionnaire (FBM) dans [START_REF] Bardet | Statistical Study of the Wavelet Analysis of Fractional Brownian Motion[END_REF], et dans un cadre semi-paramétrique général de processus gaussiens stationnaires à longue mémoire par [START_REF] Moulines | On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter[END_REF] et [START_REF] Bardet | Adaptative wavelet based estimator of the memory parameter for stationary Gaussian processes[END_REF]. Ici le principe de l'estimation du paramètre de longue mémoire ou d'auto-similarité est le suivant : dans chaque zone où il n'y a pas de changement, ce paramètre peut être estimé à partir d'une log-log régression de la variance des coefficients d'ondelettes sur plusieurs échelles choisies (voir (1)). Une fonction de contraste définie par la somme des carrés des distances entre ces points et les droites d'ajustement, dans les m + 1 zones possibles détectées, est minimisée (voir (2)), donnant un estimateur des points de ruptures (voir (3)). Sous certaines hypothèses générales, on montre qu'il vérifie un théorème limite avec une vitesse de convergence explicite (voir Theorem 1.1). Dans chacune des zones détectées, les paramètres de longue mémoire, (ou d'auto-similarité) peuvent être estimés, tout d'abord avec la regression des moindres carrés ordinaires (OLS), puis par une regression des moindres carrés pseudo-généralisés (FGLS). Un théorème de la limite centrale est établi pour chacun des deux estimateurs (voir Theorem 1.2 et Proposition 1.1 ci-dessous) et des intervalles de confiance peuvent être calculés. L'estimateur FGLS offre deux avantages : d'une part, sa variance asymptotique est plus petite que celle de l'estimateur OLS, et d'autre part, il permet la construction d'un test d'ajustement très simple basé sur le carré des distances entre les points (d'abscisse, le logarithme d'une échelle choisie et d'ordonnée, le logarithme de la variance empirique des coefficients d'ondelettes pour cette échelle) et les droites de régression pseudo-généralisée correspondantes (voir (8)). La convergence vers une distribution du Chi-deux de ce test est établie dans le Theorem 1.3. Deux cas particuliers de processus gaussiens sont ensuite étudiés dans la section 2. En premier lieu, on s'intéresse aux séries chronologiques stationnaires longue mémoire avec un paramètre de Hurst constant par morceaux. On se place dans un cadre semi-paramétrique contenant par exemple les FGN et les processus FARIMA (voir Figure 1). En second lieu, le cas d'un processus à accroissements stationnaires et autosimilaire par morceaux est traité, ce qui revient à considérer des successions de FBM ayant des exposants de Hurst distincts (voir Figure 1). Pour ces deux exemples, les vitesses de convergence explicites des différents estimateurs et tests sont données et des simulations montrent leurs qualités (voir Table 1). D'autres simulations, preuves des thormes ainsi qu'un exemple plus gnral de dtection de ruptures dans le cadre de processus gaussien localement fractionnaire sont dtaills dans [START_REF] Bardet | Detecting changes in the fluctuations of a Gaussian process and an application to heartbeat time series[END_REF].

Assumptions and main results

Let (X t ) t∈AE be a Gaussian process and assume that X 0 , X 1 , . . . , X N is known. In the sequel, X will be a piecewise stationary long memory time series or a piecewise self-similar time series having stationary increments. Consider ψ : Ê → Ê a function called "the mother wavelet". For (a, b)

∈ Ê * + × Ê, the wavelet coefficient of X for the scale a and the shift b is d X (a, b) := 1 √ a Ê ψ( t-b a )X(t)dt. When only a discretized path of X is available, approximations e X (a, b) are only computable: , e X (a, b) := 1 √ a N p=1 ψ p -b a N X p for (a, b) ∈ Ê * + × AE.
Assume that there exist m ∈ AE (the number of abrupt changes) and

• 0 = τ * 0 < τ * 1 < . . . < τ * m < τ * m+1 = 1 (unknown parameters); • two families (α * j ) 0≤j≤m ∈ Ê m+1 and (β * j ) 0≤j≤m ∈ (0, ∞) m+1 (unknown parameters);
• a sequence of "scales" (a n ) n∈AE ∈ Ê AE (chosen) satisfying a n ≥ a min , with a min > 0, such that for j = 0, 1, . . . , m and k

∈ D * N (j) ⊂ [N τ * j ], [N τ * j+1 ] , e 2 X (a N , k) ∼ β * j a N α * j when N → ∞.
A piecewise sample variance can be the appropriated estimator of such power law. Thus, define

S k ′ k (a N ) := a N k ′ -k [k ′ /aN ]-1 p=[k/aN ] e 2 X (a N , a N p) for 0 ≤ k < k ′ ≤ N.
Now set 0 < r 1 < . . . < r ℓ with ℓ ∈ AE * , and assume that a multidimensional central limit theorem can be established for log

S k ′ k (r i a N ) 1≤i≤ℓ , when [N τ * j ] ≤ k < k ′ ≤ [N τ * j+1 ], i.e. k ′ -k a N log S k ′ k (r i a N ) -log(β * j ) -α * j log r i a N 1≤i≤ℓ L -→ N →∞ |k ′ -k|→∞ N 0, Γ (j) (α * j , r 1 , . . . , r ℓ ) , (1) 
with

Γ (j) (α * j , r 1 , . . . , r ℓ ) = γ (j)
pq 1≤p,q≤ℓ a (ℓ×ℓ) matrix not depending on N such that α → Γ (j) (α, r 1 , . . . , r ℓ ) is a continuous function and a positive matrix for all α. Define a contrast function

U N (α j ) 0≤j≤m , (β j ) 0≤j≤m , (k j ) 1≤j≤m = m j=0 ℓ i=1 log S kj+1 kj (r i a N ) -α j log(r i a N ) + log β j 2 (2) with (α j ) 0≤j≤m ∈ A m+1 ⊂ Ê m+1 , (β j ) 0≤j≤m ∈ B m+1 ⊂ (0, ∞) m+1 , 0 = k 0 < k 1 < . . . < k m < k m+1 = N, (k j ) 1≤j≤m ∈ K m (N ) ⊂ AE m .
The vector of estimated parameters α j , β j and k j (and therefore τ j ) is the vector which minimizes this contrast function in A m+1 × B m+1 × K m (N ), i.e., ( α j ) 0≤j≤m , ( β j ) 0≤j≤m , ( k j ) 1≤j≤m := Argmin U N (α j ) 0≤j≤m , (β j ) 0≤j≤m , (k j ) 1≤j≤m

(3)

τ j := k j /N for 1 ≤ j ≤ m. (4) 
For a given (k j ) 1≤j≤m , it is obvious that ( α j ) 0≤j≤m and (log β j ) 0≤j≤m are obtained from a log-log regression of

S kj+1 kj (r i a N ) i onto r i a N i , i.e.   α j log β j   = L ′ 1 • L 1 ) -1 L ′ 1 • Y kj+1 kj with Y kj+1 kj := log S kj+1 kj (r i • a N ) 1≤i≤ℓ , L aN :=     log(r 1 a N ) 1 . . . . . . log(r ℓ a N ) 1     . Therefore ( k j ) 1≤j≤m = Argmin U N ( α j ) 0≤j≤m , ( β j ) 0≤j≤m , (k j ) 1≤j≤m , (k j ) 1≤j≤m ∈ K m (N ) .
Remark 1 In this paper, m is supposed to be known. However, if m is unknown, as in [START_REF] Lavielle | Detection of multiple changes in a sequence of dependent variables[END_REF] or [START_REF] Lavielle | The multiple change-points problem for the spectral distribution[END_REF], a penalized contrast Ũm,N = U N + β N × m (with β N an appropriated sequence converging to 0) can be used instead of U N , and by adding a minimization in m, an estimator m of m could be also deduced.

In this paper, parameters (α * j ) are supposed to satisfied abrupt changes: Assumption C : Parameters (α * j ) are such that |α * j+1α * j | = 0 for all j = 0, 1, . . . , m -1. j ) 0≤j≤m such that α * j ∈ [a , a ′ ] and a < a ′ for all j = 0, . . . , m, then if a

1+2(a ′ -a) N N -1 -→ N →∞ 0, for all (v n ) n satisfying v N • a 1+2(a ′ -a) N N -1 -→ N →∞ 0, È v N τ * -τ m ≥ η -→ N →∞
0 for all η > 0.

(

) 5 
Remark 2 The proof of this result is provided in [START_REF] Bardet | Detecting changes in the fluctuations of a Gaussian process and an application to heartbeat time series[END_REF]. Unfortunately, the rate of convergence of τ *τ m is only v N = N α with 0 < α < 1 and not N as, for instance, in [START_REF] Lavielle | Detection of multiple changes in a sequence of dependent variables[END_REF] and [START_REF] Lavielle | The multiple change-points problem for the spectral distribution[END_REF]. However the context is not the same: in these papers, the contrast is directly computed from N values of (X) i which do not change following τ . Here, the contrast is computed from only (m + 1)ℓ values of S N which change following τ .

The rate of convergence N can not be reached in such a context (simulations show also this property). This is certainly a drawback of your method, which hopefully does not change the rate of convergence of parameters (α j ) and (β j ).

For j = 0, 1, . . . , m, the log-log regression of S kj+1 kj (r i a N ) 1≤i≤ℓ onto (r i a N ) 1≤i≤ℓ provides estimators of α * j and β * j . However, if τ j converges to τ * j , k j = N • τ j does not converge to k * j , and therefore

È [ k j , k j+1 ] ⊂ [k * j , k * j+1 ]
does not tend to 1. So, define kj and k′ j such that kj = k j + N vN and k′ j = k j+1 -N vN . From ( 5)

with η = 1/2, È [ kj , k′ j ] ⊂ [k * j , k * j+1 ] -→ N →∞ 1. Then, Theorem 1.2 Let Θ * j := α * j log β * j and Θj := (L ′ 1 L 1 ) -1 L ′ 1 Y k′ j kj = αj log βj
. Under the same assumptions as in Theorem 1.1, for j = 0, . . . , m, with Σ (j) (α * j , r 1 , . . . , r ℓ ) := (L

′ 1 L 1 ) -1 L ′ 1 Γ (j) (α * j , r 1 , . . . , r ℓ )L 1 (L ′ 1 L 1 ) -1 , N τ * j+1 -τ * j a N Θj -Θ * j L -→ N →∞ N 0, Σ (j) (α * j , r 1 , . . . , r ℓ ) (6) 
A second estimator of Θ * j can be obtained from feasible generalized least squares (FGLS) estimation. Indeed, the asymptotic covariance matrix Γ (j) (α * j , r 1 , . . . , r ℓ ) can be estimated by the matrix Γ(j) := Γ (j) (α j , r 1 , . . . , r ℓ ) and Γ(j) P -→

N →∞ Γ (j) (α * j , r 1 , . . . , r ℓ ). Then, the FGLS estimator Θ j of Θ * j is defined from the minimization among all Θ of the following squared distance,

Y k′ j kj -L aN • Θ 2 Γ(j) = Y k′ j kj -L aN Θ ′ • Γ(j) -1 • Y k′ j kj -L aN Θ .
and therefore define Θ

j := L ′ 1 Γ(j) -1 L 1 -1 L ′ 1 Γ(j) -1 Y k′ j kj .
Proposition 1.1 Under the same assumptions as in Theorem 1.2, for j = 0, . . . , m

N τ * j+1 -τ * j a N Θ j -Θ * j L -→ N →∞ N 0, M (j) (α * j , r 1 , . . . , r ℓ ) (7) with M (j) (α * j , r 1 , . . . , r ℓ ) := L ′ 1 Γ (j) (α * j , r 1 , . . . , r ℓ ) -1 L 1 -1 ≤ Σ (j) (α * j , r 1 , . . . ,

r ℓ ) (for the order's relation between positive symmetric matrix).

Therefore α j is more accurate than αj for estimating α * j when N is large enough. For j = 0, . . . , m, let T (j) be the FGLS distance between points log(r i a N ), log S 

T (j) = N τ * j+1 -τ * j a N Y k′ j kj -L aN Θ j 2 Γ(j) L -→ N →∞ χ 2 (ℓ -2). (8) 
2. Applications

Piecewise long memory Gaussian processes

Assume that the process X = (X t ) t∈AE is a Gaussian piecewise long-range dependent (LRD) process, i.e. there exists (D * j ) 0≤j≤m ∈ (0, 1) m+1 and for all j = 0, . . . , m and k

∈ [N τ * j ], [N τ * j ] + 1, . . . , [N τ * j+1 ] -1 , X k = X (j) k-[N τ * j ]
, where X (j) = (X (j) t ) t∈AE satisfies the following Assumption LRD(D * j ).

Assumption LRD(D): Y is a centered stationary Gaussian process with spectral density f such that

f (λ) = |λ| -D • f * (λ) for all λ ∈ [-π, π] \ {0} with f * (0) > 0 and with C 2 > 0, |f * (λ) -f * (0)| ≤ C 2 • |λ| 2 for all λ ∈ [-π, π].
Following [START_REF] Bardet | Adaptative wavelet based estimator of the memory parameter for stationary Gaussian processes[END_REF], if the mother wavelet is supposed to be included in a Sobolev ball, then

Corollary 1 Let X be a Gaussian piecewise LRD process defined as above and ψ : Ê → Ê be [0, 1]supported with ψ(0) = ψ(1) = 0 and 1 0 ψ(t) dt = 0 and such that there exists sequence (ψ ℓ ) ℓ∈ satisfying

ψ(λ) = ℓ∈ ψ ℓ e 2πiℓλ ∈ Ä 2 ([0, 1]) and ℓ∈ (1 + |ℓ|) 5/2 |ψ ℓ | < ∞.
Under Assumption C, for all 0 < κ < 2/15, if a N = N κ+1/5 and v N = N 2/5-3κ then ( 5), ( 6), ( 7) and ( 8) hold.

Thus, the rate of convergence of τ to τ * (in probability) is N 2/5-3κ for 0 < κ arbitrary small. Estimators Dj and D j converge to the parameters D * j following a central limit theorem with a rate of convergence N 2/5-κ/2 for 0 < κ. Convincing results of simulations can be observed in Table 1 and Figure 1. 1 Left: Estimation of τ 1 , D 0 and D 1 in the case of piecewise FARIMA(0,d j ,0) (d 1 = 0.1 and d 2 = 0.4) with one change point when N = 20000 (50 realizations). Right: Estimation of τ 1 , τ 2 , H 0 , H 1 and H 2 in the case of piecewise FBM with two change points when N = 5000 and N = 10000 (50 realizations)

Piecewise fractional Brownian motions

Now, X will be called a piecewise fractional Brownian motion if there exist two families of parameters (H * j ) 0≤j≤m ∈ (0, 1) m+1 and (σ * 2 j ) 0≤j≤m ∈ (0, ∞) m+1 such that for all j = 0, . . . , m and t ∈

[N τ * j ], [N τ * j ] + 1, . . . , [N τ * j+1 ] -1 , X t = X (j) t-[N τ * j ]
, where X (j) = (X (j) t ) t∈Ê is a FBM with parameters H * j and σ * 2 j . Following the results of [START_REF] Bardet | Statistical Study of the Wavelet Analysis of Fractional Brownian Motion[END_REF], one obtains, Corollary 2 Let X be a piecewise FBM and ψ : Ê → Ê be a piecewise continuous and left (or right)differentiable, such that |ψ ′ (t -)| is Riemann integrable with ψ ′ (t -) the left-derivative of ψ in t, with support included in [0, 1] and Ê t p ψ(t) dt = 1 0 t p ψ(t) dt = 0 for p = 0, 1.. 5), ( 6), ( 7) and ( 8) hold.

Let A := sup j H * j -inf j H * j . If A < 1/2, under Assumption C, for all 0 < κ < 1 1+4A -1 3 , if a N = N 1/3+κ and v N = N 2/3(1-2A)-κ(2+4A) then (

Remark 3

The dependence of this result on A can be explained by the fact that 2(sup j α * jinf j α * j ) + 1, with α * j = 2H * j + 1, has to be smaller than 3 since a N • N -1/3 -→ N →∞ ∞. However, Corollary 2 is quite surprising: the smaller A, i.e. the smaller the differences between the parameters H j , the faster the convergence rates of estimators τ j to τ * j . If the difference between two successive parameters H j is too large, the estimators τ j do not seem to converge. This is attributable to the influence of the other segments that is even deeper than the involved exponents are different (simulations exhibit this paroxysm in [START_REF] Bardet | Detecting changes in the fluctuations of a Gaussian process and an application to heartbeat time series[END_REF]).

Thus, the rate of convergence of τ to τ * (in probability) can be N 2/3(1-2A)-κ ′ for 0 < κ ′ as small as one wants when a N = N 1/3+κ ′ /(2+4A) . Results of simulations can be observed in Table 1 and Figure 1 

Theorem 1 . 1

 11 Define τ * := (τ * 1 , . . . , τ * m ), τ := ( τ 1 , . . . , τ m ) and τ m := max |τ 1 |, . . . , |τ m | . Let ℓ ∈ AE \ {0, 1, 2}. If Assumption C and relation (1) holds with (α *

Theorem 1 . 3

 13 regression line. The following theorem describes the asymptotic behavior of a goodness-of-fit test on each segment [ kj , k′ j [: Under the same assumptions as in Theorem 1.1, for j = 0, . . . , m

Figure 1 .

 1 Figure1. Left: Piecewise FARIMA(0,d j ,0) (with d 0 : 0.1 (D 0 : 0.2), d 1 : 0.4 (D 1 : 0.8) and τ 1 : 0.75). Right: Piecewice FBM(H j ) (τ 1 : 0.3, τ 2 : 0.78, H 0 : 0.6, H 1 : 0.8 and H 2 : 0.5), ( τ 1 : 0.32, τ 2 : 0.77, H0 : 0.5608, H1 : 0.7814 and H2 : 0.4751).

  in a case where A = 0.3 < 1/2.
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