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Abstract 

Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have 

focused on rigid and non deformable anatomical structures.  Nowadays, special attention is 

paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-

invasive digestive surgery was probably one of the first fields where soft tissues were handled 

through the development of simulators, tracking of anatomical structures and specific 

assistance robots. However, other clinical domains, for instance urology, are concerned. 

Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, 

or cryoablation), increasingly early detection of cancer, and use of interventional and 

diagnostic imaging modalities, recently opened new challenges to the urologist and scientists 

involved in CAMI. This resulted in the last five years in a very significant increase of research 

and developments of computer-aided urology systems. In this paper, we propose a description 

of the main problems related to computer-aided diagnostic and therapy of soft tissues and give 



a survey of the different types of assistance offered to the urologist: robotization, image 

fusion, surgical navigation. Both research projects and operational industrial systems are 

discussed.  
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1. Introduction 

1.1 A short introduction to urology 

Urology concerns the exploration, diagnostic and medical or surgical treatment of both the 

urinary apparatus of men and women and the genital apparatus of men. The organs of interest 

are the bladder, kidney, ureter, urethra and, for men, the prostate, penis and testicles (see Fig. 

1). Pathologies include among others: lithiases (stones), cancers, traumas, stenoses, 

incontinence, infectious diseases, malformations and sterility. Urologic surgery also includes 

kidney transplantation. The major targets for robot or image-guided assistance are the prostate 

and the kidneys as detailed below.  

 

Prostate cancer is one the most common malignancy among men. [Parkin01] reports year 

2000 cancer statistics: 543000 cases and 204000 deaths were attributed to prostate cancer 

worldwide. Its detection is based on digital rectal examination (DRE) and Prostate Specific 

Antigen (PSA) rating and is confirmed through the anatomo-pathologic analysis of biopsies. 

Treatments include watchful waiting, surgery (laparoscopic or conventional radical 

prostatectomy), chemotherapy, and destruction of the tumour using different physical agents 

including radiotherapy (radiation by external beams), brachytherapy (radiation by implanted 

radioactive seeds), HIghly Focused Ultrasound, radiofrequency, and cryoablation. Because of 



the immediate anatomical environment of the prostate, in particular the bladder and rectum, 

and because of the role of this gland in the sexual life of patients, special attention is paid to 

minimally invasive techniques. One objective is to minimize induced morbidity. However, 

from the clinician standpoint the earlier detection of cancers from PSA screening and the 

development of laparoscopic techniques, by targeting smaller area via smaller entry ports, 

yield to increasing difficulties. Thus, computer or robot assistance may be needed. 

 

 

 

Fig. 1: Anatomy in urology : (left) Kidney and (right) prostate male anatomical environments  

(Respectively from http://www.bartleby.com/images 

and http://www.liv.ac.uk/researchintelligence/issue21/images/ ) 

 

Percutaneous access to the kidneys is also a challenging issue and concerns many patients. 

This technique can be used for any introduction of a needle in the kidney for diagnostic 

(biopsies) or therapeutic actions (radiofrequency cancer ablation or stone destruction for 

instance). The destruction of stones is a major clinical application: 5% of the occidental 

population is concerned. Traditionally, percutaneous access is controlled from real-time 

imaging (ultrasounds or fluoroscopy) whose drawbacks are respectively poor visibility and 

irradiation. There also, assistance would be welcome. 

 



1.2 Dealing with soft tissues 

Because urology deals with soft tissues, it is a perfect illustration of the difficulty to directly 

apply the computer-assistance know-how from bony structures to mobile and deformable 

tissues. Mobility and deformations have different origins: 

- Intrinsic origin: some organs intrinsically move or are deformed to perform natural 

physiological activity such as breathing or cardiac rhythm. A foetus organ also has an 

intrinsic mobility due to foetal motion. Heart beating is quite predictable whilst foetal 

motion is not.  

- Anatomical environment: other organs move or are deformed because of their 

anatomical environment. This is typically the case for the kidney that is moved up and 

down according to the diaphragmatic activity during breathing; this is also true for the 

prostate which position and orientation depend on the bladder and rectal filling, and in 

a lesser way, breathing. 

- Patient position: the position and shape of some structures depend on the patient 

posture or position relatively to gravity. For example, the prostate position partly 

depends on the flexion of patient’s legs.  

- External action: finally, the therapeutic (needle insertion for instance) or diagnostic 

(e.g. ultrasound examination) action may move and deform the organ of interest. This 

is the case for the kidney and even more for the prostate, especially when an 

endorectal ultrasonic exam is performed.  

Very often, the motion and deformation of an organ has multiple sources. For instance, the 

prostate moves and/or is deformed due to: patient breathing, patient posture, bladder and 

rectum natural or artificial filling, insertion of a needle, oedema from multiple needle 

insertions.  

 



In the case of the prostate, several groups worldwide paid special attention in the mid-nineties 

to motion of the gland in the context of radiotherapy; since most intra-treatment localization 

approaches were based on X-Ray data where the prostate is not directly visible, it was 

important to quantify prostate motion with respect to bony structures. [VanHerk95] performed 

separate CT/MR bone and prostate registrations to determine prostate mobility; rigid chamfer 

matching on segmented surfaces was used; [Balter95] used implanted prostate fiducials and 

X-ray images to perform a similar study. More recently deformation was studied specially in 

the context of imaging involving intrarectal probes or coils (see for instance [Hirose02]).  

 

In order to be able to handle these anatomic changes several issues must be solved: models 

must be designed when the motion and/or deformation are predictable and repeatable; 

tracking capabilities must be developed based on intra-operative sensing (images, signals 

such as ECG); real-time re-planning may be necessary for the guiding system (for instance a 

robot) to adapt to these changes; finally robots should be synchronized to those motions and 

deformations in a discrete or continuous way. This raises very challenging robustness and 

safety issues. One important characteristic of those anatomic changes is their time scale with 

respect to the duration of the action to be performed. Consequently, different strategies may 

be selected: localization just before the action or tracking during the whole action. In the 

following sections, the way those questions have been solved in the case of urological targets 

will be analyzed.  

 

2. Robotics and urology 

Historically, urology was one of the first clinical domains where a robot was used for patients. 

At the time – the late eighties – where most people dealt with neurosurgery or orthopaedics 

applications of robotics, the London Clinic and the Imperial College of London developed 



PROBOT [Davies91]: a robot for the transurethral resection of the adenomatous prostate, i.e. 

the removal from the inside of the gland of extra-tissues compressing the urethra. The first 

test on a patient started in April 1991. After a feasibility study on 5 patients, a pre-clinical 

series with 40 patients was undertaken. Several versions of this system where developed; the 

first prototype was based on a PUMA 560 (from Unimation Inc.) connected to a passive 

frame. This frame is an elegant solution to safety issues since it constrains the tool movement 

inside a cone related to the task to be executed. The current system consists of a passive robot 

positioning a motorized frame with 3 degrees of freedom (dof) – conical motion plus 

translation of the resectoscope. [Shah01] reports the difficult task of automatically controlling 

this robot for resection monitoring from the real-time intra-operative ultrasound images.  

 

Indeed, because soft tissues move and deform, two types of strategies may be used in robot 

control. The ideal approach would be to continuously and automatically close the robot 

control loop using intra-operative information about the organ motion. To our knowledge, 

such a solution has not yet been developed for urology. However in radiotherapy, where the 

tool is outside the body and the planning is rather simple (beam orientation with respect to. 

the patient and duration of radiation), organ tracking ability was introduced. In [Coste05] the 

motions of intra-body implanted fiducials are correlated to the motions of infra-red on-body 

markers for tracking breathing movements this process is however rather invasive. 

[Sawada04] proposes a non invasive solution based on real-time image correlation for the 

detection of a pre-defined stage in the breathing cycle (full expiration for instance); this 

information is used for respiratory-gated radiotherapy treatment. The other and much simpler 

approach is to tele-operate robots: in that case the user closes the loop between robot motion 

and real-time image information. Such an approach is particularly interesting when operative 

planning is too complex to be explicitly defined. Intermediate solutions consist in adding 



motion tracking abilities to tele-operated robots (see [Ginhoux05]) or to close the loop from 

imaging data in a more discrete way for simple tasks (see section 2.2).  

 

2.1 Tele-operated robots 

2.1.1 Endoscope holders 

The first FDA1 approved medical robot, AESOP (from Computer Motion Inc.) [Sackier94] 

had a significant clinical and industrial success. Two thousand AESOP were sold to around 

five hundred hospitals between years 1994 and 2000. AESOP has a SCARA architecture with 

4 active and 2 passive (pivot rotation) dof; this tele-manipulator is voice controlled. Many 

other robotic endoscope holders have been developed in the academic and industrial tracks. 

One of them designed at TIMC [Berkelman03] has the interesting property of being directly 

put on the patient abdomen skin (see Fig. 2). Because the robot is placed on the endoscope 

entry point, 3 dof (2 rotations and 1 translation) are sufficient to handle the endoscope 

motions. 

 

  

Fig. 2. 

The LER (Light Endoscopic Robot, TIMC, Grenoble Hospital and School of Medicine):  on a 

phantom (left), urological intervention on cadaver (right). 

 

                                                 
1 Food and Drug Administration 



As compared to AESOP and to most of the other systems which are positioned on the 

operating room (OR) table, floor or ceiling, this very compact system follows the patient 

motions and is very easy to install. It weights 625g; it is voice controlled and completely 

sterilizable. Interesting evolutions of robotic endoscope holders deal with automatically 

control of robots from image information in order to track organs or instruments during the 

surgery (see [Voros06] for instance). 

 

2.1.2 Tele-surgery robots 

Based on the robotic endoscope holders experience, instrument holders have naturally been 

designed resulting in the so-called tele-surgery robots. ZEUS, an evolution of the AESOP, is 

composed of 3 separated 4 dof arms (one endoscope holder and two instrument holders). 

Another system, the DaVinci (from Intuitive Surgical Inc.), is composed of 3 or 4 arms 

mounted on a single basis. Articulated instruments provide extra intra-body dof (see Fig. 3). 

Both systems are based on master-slave architectures; the arms are tele-operated2 by the 

surgeon from endoscopic images. DaVinci proposes a “head-in” stereoscopic display (see Fig. 

3) whilst Zeus includes a “head-mounted” stereoscopic display or a traditional screen. Intra-

body dof are a major advantage of the DaVinci, increasing the surgeon’s possibilities near 

open surgery conditions. Both systems are quite cumbersome and expensive; none of them 

include force feedback on the master workstation which may be a serious limitation for 

anastomoses for instance. The DaVinci has been extensively evaluated for urological 

applications. First robot-assisted laparoscopic radical prostatectomies were reported in 

[Abbou00], [Binder01]. Very large series of patients have since been operated: the Vattikuti 

Institute in the Henry Ford Hospital of Detroit, USA, published in [Menon04] a study 

concerning more than 1100 cases. In this centre, laparoscopic prostatectomies started in 
                                                 
2Technically, nothing really constrains the surgeon on the master console to be close to the slave robot; in 
practice – except for some concept demonstrations such as [Marescaux01]  – the needs for reliability in data 
transmission and safety result in short-distance tele-surgery. 



October 2000 and the DaVinci assistance was introduced in March 2001. A study comparing 

conventional/laparoscopic/robot-assisted laparoscopic procedures showed clear advantages of 

the robotic series on many points including shorter hospital stays, reduced pain, reduced 

blood loss, better PSA control, reduced positive margins, better continence, and less 

impotence. Another advantage of robot assistance is a reduction of the learning curve for 

laparoscopic procedures; [Alhering03] reports an improvement factor of about 10.  

 

    

 

 

Fig. 3.  

The DaVinci robot (Intuitive Surgical Device Inc., http://www.intuitivesurgical.com):the master-slave system (left 

and middle);  and one of its articulated instruments showing intra-body dof (right)  

 

Laparoscopic radical prostatectomy is probably one of the domains were the robotic clinical 

added-value was so clearly demonstrated. Other applications of such robots to urology are 

reported in full details in [UroCLin04]. Each time complex dissections, microsurgery or intra-

corporal suturing are necessary, the robot may be a precious assistant. 

 

Several research projects in the world aim at developing competitive smaller and/or cheaper 

solutions with articulated intra-body instruments and endoscopes and master station offering 

force feedback. Planning tools are also developed in order to optimize the entry ports 



positioning, enabling both target access and collision-free motion of the robots (see for 

instance [Coste04]).  

 

2.2 Image-guided robots 

Many gestures in urology are carried under interventional radiology: the diagnostic or 

therapeutic tool is moved under control of an imaging modality. Ultrasounds or fluoroscopy 

enable continuous control: the operator can see in real-time the tool position and the anatomy; 

CT or MRI allow asynchronous control: for instance, a needle is positioned, a control image 

is taken and the needle position is corrected if necessary, and so on. This idea has been 

exploited to control from medical images robots performing simple tasks such as a linear tool 

insertion. 

 

2.2.1 Prostate biopsies and brachytherapies 

From a technical viewpoint prostate biopsies and brachytherapies (see figure 4) are rather 

similar; they both consist in inserting needles in the prostate, either for tissue sampling or for 

radioactive seed placement, through transperineal or transrectal access, under imaging control 

– most often TransRectal UltraSound imaging (TRUS).  

 

 



Fig. 4. 

 US-guided transrectal biopsy (left) and transperineal brachytherapy (right) operating principles. 

From http://www.uropage.com/index.htm  

 

However, each biopsy makes use of a single ultrasonic (US) image in which the needle is 

visible whilst brachytherapy is based on a volume of images: often parallel axial US images 

acquired every 5mm. Brachytherapy is based on a careful patient-specific dose planning 

whilst biopsies are generally performed following a predefined global scheme (for instance 

sextant or 11-core protocols). Needle insertion is slow and manual during brachytherapies 

whilst biopsies are very rapidly performed using a biospy gun. As demonstrated by 

[Heverly05] in a different medical context, increasing needle velocity results in minimizing 

the displacement and deformation of the tissue. Thus automation may have a positive impact 

in terms of gesture accuracy. Moreover, prostate brachytherapy is based on the use of a 

template (a stereotactic grid) rigidly connected to the US probe. This restrains needle 

trajectories to lines parallel to the probe axis and results in potential collisions of the needles 

with the pelvic bone. Again, using a robot may enable various trajectory directions. [Wei04] 

proposes to use a general purpose 6 dof robot for needle positioning and insertion. [Davies04] 

develops a special-purpose robot mimicking the conventional procedure (trajectories parallel 

to the US probe axis); a rotational dof for the needle is added to reduce the needle flexion 

during tissue penetration. Those systems are still laboratory test beds. [Phee05] describes a 

pre-clinical evaluation of a specific 9 dof system (positioning platform plus biopsy robot) for 

transperineal prostate biopsies. A 3D prostate geometric model of the prostate is 

approximated from series of close parallel US images enabling planning of the biopsies. 

2.5mm accuracy is reported; those performances require very careful patient preparation and 

US probe handling. None of these systems really considers prostate motion and deformation 

during the procedure.  



 

Another approach consists in performing transrectal prostate biopsies or brachytherapies with 

an intra-rectal robot under MRI control [Susil03]. Although conventional MR imaging (1.5T 

with endorectal antenna and T2 sequence) enables physicians to see precisely the prostate 

anatomy, using such a modality for biopsies is probably restricted to the few cases where US-

guided biopsies are not possible or not successful. Let us remind that in the United States 

(resp. in France) about 106 (resp. 105) series of diagnostic biopsies are performed each year). 

In [Susil03], conventional MRI is used. The robot is inserted in the patient rectum and has 

three dof to reach the target defined on the MRI data: translation in the rectum, rotation 

around its main axis and progression of the needle. Thanks to its design, the robot does not 

disturb the magnetic field and includes two coils; one used as part of the imaging sensor and 

the other one as a position sensor. After validation on dogs, the robot is being clinically tested 

for transrectal biopsies and brachytherapies [Fichtinger04]; 2mm accuracy is reported; this 

remaining error is probably mainly due to the prostate motion and deformation during needle 

insertion. [Chinzei00] proposes another robot for prostate biopsy or brachytherapy inside an 

open interventional MR system. Interventional MRI (0.5T) requires an additional 

conventional MRI exam which makes the procedure even more complex (see 3.2.1). 

 

2.2.2 Percutaneous renal access 

The purpose is to assist percutaneous access to the kidney. Since 1996 a robot named PAKY 

(Percutaneous Access of the KidneY) is developed by the Johns Hopkins groups in Baltimore 

(MD, USA). The robot has seven passive dof used to position a 3 active dof structure (2 for 

orientation and 1 for translation of the needle). Fluoroscopy is used for needle alignment and 

control during insertion. During the procedure, the patient is in apnoea in order to keep the 

kidney in a constant position. [Cadeddu98] reports in vitro and in vivo experiments. In 



[Su02], for 23 patients, no significant difference is reported between the manual and robotic 

procedure in terms of precision, rapidity, number of attempts, complications. One advantage 

of the robotic procedure lies in the absence of irradiation of the human operator. [Bascle00] 

proposes a visual servoing approach from two fluoroscopic views enabling the automatic 

placement of the needle to a given target and entry point. This system was also applied to CT-

guided transperineal prostate biopsies through a single entry point. 

 

3. Image-based urology 

3.1 Image processing 

Many papers propose tools to assist the segmentation of urologic images especially for the 

prostate where TRUS images have been paid close attention. Segmentation may be 2D, 2.5D 

(the segmentation of a given slice is used to help the segmentation of the following parallel 

one) or 3D. Most successful approaches make use of active contours and/or statistical models. 

However, for 2D images close to the prostate extremities, existing tools may not be robust 

enough due to the poor quality of those images. Other works concern the automatic 

segmentation of CT and MRI images of urological targets (kidney in particular). Because this 

problem is very vast and not typical of interventional systems, no details are given here. 

[Shao03] and [Zhu06] present good reviews of work concerning the image processing of 

prostate TRUS images.  

 

3.2 Image fusion  

MR and US imaging are probably the most used imaging modalities for prostate diagnosis 

and therapy. The interventional nature of US is counterbalanced by their traditional 

drawbacks: patient dependence, intra- and inter-operator variability, medium quality due to 

speckle, artefacts, etc. Conventional MRI using external or transrectal coils clearly show the 



prostate zonal anatomy which is useful for biopsy planning, whilst open MRI (also called 

iMRI for interventional MRI) enables near real-time control. This is why several research 

groups implemented fusion algorithm to benefit from complementary advantages of these 

modalities. Other imaging modalities are used such as CT imaging or histology sections; here 

also image fusion may be very useful. This paragraph describes different studies on multi-

modality fusion dedicated to prostate imaging. 

 

3.2.1 MRI/iMRI fusion 

The Surgical Planning Laboratory (SPL) and Harvard Medical School have developed a 

navigation system for transperineal prostate biopsies under iMRI. Because of a lower 

intensity magnetic field, iMRI does not clearly show the prostate anatomy. This is why a pre-

operative MRI acquisition is performed (external pubic antenna, 1.5T, T2 FSE sequence) on 

which surgical planning is possible. Intra-operatively, iMRI data are collected (external pubic 

antenna, 0.5T, T2 FSE sequence) enabling volume reconstruction. A localized stereotactic 

grid similar to the one used for brachytherapy is calibrated with respect to the MRI system 

and is used as a guiding device. MRI and iMRI are registered using an intensity-based elastic 

registration enabling transfer of the planning data to the iMRI conditions. During the biopsy 

procedure, real-time FGR iMRI slices (acquisition time: 8s per slice) are obtained for biopsy 

tracking. The “3D Slicer” developed by SPL enables computing from the iMRI T2-volume 

the slice corresponding to the FGR one with planning information added. [Hata01] reports 

two successful clinical cases. As mentioned previously, such an approach is especially 

interesting for patients for which ultrasounds have been unsuccessful (negative repeated US-

guided biopsies with increasing PSA) or impossible. [Bharata01] describes another solution 

for MRI/iMRI registration based on elastic deformation of segmented data; a finite-element 

model of the pre-operative prostate is deformed using isotropic linear deformations to match 



the intra-operative prostate. Two regions of the prostate are considered with different 

elasticity parameters: the central gland and peripheral zone. 

 

3.2.2 MRI/TRUS fusion 

In many cases, bringing the MRI information to the US-guided procedures can be an 

interesting alternative. [Kaplan02] describes experiments concerning the fusion of pre-

operative MRI data to TRUS images for transperinal biopsies. Six fiducial points are matched 

between the two modalities using a rigid registration. From this transform, a composite image 

is produced combining TRUS data and re-sliced matched MRI data. No attention is paid to 

motion or deformation that could occur between the two acquisitions or during the procedure. 

 

In one of the two main types of brachytherapy protocols the radiation plan is prepared in the 

OR and is based on intra-operative TRUS acquisition and segmentation. One difficulty lies in 

this initial stage. [Reynier04] reports the evaluation of elastic surface registration between 

TRUS and MRI data for prostate brachytherapy. Pre-operatively, three orthogonal T2 TSE 

volumes are acquired using an endorectal coil and the prostate contours are segmented jointly 

on the three volumes. Intra-operatively, TRUS data are collected (axial and pseudo-sagittal 

slices – see Fig. 5-left). TRUS images are manually segmented by the urologist as in the 

conventional procedure and this results in a sparse intra-operative 3D prostate model (Fig. 5-

middle); the axial contours are needed for simulating and planning the dose. A pre-

registration consisting in superimposing the ultrasound and MRI data centres of gravity 

initializes the unknown transform before a second step of minimization using the Levenberg-

Marquardt algorithm. Elastic registration allows for rotation and translation between data sets 

as well as local deformations or distortions. The method is derived from the octree-spline 

elastic registration described in [Szeliski96]. It makes use of an adaptive, hierarchical and 



regularized free-form deformation of one volume to the other coordinate system. The result is 

a 3-D function transforming any ultrasound data point to the corresponding MRI point. After 

MRI/TRUS surface-based elastic registration, composite MRI/TRUS images are computed; 

the operator can then visualize combined TRUS and MRI data of a same region (cf. Fig. 5-

right). This enables refining the TRUS segmentations of the axial slices especially near the 

prostate extremities (base and apex). Elastic registration accounts for prostate motion and 

deformation between the two acquisitions. Processing of large intra-operative modifications 

due to needle insertions is limited to manual re-planning made by the radiophysicist during 

the procedure. [Reynier04] reports millimetre registration accuracy and shows that such a 

modified segmentation may result in a significantly different radiation plan. 

 

    

Fig. 5.  

IRM/TRUS fusion for brachytherapy (ProCur software, TIMC and Grenoble Hospital): (left) two of the axial and 

pseudo-sagittal TRUS images; (middle) 3D TRUS reconstruction; (right) composite image generated after 

MRI/TRUS elastic registration: for each axial TRUS image the corresponding MRI data are computed . 

 

3.2.3 CT/MR fusion 

For radiation therapy (external radiation therapy or brachytherapy), CT imaging plays a 

central role in treatment planning or post-operative dose evaluation due to the need for tissue 

density information. Meanwhile, in prostate treatments, MR is still the main diagnostic 

modality. [Amdur99] presents CT/MR data fusion based on landmarks for seed implant 



quality assessment; the seeds are visible on post-operative CT images whilst the prostate is 

visible on pre-operative MR data. Rigid registration of CT and MR data is based on the use of 

a urinary catheter going through the prostate and placed before both MR and CT acquisitions 

making it visible on both modalities. After registration of the catheter, seeds visible on the CT 

data may be visualized with respect to the MR prostate anatomy. The authors report an 

average residual error measured on each slice at the centre of the urethra of 1.2mm for 11 

patients and a maximum residual error of 2.5mm for one patient. [Lian04] proposes to use a 

Thin Plate Spline (TPS) function to map segmented prostate contours from MRI or MRSI 

(Magnetic Resonance Spectroscopic Imaging) to CT data. In this study, endorectal coils are 

used for MR imaging which may deform the prostate as compared to the CT acquisition 

situation; rigid registration may thus not be accurate enough. Obtained correspondence index 

of 93.1±5% and centroid position of 0.56±0.09mm of the registered surface slices quantify the 

registration accuracy and demonstrate the superiority of TPS registration over rigid one. 

 

3.2.4 Histology/other modality fusion 

Histology is the gold standard of cancer diagnosis. Therefore, registering histological data to 

other modalities may be very fruitful. After preparation and fixation in formalin of cancerous 

prostates surgically removed from patients, 3 to 5mm blocks are generally cut in a pseudo-

axial direction; then a slice of 30 (to 50) microns thickness is obtained from each block and 

analyzed by a pathologist with a microscope for detection and characterization of cancerous 

cells. As proposed in [Egevad98] artificial markers are generally used in order to build a 3D 

reconstruction from those sparse data. 

 

[Shen01] has fused histological data from hundreds of patients using elastic surface 

registration in order to build a statistical atlas of cancer occurrence in the different prostate 



zones and to optimize biopsy schemes based on that atlas. [Bart05] has proposed to fuse MRI 

to histological data of patients with an elastic surface registration as a tool to study and 

improve the understanding of MR imaging of cancerous zones (see Fig. 6). [Taylor04] 

correlates histological data to US images and sonoelastometry. A first scaling factor is applied 

to account for prostate retraction during fixation; then, a rigid surface registration is applied. 

The purpose is here to evaluate the predictive value of sonoelastometry for tumour detection. 

 

a b 
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Fig. 6.  

Histology/MRI fusion (ProPath software, TIMC and Pitié Salpétrière Hospital, Paris): Needles and their guide for 

landmark definition inside the prostate (a); macroscopic 3mm slices of the resected prostate (b); slice reconstruction 

(arrows highlight some landmarks) (c); volume reconstruction including capsule, peripheral zone, urethra and cancer 

segmentations (d); composite image after MRI/histology elastic registration (e). 

 

3.3 Surgical navigation 

Surgical navigation was introduced in neurosurgery in the eighties. It consists in tracking the 

surgical instruments relatively to poorly visible organs and/or to a pre-operative planning and 

to present this information visually to the surgeon. Those systems generally require trackers 

(optical, magnetic, US, mechanical) and involve data fusion and/or registering to enable 

transfer of the planning to the intra-operative conditions. Few urological applications exist. 

 

3.3.1 Renal punctures 



[Leroy04a,b, Mozer05] propose a system for navigating percutaneous access to the kidney 

(see Fig. 7). Pre-operatively two injected CT (early injection and late injection) are acquired 

under apnoea. Early injection allows visualization of the kidney envelope whilst late injection 

makes the internal structures of the kidney visible. Mono-modal rigid registration based on a 

chamfer matching is performed using the Analyze® software (from AnalyzeDirect Inc.). 

Planning is based on those registered data. 

 

  
 

Fig. 7. 

Navigated percutaneous access of the kidney (TIMC, Pitié-Salpétrière Hospital, Grenoble School of Medicine, 

PRAXIM): (from left to right) scanner volume et segmented kidney; pre-operative planning interface; US probe 

and puncture needle with their optical localizers (passive Polaris from NDI, address) ; CT/US fusion; puncture 

guidance. 

 

Intra-operatively a localized ultrasonic probe enables pseudo-3D echographic acquisition of 

the kidney under apnoea; the patient is anesthetized. After a first version using surface-based 

registration and requiring segmentation of the data – CT was segmented with the 3D 

watershed of NablaVision software (from GenericVision, ApS) – an intensity-based rigid 

registration was implemented and tested. The similarity measurement is the correlation ratio. 

After registration, a graphical user interface guides the surgeon towards the planned trajectory 

and target position; the patient is again under apnoea. The system requires to the patient to be 

in the same apnoea configuration (full expiration for instance) during US acquisition and tool 

guidance. Experiments on volunteers have demonstrated a good repeatability of the kidney 

positioning under repeated apnoeas; this confirms literature results. Validation of the 



developed system on real data and on cadavers is promising. Real-time tracking of the kidney, 

for instance using magnetic localization, by avoiding the need for apnoea would greatly 

simplify the protocol; nevertheless the visual guidance may not be easy with a mobile target. 

Robotic alternatives may thus have to be considered for instance by synchronizing the robot 

to a given stage of the respiratory cycle. The motion of the kidney due to the needle insertion 

has not yet been studied. Here again, robotic access may minimize induced motion. 

 

The same framework was applied to the guidance of stimulation electrode placement into the 

sacrum (S3 root) for incontinence treatment. CT/US surface-based registration of the pelvis 

originally developed for pelvic surgery (see [Tonetti01, Daanen04]) was successfully applied 

to this application and validated though cadaver experiments [Leroy04b]. In this application 

the bone position is tracked thanks to an implanted rigid body. 

 

3.3.2 Prostate biopsies 

The precise realization of prostate biopsy schemes (for instance twelve biopsies regularly 

distributed on the prostate gland) faces the difficulty of using 2D images to guide a 3D action. 

The process thus strongly depends on the surgeon’s ability to mentally integrate successive 

images and trajectories in a 3D space. Because US-guided biopsies only detect 75% of the 

cancers for the first series, assisting biopsies to guarantee that samples are correctly and 

regularly acquired in the targeted sites is an important objective. An exploratory study using a 

navigation system (see Fig. 8) was developed at TIMC. The US probe is localized using an 

optical system (Passive Polaris from Northern Digital Inc.) and the executed trajectories are 

recorded in a fixed reference system. Those recordings clearly demonstrate that the prostate 

moves very significantly with the US probe displacements; those displacements are necessary 

to orient the needle, which is rigidly attached to the probe, towards the targeted sites. 



 

        

Fig. 8. 

Prostate biopsy navigation (ProNavV1, TIMC, Grenoble Hospital) – Biopsy recording: (left) localized 

intra-rectal US probes (2D and 3D) – (right) visualization interface presenting US images, prostate model 

and recorded trajectories in a fixed reference system. 

 

Current work deals with US-based real-time registration enabling to represent the executed 

biopsies in a single prostate reference frame despite prostate intra-operative displacements. 

 

4. Model-based urology  

As seen briefly in this paper, shape and/or appearance models have been introduced as a priori 

information for image processing. Statistical models concerning the occurrence of cancers in 

the different zones of the prostate have also been constructed in order to optimize the biopsy 

strategies by maximizing the ability to detect an existing tumour. [Schostak05] reports a 

clinical evaluation of such an optimized scheme. 

 

In the context of medical interventions dealing with soft tissues much attention is paid to 

biomechanical models; the purpose is in particular to better predict tissue motions and 

deformations and tool interaction with the tissues. In a first stage these models were mostly 

developed for training simulators especially in laparoscopic surgery. More recently, they are 

seen as a necessary input to the planning of a surgery performed on soft tissues. 

 



Some groups work on discrete models of the prostate complex environment; for instance 

[Kuroda03] presents a simulator for rectal palpation of the prostate. The interactive nature of 

such models enabling intra-operative re-planning may be counterbalanced by difficult 

parameter identification. Because of their theoretical background and the ability to introduce 

rheological tissue parameters, finite-element models are the most commonly used. Based on 

DiMaio and Salcudean previous work (cf. [DiMaio03]), [Goksel04] proposes a brachytherapy 

simulator combining TRUS image generation to a needle tissue interaction model. 

[Mohammed02] combines statistical and biomechanical models for evaluation of intra-

operative prostate deformation. Other groups work on steerable needle path planner taking 

benefit of needle flexion to generate paths avoiding anatomical obstacles [Alterovitz05].  

 

Current limitations of planning approaches are due to the hypothesis of a homogeneous tissue 

and, for patient-specific planners, in the difficulty of determining in-vivo tissue physical 

parameters. Sonoelastometry, a very promising modality for the detection of cancers inside 

organs [Konig05], can also help for physical parameters identification. 

 

 

Conclusion 

As seen in this paper, many research projects are dedicated to urological applications. 

Concerning target motion and deformation, some partial solutions have been proposed. Tele-

operated robots enable adapting the surgical strategy to the anatomical state based on the 

surgeon know-how. Image-guided robots generally allow data acquisition just before the 

action to be executed; however none of them, in urology, is completely controlled by real-

time data. Image fusion can consider changes occurring between the different acquisitions 

stages to be registered; however, no system yet enables real-time fusion of intra-operative 



data to pre-operative data for tracking purpose.  Regarding the kidney, navigational assistance 

or robot actions are performed on a stabilized organ (breathing is temporarily held); no 

tracking is available yet. Biomechanical models are developed but none of them is yet used 

for guiding the intervention. 

 

A lot has been done but significant research efforts must still be undertaken to fully consider a 

mobile and deformable target such as the kidney or the prostate. Intra-operative tracking 

based on intra-body markers (for instance magnetic markers or other [Coste05, Bricault05]) or 

on real-time image processing is necessary. The development of autonomous robots servo-ed 

to real-time intra-operative data (see for instance [Vitrani05]) raises very challenging 

robustness and safety issues since in this case the surgeon will no longer be able to directly 

supervise the robot actions. Finally, patient-specific modelling of organs mechanical 

properties is a key issue for predicting and recognizing anatomical changes and to allow 

precise planning. All those topics open very interesting and difficult scientific tracks for the 

coming years with a very strong clinical interest. 
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