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First-order queries on structures of bounded degree
are computable with constant delay

ARNAUD DURAND

Université Paris 7 - Denis Diderot

and

ETIENNE GRANDJEAN

Université de Caen

A relational structure is d-degree-bounded, for some integer d, if each element of the domain
belongs to at most d tuples. In this paper, we revisit the complexity of the evaluation problem
of not necessarily Boolean first-order (FO) queries over d-degree-bounded structures. Query
evaluation is considered here as a dynamical process. We prove that any FO query on d-degree-
bounded structures belongs to the complexity class Constant-Delaylin, i.e., can be computed
by an algorithm that has two separate parts: it has a precomputation step of time linear in the
size of the structure and then, it outputs all solutions (i.e. tuples that satisfy the formula) one by
one with a constant delay (i.e. depending on the size of the formula only) between each. Seen as a
global process, this implies that queries on d-degree-bounded structures can be evaluated in total
time f(|ϕ|).(|S| + |ϕ(S)|) and space g(|ϕ|).|S| where S is the structure, ϕ is the formula, ϕ(S) is
the result of the query and f, g are some fixed functions.

Among other things, our results generalize a result of Seese on the data complexity of the
model-checking problem for d-degree-bounded structures. Besides, the originality of our approach
compared to related results is that it does not rely on the Hanf’s model-theoretic technique and
is simple and informative since it essentially rests on a quantifier elimination method.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Computational Logic; F.1.3 [Computation by Abstract Devices]: Com-
plexity Measures and Classes

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Computational Complexity, Enumeration Problems, First-
Order Logic

Introduction

Evaluating the expressive power of logical formalisms is an important task in the-
oretical computer science. It has many applications in numerous fields such as
complexity theory, verification or databases. In this latter case, it often amounts
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to determining how difficult it is to compute a query written in a given language.
In this vein, determining which fragments of first-order logic define tractable query
languages has deserved much attention.

It is well known, that over an arbitrary signature, computing a first-order query
can be done in time polynomial in the size of the structure (and even in logarithmic
space and AC0 [Vardi 1995; Libkin 2004]). However the exponent of this polynomial
depends heavily on the formula size (more precisely, on the number of variables).
Nevertheless, for particular kinds of structures or formulas the complexity bound
can be substantially improved.

A d-degree-bounded structure is a relational structure 〈D ;R1, . . . , Rq〉 where each
element of D belongs to at most d tuples of each relation Ri. In [Seese 1996], it
is proved that checking if a given first-order sentence ϕ is true (i.e., the Boolean
query or model-checking problem) in a d-degree-bounded structure S can be done
in linear time in the size of S. The method used to prove this result relies on model-
theoretic techniques (threshold equivalence of structures for isomorphism types and
locality of first-order logic, see [Hanf 1965; Gaifman 1982; Libkin 2004]). It is
perfectly constructive but hardly implementable. Later, still using such methods,
several other tractability results have been shown for the complexity of the model-
checking of first-order formulas over structures or formulas that admit nice (tree)
decomposition properties (see [Flum et al. 2002]).

The main goal of this paper is to revisit the complexity of the evaluation problem
of not necessarily Boolean first-order queries over d-degree bounded structures.
We regard query evaluation as a dynamical process. Instead of considering the
cost of the evaluation globally, we measure the delay between the outputs of two
consecutive tuples, i.e., query problems are viewed as enumeration problems. This
latter kind of problems appears widely in many areas of computer science (see for
example [Eiter and Gottlob 1995; Eiter et al. 2003; Boros et al. 2000; Kavvadias
et al. 2000; Goldberg 1994] or [Johnson et al. 1988] for basic complexity notions on
enumeration). However, to our knowledge the relationship to query evaluation has
not been investigated so far.

We prove that any query on d-degree-bounded structures belongs to the com-
plexity class Constant-Delaylin, i.e., can be computed by an algorithm that has
two separate parts: it has a precomputation step of which time complexity is linear
in the size of the structure and then, outputs all the solution tuples one by one
with a constant delay (i.e., depending on the size of the formula only) between
two successive tuples and between the last one and the signal indicating that the
computation is terminated. Seen as a global process, this implies that queries on
bounded degree structures can be evaluated in total time f(|ϕ|).(|S| + |ϕ(S)|) and
space g(|ϕ|).|S| where |S| is the size of the structure S, |ϕ| is that of the formula ϕ,
|ϕ(S)| is the size of the result ϕ(S) of the query and f, g are some fixed functions.
As a corollary, it implies that the time complexity of the model-checking problem
is f(|ϕ|).|S| thus providing an alternative proof of the result of [Seese 1996].

The main method used in this paper does not rely on model-theoretic techniques
as previous results of the same kind (see, for example, [Seese 1996] or [Lindell 2005]
for a generalization to least-fixed point formulas). Instead, we develop a very simple
quantifier elimination method suitable for bijective unary functions and apply it to
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obtain our complexity bound. An advantage of this method is that it is effective
and informative. Another advantage is that our paper is completely self-contained.

Besides, the class Constant-Delaylin is interesting by itself and is, to our
knowledge, a new complexity class for enumeration problems: as proved for linear
time complexity (the class DLIN studied in [Grandjean and Schwentick 2002]) it
can be shown that Constant-Delaylin is a robust class and is in some sense the
minimal robust complexity class of enumeration problems.

The paper is organized as follows. First, basic definitions are given in Section 1.
In particular, in Subsection 1.3, we recall definitions about enumeration problems,
introduce the notion of constant delay computation and prove some basic properties
about it. In Section 2, the quantifier elimination method is introduced and is applied
to the evaluation problem of first-order formulas over structures with bijective unary
functions, for short bijective structures, which are d-degree-bounded structures of
a special kind. In Section 3, using classical logical interpretation techniques, this
later problem is shown equivalent in linear time to the first-order query problem
over d-degree-bounded structures thus providing the same bound for it. Finally, in
Subsection 3.3, consequences about the complexity of the subgraph (resp. induced
subgraph) isomorphism problem are given.

1. DEFINITIONS

1.1 Logical definitions and query problems

We suppose the reader to be familiar with the basic notions of first-order logic. A
signature σ is a finite set of relational and functional symbols of given arities (0-ary
function symbols are constants symbols). The arity of σ is the maximal arity of its
symbols. The signature σ is unary if all its symbols are of arity at most one.

A (finite) σ-structure consists of a domain D together with an interpretation of
each symbol of σ over D (the same notation is used here for each signature symbol
and its interpretation).

In this paper, we will distinguish between two kinds of signatures on which se-
mantical restrictions on their possible interpretation are imposed:

—Either σ is made of constant symbols, monadic (i.e., unary) relation symbols and
unary function symbols of which interpretation is restricted to bijective functions
(i.e., permutations),

—Or σ contains relation symbols only of which degrees are bounded by some given
constant d (detailed definitions about d-degree bounded relations are delayed till
section 3).

Class of structures defined by either of these semantical restrictions will be said
to be of bounded degree 1.

In what follows we make precise notions and problems about first-order logic over
bijective structures. The main motivation of our study of the first-order theory of
bijective structures is that is allows a very simple quantifier elimination procedure.

1Note that bijective functions can be seen as special cases of d-bounded degree relations, so we
have essentially one notion of bounded degree structure

3



Definition 1.1. Let σ = {c1, . . . , cp, U1, . . . , Uq, f1, . . . , fk} be a unary signature
consisting of constant symbols ci, of monadic predicates Ui and of unary function
symbols fi, i = 1, . . . , k. A bijective σ-structure is a σ-structure S of the form
S = 〈D ; c1, . . . , cp, U1, . . . , Uq, f1, . . . , fk〉 where each fi is a permutation of the
domain D.

This paper provides a quantifier elimination method for first-order formulas inter-
preted in bijective structures. As it is usual for such kind of result, the elimination
will be done in a richer language. The following definition is required.

Definition 1.2. A bijective term τ(x) is of the form f ε1
1 . . . f εl

l (x) where l ≥ 0,
εi = ±1, x is a variable and each f εi

i is either the function symbol fi or its inverse
f−1

i . Similarly, the term τ−1(x) denotes the inverse of the term τ(x).
A bijective atomic formula is of one of the following four forms where τ(x), τ1(x), τ2(x)

are bijective terms:

—either a bijective equality τ1(x) = τ2(y),
—or τ(x) = c where c is a constant symbol,
—or U(τ(x)) where U is a monadic predicate,
—or a cardinality statement ∃k

xΨ(x) where the quantifier ∃k
x is interpreted as ”there

exist at least k values of x such that” and Ψ(x) is a Boolean combination of
bijective atomic formulas over variable x only.

A bijective literal is a bijective atomic formula or its negation.
A bijective first-order σ-formula 2 is a first-order formula built over bijective

atomic formulas of some unary signature σ.

It is essential to notice that this richer language is exactly as expressive as first-
order logic on bijective structures. As the inverse of each function symbol can be
used, each bijective equality τ(x) = τ1(y) can be rephrased as τ2(x) = y where
τ2(x) = τ−1

1 τ(x).
Let ϕ(t) and ϕ′(t) be two σ-formulas with free variables in the list t = (t1, . . . , tk).

Formulas ϕ(t) and ϕ′(t) are equivalent if for all σ-structures S and all tuples a =
(a1, . . . , ak) of elements of the domain it holds that:

(S, a) |= ϕ(t) iff (S, a) |= ϕ′(t).

One of the main problems studied in this paper is the following.

Query-Bij(FO)
Input: a unary functional signature σ, a bijective σ-structure S of domain D and
a first-order bijective σ-formula ϕ(x) with free variables in the list x = (x1, . . . , xk)
Parameter: ϕ
Output: ϕ(S) = {a ∈ Dk : (S, a) |= ϕ(x)}.

The corresponding Boolean query problem (the subproblem where k = 0, i.e.,
ϕ is a sentence) is often called a model-checking problem. It will be denoted by

2Note that, of course, the notion of ”bijective formula” is an abuse of language: this is motivated
by the use of inverse function symbols f−1 which makes sense only if the interpretation is restricted
to bijections
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MC-Bij(FO) here. As suggested by the formulation of the query problem, we are
interested in its parameterized complexity and the complexity results given here
consider the size of the query formula ϕ as the parameter (see [Downey and Fellows
1999]).

1.2 Model of computation and measure of time

The model of computation used in this paper is the Random Access Machine (RAM)
with uniform cost measure (see [Aho et al. 1974; Grandjean and Schwentick 2002;
Grandjean and Olive 2004; Flum et al. 2002]). Query problems are the main subject
of this paper, an instance of such a problem always consists of two kinds of objects:
a first-order structure and a first-order formula.

The size |I| of an object I is the number of registers used to store I in the RAM
in a natural way. If E is the set {1, . . . , n}, |E| = card(E) = n. If R ⊆ Dk is a
k-ary relation over domain D, with |D| = card(D), then |R| = k.card(R): all the
tuples (x1, . . . , xk) for which R(x1, . . . , xk) holds must be stored, each in a separate
k-tuple of registers. Similarly, if f is a unary function from D to D, all the values
f(x) must be stored and, as a consequence |f | = |D|.

If ϕ is a first-order formula, |ϕ| is the length of ϕ, i.e., the number of occurrences
of variables, relation or function symbols and syntactic symbols: ∃, ∀,∧,∨,¬,=
, ”(”, ”)”, ”, ”.

All the problems we consider in this paper are parameterized problems: they take
as input a list of objects made of a σ-structure S and a formula ϕ and as output the
result of the query ϕ(S). Due to the much larger size, in practice, of the structure
S than the size of formula ϕ, |S| >> |ϕ|, this latter one, |ϕ|, is considered here as
the parameter.

A problem P is said to be computable in time f(|ϕ|).T (|S|, |ϕ(S)|) for some
functions f : N → N and T : N

2 → N if there exists a RAM that computes P in time
(i.e., the number of instructions performed) bounded by f(|ϕ|).T (|S|, |ϕ(S)|) using
space, i.e., addresses and register contents also bounded by f(|ϕ|).T (|S|, |ϕ(S)|).
The notation Oϕ(T (|S|, |ϕ(S)|)) is used as an abbreviation when one does not
want to make precise the value of function f . It is also assumed that the function
T is at least linear and at most polynomial. To give an example and to relate
our complexity measure to the logarithmic cost measure, in case T is linear, i.e.,
T (n, p) = O(n + p), it is easy to see that the number of bits manipulated by the
RAM is really linear in the number of bits needed to encode the input and the
output.

1.3 Enumeration algorithms and constant delay computations

In this section, A is a binary predicate (and is seen as an abstraction for a two-
inputs algorithmic problem). Enumeration problems will be defined by reference
to such a generic predicate.

Definition 1.3. Given a binary predicate A, the enumeration problem Enum·A
associated with A is defined as follows. For each input x:

Enum·A(x) = {y : A(x, y) holds },
5



i.e. Enum·A(x) is the solution set for input x.

Remark 1.4. Query problems may be seen as enumeration problems. The input
x consists of the structure S and the formula ϕ(x), a witness y is a tuple a and
evaluating predicate A amounts to checking whether (S, a) |= ϕ(x).

One may consider the delay between two consecutive solutions as an important
point in the complexity of enumeration problems. In [Johnson et al. 1988] several
complexity measures for enumeration have been defined. One of the most interest-
ing ones is that of a polynomial delay algorithm. An algorithm A is said to compute
an enumeration problem Enum·A within polynomial delay if, for each input x, it
computes the set Enum·A(x) in any order with no repetition and no more than a
(fixed) polynomial delay between two consecutive solutions it outputs (and no more
than a polynomial delay to output the first solution and between the last solution
and the end of the algorithm). Polynomial delay is often considered as the right
notion of feasability for enumeration problems. In this paper, we introduce a more
demanding complexity measure that forces constant delay between outputs.

Definition 1.5. An enumeration problem Enum ·A is said to be computable
within constant delay and with linear precomputation, which is written Enum·A ∈
Constant-Delaylin, if there exists a RAM algorithm A which, for any input x,
enumerates the set Enum·A(x) and satisfies the following properties.

(1 ) A uses space O(|x|)
(2 ) A can be decomposed into the two following successive steps

(a) precomp(A) which performs some precomputations in time O(|x|), and
(b) enum(A) which outputs all solutions without repetition within a delay bounded

by some constant delay(A) which does not depend on input x. This delay
applies between two consecutive solutions and after the last one.

By allowing polynomial time precomputations (and polynomial space) instead
of linear time (and linear space), one defines a similar but larger class called
Constant-Delaypoly .

Remark 1.6. As proved for the linear time class DLIN (see [Grandjean and
Schwentick 2002]), it can be shown that the complexity class Constant-Delaylin

is robust, i.e., that it is not modified if the set of allowed operations and statements
of the RAMs is changed in several reasonable ways. This is because linear time
(and linear space) precomputations give the ability to precompute the tables of new
allowed operations.

Remark 1.7 constant delay and parameterized problems. In this paper,
we focus on query problems. As already written, the input formally consists of a
structure S and a formula ϕ and the size of ϕ is considered as a parameter in the
complexity evaluation of the query problem. The natural approach of constant delay
enumeration for parameterized problems seems to be the following: the size of the
input x is |S| and the constant delay depends on the parameter (i.e., on |ϕ|, for a
query problem) only.

The following result is immediate, it evaluates the total time cost of any constant
delay algorithm.
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Lemma 1.8. Let Enum ·A be an enumeration problem belonging to the class
Constant-Delaylin, then, for any input x, the set Enum·A(x) can be computed
in O(|x| + |Enum·A(x)|) total time (i.e., in time linear in the sum of the sizes of
the input and the output) and space O(|x|).

The two lemmas below give basic properties of constant delay computations.

Lemma 1.9. An enumeration problem Enum·A computable in time O(|x|) be-
longs to Constant-Delaylin.

Proof. For any input x, one only has to compute and store the set Enum·A(x).
This step can be viewed as the precomputation part of the algorithm running in
time and space O(|x|). Then, one has to enumerate one by one the elements of the
set Enum·A(x). This is obviously a constant delay process.

Lemma 1.10. Let Enum·A and Enum·B be two disjoint enumeration problems,
i.e., such that, for any input x, Enum·A(x) ∩Enum·B(x) = ∅. Define the (union)
enumeration problem Enum·(A ∪B) as follows:

for any x, Enum·(A ∪B)(x) = {y : A(x, y) or B(x, y) holds }.
If Enum·A and Enum·B belong to Constant-Delaylin then, the problem Enum·

(A ∪B) also belongs to Constant-Delaylin.

Proof. Due to the disjointness of the two solution sets for any input, the proof
is evident. Let A and B be the constant delay algorithms for problems Enum ·A
and Enum·B respectively. The following algorithm correctly computes the problem
Enum·(A ∪B).

Algorithm 1 Constant delay algorithm for Enum·A ∪B
1: Input: x
2: precomp(A); precomp(B)
3: enum(A); enum(B)

Obviously, the delay is bounded by the maximum of delay(A) and delay(B).

Remark 1.11. Note that the disjointness condition in the lemma above is not
always necessary. In case there exist a total ordering < and constant delay enumer-
ation algorithms for Enum·A and Enum·B that enumerate solutions in the common
order < then, it is easily seen that Enum·(A ∪B) belongs also to Constant-Delaylin

even if the disjointness condition is not satisfied.

2. FIRST-ORDER QUERIES ON BIJECTIVE STRUCTURES

2.1 Quantifier elimination on bijective structures

The key result of this paper consists in a quantifier elimination method for first-
order formulas on bijective structures.
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Theorem 2.1. Each bijective first-order formula is equivalent to a Boolean
combination of bijective atomic formulas.

In the special case where the formula is a sentence (i.e., has no free variable)
then, it is equivalent to a Boolean combination of cardinality statements.

Proof. As universal quantification can be expressed in terms of existential quan-
tification and negation, we only have to consider elimination of existentially quan-
tified variables. W.l.o.g., we consider formulas in disjunctive normal form and, as
existential quantification commutes with disjunction we may consider the case of
the elimination of a single existentially quantified variable y in a formula of the
form:

ϕ(x) ≡ ∃y (α1 ∧ . . . ∧ αr) (1)

where each αi is a bijective literal with variables among x and y. Literals depending
on x only and cardinality statements need not be considered since they do not
involve y, and so ϕ(x) may be supposed to be of the following form:

ϕ(x) ≡ ∃y [ψ(y) ∧ y =ε1 τ1(xi1 ) ∧ . . . ∧ y =εk
τk(xik

)] (2)

where each formula y =εj τj(xij ), with εj = ±1, is y = τj(xij ) if εj = 1 and is
y �= τj(xij ) if εj = −1 and ψ is a conjunction of bijective literals. To eliminate the
quantified variable y we consider two cases.

First, suppose that there is at least one index j such that εj = 1. In this case,
the equality y = τj(xij ) is used to replace each occurrence of y in the formula by
the term τj(xij ). The process results in an equivalent quantifier-free formula ϕ′(x)
without variable y.

The second possibility leads to a more complicated replacement scheme. Suppose
that for every j, εj = −1. Then,

ϕ(x) ≡ ∃y [ψ(y) ∧
∧
j≤k

y �= τj(xj)] (3)

(For simplicity of notations but w.l.o.g. we have supposed that ij = j for j =
1, . . . , k). The basic idea is now the following : suppose h ≤ k is the number of
distinct values among those of the k terms τj(xj) such that ψ(τj(xj)) is true; then,
formula ϕ(x) is true if and only if the number of elements b such that (S, b) |= ψ(y)
holds is strictly greater than h (i.e., ∃h+1

y ψ(y) is true). Introducing (new) cardinality
statements in the formula, ϕ(x) can be equivalently rephrased as the following
Boolean combination of bijective atomic formulas:

ϕ(x) ≡
k∨

h=0

∨
P⊆[k],Q⊆P,|Q|=h⎡

⎣ ∧
j∈Q

ψ(τj(xj)) ∧
∧
i∈P

∨
j∈Q

τi(xi) = τj(xj) ∧
∧

j∈[k]\P

¬ψ(τj(xj)) ∧ ∃h+1
y ψ(y)

⎤
⎦

(4)
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where [k] = {1, . . . , k}. The formula in brackets is a conjunction of four parts: the
first three parts express that there are exactly h distinct values τj(xj) in the set
ψ(S).

More generally, starting from a prenex bijective first-order formula, one eliminates
all quantified variables except one from the innermost to the outermost one. This
will result in an equivalent Boolean combination of bijective atomic formulas. In the
case where the formula is a sentence, it is easily seen that the elimination process
results in a Boolean combination of cardinality statements (note that, of course,
∃xϕ(x) can be rewritten as ∃1

xϕ(x)).

An interesting consequence of Theorem 2.1 is the following result.

Corollary 2.2 Seese [Seese 1996]. The problem MC-Bij(FO) i.e. of de-
ciding whether a bijective structure S satisfies a first-order sentence ϕ is decidable
in time Oϕ(|S|).

Proof. From Theorem 2.1, we know that there exists a Boolean combination of
cardinality statements over the same signature σ which is equivalent to ϕ. Given
a cardinality statement ∃k

xΨ(x), where Ψ is quantifier-free, one can test whether a
given σ-structure S satisfies S |= ∃k

xΨ(x) in time OΨ(|S|): it suffices to enumerate
all the elements a of the domain, test whether (S, a) |= Ψ(x) in constant time and
count those for which the answer is positive. If this number is greater than or equal
to k then ∃k

xΨ(x) is true in S. The final answer for ϕ is given by the Boolean
combination of the answers for each cardinality statement.

2.1.1 Considerations on an efficient implementation of the algorithm. Com-
pared to the method of [Seese 1996], the proofs given in this paper are much
simpler and more informative: on bijective structures any first-order sentence is
equivalent to a Boolean combination of cardinality statements which are very sim-
ple ”one variable” sentences. But, due to the case of Formula 3 in the proof of
Theorem 2.1 which leads to the equivalent Formula 4 the whole process requires
time f(|ϕ|).|S| for some function f that may be a tower of exponentials. It can be
shown that it heavily depends on the number of variables and, more precisely, on
the number of quantifier alternations of the formula 3. However, the function f can
be substantially reduced in case there are few quantifier alternations.

In this subsection, we revisit the method of the proof of Theorem 2.1 to prove a
slightly different result in a specific case. We focus on formulas with existentially
quantified variables only and show that the model-checking problem for such for-
mulas can be efficiently solved. A first-order sentence is in FO∃ if it is of the form
∃y Ψ(y), where Ψ(y) is quantifier-free and in disjunctive normal form (DNF).

Corollary 2.3. The model-checking problem for FO∃ formulas on bijective
structures (i.e. testing whether S |= ϕ for some sentence ϕ ∈ FO∃ and some
bijective structure S) can be solved in time O(|ϕ|d.|S|) where d is the number of
distinct variables of ϕ.

Proof. The result obviously holds for d = 1. So, assume d > 1. For the same
reason as in Theorem 2.1, we may consider any formula of the form:

3A careful examination shows that the height of the tower is linear in the number of quantifier
alternations

9



ϕ(x) ≡ ∃y (α1 ∧ . . . ∧ αr) (5)

where each αi is a bijective literal 4 with variables among x and y. For sake of
completeness here, we consider also bijective literals not containing y. Then, ϕ(x)
is of the form:

ϕ(x) ≡ ∃y [ψ(y) ∧ y =ε1 τ1(xi1 ) ∧ . . . ∧ y =εk
τk(xik

) ∧ γ(x)] (6)

where notation εj is as in the proof of Theorem 2.1 and γ, ψ are conjunctions of
bijective literals. Again, if εj = 1, for some j, then all the occurrences of y are
replaced by τj(xij ) and ϕ(x) is equivalent to a conjunction of literals without the
variable y.

Suppose now that εj = −1 for all j ≤ k. Let A = {a ∈ D : (S, a) |= ψ(y)}. Since
ψ(y) is quantifier-free, A can be computed in time O(|ψ|.|S|). Two cases need to
be considered now. If |A| > k, since there are at most k different values τj(xj) for
j = 1, . . . , k, then the conjunction ∃y[ψ(y)∧y �= τ1(xi1 )∧ . . .∧y �= τk(xik

)] is always
true and ϕ(x) is simply equivalent to γ(x). If |A| ≤ k let A = {a1, . . . , ah}, with
h ≤ k. Formula ϕ(x) is replaced by the equivalent formula below over the richer
signature σ ∪ {a1, . . . , ah}:

∨
i≤h

(
∧
j≤k

ai �= τj(xij ) ∧ γ(x))

In all cases, the formula obtained is also in DNF. Time O(|ϕ|.|S|) is needed to
eliminate the variable y and the new formula is of size bounded by O(k.|ϕ|), hence
of size O(|ϕ|2). Elimination of all the d existentially quantified variables except the
last one can be pursued from this new formula (without need for a normalization).
In the worst case (where all literals are of the form xi �= τ1(xj)), the process will
result in a disjunction of less than |ϕ|d−1 conjunctions of at most |ϕ| literals.

2.2 Constant delay algorithm for first-order queries on bijective structures

We are now ready to state the main result of this section.

Theorem 2.4. The problem Query-Bij(FO) belongs to Constant-Delaylin.
In particular, it follows from Lemma 1.8 that this problem can be solved in time
Oϕ(|S| + |ϕ(S)|) and space Oϕ(|S|).

Before proving Theorem 2.4, we establish the following lemma.

Lemma 2.5. The following problem belongs to the class Constant-Delaylin:
given a conjunction Ψ of bijective literals and a bijective structure S over the same
vocabulary, compute Ψ(S).

Proof. The result is proved by induction on k the number of (free) variables
of Ψ(x) where x = (x1, . . . , xk). We even assume that Ψ makes use of explicit
constants from the domain D of S, i.e. elements of D.

4In this proof, bijective literals do not involve cardinality statements
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For the case k = 1, it is evident that the set Q = {a ∈ D : (S, a) |= Ψ(x)} can
be evaluated in time 5 OΨ(|D|) = OΨ(|S|) and hence, by Lemma 1.9, belongs to
Constant-Delaylin.

The result is supposed to be true for k (k ≥ 1) and is proved now for k+1. Let’s
consider the query:

Q = {(a, b) ∈ Dk+1 : S |= Ψ(x, y)}
where Ψ is a conjunction of bijective literals over variables x = (x1, . . . , xk) and y.
As for Theorem 2.1, two cases need to be distinguished.

(1) Ψ contains at least one literal of the form τ1(y) = τ2(xi0), 1 ≤ i0 ≤ k, that
can also be rephrased as y = τ(xi0 ) where τ(xi0 ) = τ−1

1 τ2(xi0 );
(2) Ψ does not contain such a literal.

In the first case, Ψ can be rewritten as:

Ψ(x, y) = Ψ0(x, y) ∧ y = τ(xi0 ).

The query Q is then equivalent to:

Q = {(a, τ(ai0 )) ∈ Dk+1 : (S, a) |= Ψ0(x, τ(xi0 ))},
which is essentially the following k variable query Q′:

Q′ = {a ∈ Dk : (S, a) |= Ψ0(x, τ(xi0 )}.
To be precise, Q = {(a, τ(ai0 )) : a ∈ Q′}. By the induction hypothesis, query Q′

can be computed by some constant delay algorithm A′. This provides a constant
delay procedure for query Q obtained by replacing in algorithm A′ each enumerated
tuple a by the tuple (a, τ(ai0 )).

Case 2 is a little more complicated. Formula Ψ can be put under the following
form:

Ψ ≡ Ψ1(x) ∧ Ψ2(y) ∧
∧

1≤i≤r

y �= τi(xji)

with 1 ≤ ji ≤ k for 1 ≤ i ≤ r. By the induction hypothesis, the k variable query:

Q1 = {a ∈ Dk : (S, a) |= Ψ1(x)}
can be computed by an algorithm A1 on input S with constant delay. By the
induction hypothesis, the k variable query Qb over structure (S, b) defined for any
b ∈ D by:

Qb = {a ∈ Dk : (S, a, b) |= Ψ(x, y)}}
can be enumerated by an algorithm with constant delay. Let now Q2 be the one
variable query:

Q2 = {b ∈ D : (S, b) |= Ψ2(y)},
5More precisely, for each fixed a ∈ D, (S, a) |= Ψ(x) can be checked in time O(|Ψ|) by using
addressing to the structure S (which is possible on a RAM)

11



that is computable in linear time. If |Q2| ≤ r then, by Lemma 1.10, there exists
an algorithm A0 which enumerates the disjoint union ∪b∈Q2Qb ×{b} with constant
delay. Note that ∪b∈Q2Qb ×{b} = Q. From what has been said Algorithm 2 below
correctly computes query Q in that case.

Algorithm 2 Evaluating query Q

Input: S,Ψ
Compute Q2 and |Q2|
if |Q2| ≤ r then run A0

else
precomp(A1) (*)
for a ∈ enum(A1) do

for b ∈ Q2 do
if (S, a, b) �|= ∨

1≤i≤r y = τi(xji) then Output (a, b)
end if

end for
end for

end if

Up to step (*) of Algorithm 2, all can be done in linear time.
It remains to show that, in the case where |Q2| ≥ r + 1, the delay between two

successive solutions is bounded by some constant. Since |Q2| ≥ r + 1 and the
number of b ∈ Q2 that verify (S, a, b) |= ∨

1≤i≤r y = τi(xji ) is trivially bounded
by r, the algorithm outputs at least one (a, b) for each a ∈ Q1 (more precisely, it
outputs at least |Q2|−r such tuples). As a consequence, the maximal delay between
two successive outputs (resp. maximal delay after the last output) is bounded by
2r + delay(A1) (resp. r + delay(A1)). Then, computing Q can be done with
constant delay.

Proof of Theorem 2.4. Let S and ϕ(x) be instances of the query problem
Query-Bij(FO). From Theorem 2.1, one can transform ϕ(x) into the following
equivalent formula in disjunctive normal form:

ϕ(x) ≡ Ψ1(x) ∨ . . . ∨ Ψq(x)

where each Ψi is a conjunction of bijective literals and for all i, j, 1 ≤ i < j ≤ q, and
all bijective structures S, we have Ψi(S) ∩ Ψj(S) = ∅. Theorem 2.4 immediately
follows from Lemma 1.10 since the enumeration problem of each query S �→ Ψi(S),
1 ≤ i ≤ q, belongs to Constant-Delaylin by Lemma 2.5.

3. RELATIONAL STRUCTURES OF BOUNDED DEGREE

In this section, we apply the classical interpretability method due to Rabin [Rabin
1964]. This technique, designed originally for first-order theories, has been used and
adapted by many authors including [Compton and Henson 1990; Arnborg et al.
1991; Seese 1992] and is also used in [Seese 1996]. Specifically, we present a very
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simple interpretation of the first-order theory of d-degree-bounded structures into
the first-order theory of bijective structures. This step is similar to the much more
complex interpretation of the same theory into the first-order theory of k-degree
bounded graphs presented in [Seese 1996] and is similarly computable in linear time.

3.1 Two equivalent definitions

Let ρ = {R1, . . . , Rq} be a relational signature, i.e., a signature made of relational
symbols Ri each of arity ai. Recall that arity(ρ) = max1≤i≤q(ai) = m.

Let S = 〈D ;R1, . . . , Rq〉 be a ρ-structure. For each i ≤ q, Ri ⊆ Dai . Define
the degree of an element x in S, denoted degreeS(x) as the total number of tu-
ples of relations Ri to which x belongs. One defines the degree of a structure as
degree(S) = maxx∈D(degreeS(x)).

Remark 3.1. In [Seese 1996] a different definition of the degree of a structure
is given. For each x, let degree1S(x) denote the number of elements y �= x adjacent
to x, i.e., that appear in some tuple in which x also occurs and degree1(S) =
maxx∈D(degree1S(x)). This is the degree of the Gaifman graph of the structure.

Since each tuple containing x contains at most m− 1 elements different from x,
it is easily seen that:

degree1(S) ≤ (m− 1).degree(S) where m = arity(ρ).

Conversely, if, for each x, there exist at most d elements y ∈ D adjacent to
x then, the number of distinct tuples involving x and y is bounded by q.m.dm−1.
Hence,

degree(S) ≤ q.m.(degree1(S))m−1.

So, the two measures yield the same families of bounded degree relational struc-
tures.

We are interested in the complexity of the following query problem for d-bounded
degree structures (which is independent of either measure of degree we choose).

Query-Deg(FO)
Input: an integer d, a relational signature ρ, a ρ-structure S with degree(S) ≤ d
and a first-order ρ-formula ϕ(x) with free variables in the list x = (x1, . . . , xk)
Parameter: d, ϕ
Output: ϕ(S) = {a ∈ Dk : (S, a) |= ϕ(x)}.
3.2 Interpreting a structure of bounded degree into a bijective structure

In this section, we present a reduction from Query-Deg(FO) to Query-Bij(FO)
which is obtained by interpreting any d-degree-bounded structure into a bijective
one.

Let S = 〈D ;R1, . . . , Rq〉 be a ρ-structure of domainD, of aritym = max1≤i≤qarity(Ri)
and of degree bounded by some constant d. One associates to S a bijective σ-
structure S′ = 〈D ′;D,T1, . . . , Tq, g, f1, . . . , fm〉 of domain D′ where D,T1, . . . , Tq

are pairwise disjoint unary relations (i.e. subsets of D′) and g, f1, . . . , fm are per-
mutations of D′. The structure S′ is precisely defined as follows:
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—D corresponds to the domain of S.
—Ti (1 ≤ i ≤ q) is a set of elements, each representing a tuple of Ri (hence,
card(Ti) = card(Ri)).
The new domain D′ is D∪ (D×{1, . . . , d})∪T1 ∪ . . .∪Tq. The sets forming this
union are pairwise disjoint. In particular, the sets T1, . . . ,Tq are defined as disjoint
sets, and they are disjoint from D, even if they correspond to unary relations.
Let us use the following convenient abbreviations: U = D∪ (D×{1, . . . , d}) and
T =

⋃
1≤i≤q Ti.

—g creates a cycle that relates d copies of each element x of the domain. More
precisely, for each x ∈ D, it holds that g(x) = (x, 1), g((x, i)) = (x, i + 1) for
1 ≤ i < d, and g((x, d)) = x. We also set g(x) = x for all other x (x ∈ T ).

—Each fi is an involutive permutation and essentially represents a projection of
T into D as follows. Let Ri(x1, . . . , xk) be true in S for some relation Ri of
arity k ≤ m and some k-tuple (x1, . . . , xk) ∈ Dk. Suppose Ri(x1, . . . , xk) is
represented by an element t ∈ Ti, then, for each j ≤ k, we set fj(t) = (xj , h)
and we set the inverse f((xj , h)) = t if R(x1, . . . , xk) is the hth tuple in which xj

appears (with h ≤ d). The construction is completed by setting fj(x) = x for all
other x ∈ D′.

Figure 1 details the reduction on an example.
It is clear that, by construction, S′ is a bijective structure and that we have the

following interpretation Lemma.

Lemma 3.2. Let θi be the σ-formula:

θi(x1, . . . , xk) ≡ ∃t(Ti(t) ∧
∧

1≤j≤k

∨
1≤h≤d

fj(t) = gh(xj)).

Then, for all (a1 . . . , ak) ∈ Dk:

(S, a1, . . . , ak) |= Ri(x1, . . . , xk) ⇐⇒ (S′, a1, . . . , ak) |= θi(x1, . . . , xk).

To each first-order ρ-formula ϕ(x1, . . . , xp), is associated the σ-formula ϕ′′(x1, . . . , xp)
obtained by replacing each quantification ∃v (resp. ∀v) by the relativized quantifi-
cation (∃vD(v)) (resp. (∀vD(v))) and by replacing each subformula Ri(x1, . . . , xk)
by θi(x1, . . . , xk).

The following proposition and lemma express that our reduction is correct and
linear in |S|. By using Lemma 3.2, one can easily prove Proposition 3.3 by induction
on formula ϕ.

Proposition 3.3 interpretation of S into S′
. Let ϕ(x1, . . . , xp) be any re-

lational ρ-formula and ϕ′′(x1, . . . , xp) be its translation into a bijective σ-formula.
Similarly, let S and S′ be any ρ-structure (of domain D) and its corresponding
bijective σ-structure, respectively. For all (a1 . . . , ap) ∈ Dp:

(S, a1, . . . , ap) |= ϕ(x1, . . . , xp) ⇐⇒ (S′, a1, . . . , ap) |= ϕ′′(x1, . . . , xp).

In other words: ϕ(S) = ϕ′′(S′)∩Dp. Then, setting ϕ′(x1, . . . , xp) ≡ ϕ′′(x1, . . . , xp)∧∧
i≤p D(xi), it holds: ϕ(S) = ϕ′(S′)

Lemma 3.4. Computing S′ from S can be done in linear time Oρ,d(|S|).
14
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Fig. 1. Our reduction on an example: the original structure (digraph) of degree 3 is on the right
side of the picture

Proof. As computing S′ from S is easy, one has only to compare the size of the
two structures. In the following, Θk(n) means Θ(f(k).n) for some function f . The
size of S is:

|S| = Θ(|D| +
q∑

i=1

card(Ri).arity(Ri)) = Θρ(|D| +
q∑

i=1

card(Ri)).

For S′, by construction, it holds that:

|D′| = (d+ 1).|D| +
q∑

i=1

card(Ri) = Θd,ρ(|S|).

Hence, |S′| = Θ(m|D′|) = Θd,ρ(|S|).

We are now ready to state and prove the main result of this section.

Theorem 3.5. The problem Query-Deg(FO) belongs to Constant-Delaylin.

Proof. Let A be a constant delay algorithm that computes the results of the
problem Query-Bij(FO). Proposition 3.3, yields that the algorithm given below
evaluates correctly the results of a problem in Query-Deg(FO).
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Algorithm 3 Evaluating Query-Deg(FO)

1: Input: S, d, ϕ
2: Compute the σ-formula ϕ′(x) associated with ϕ (and d)
3: Compute the bijective σ-structure S′ associated with S (and d)
4: Run A on input S′, ϕ′

The cost of instruction 2 is constant in |ϕ| and d, that of instruction 3 is Oϕ,d(|S|)
(by Lemma 3.4) and the cost of the precomputation part of algorithm A (included
in instruction 4) is Oϕ′(|S′|) (hence Oϕ,d(|S|)) by Theorem 2.4. These steps form a
precomputation phase of time complexity Oϕ,d(|S|). Finally, the effective enumer-
ation of ϕ(S) = ϕ′(S′) is handled on S′, ϕ′ by A and is performed with constant
delay.

3.3 Complexity of subgraphs problems

In this part, we present a simple application of our result to a well-known graph
problem. Given two graphs G = 〈V ;E〉 and H = 〈VH ;EH〉, H is said to be a
subgraph (resp. induced subgraph) of G if there is a one-to-one function g from
VH to V such that, for all u, v ∈ VH , E(g(u), g(v)) holds if (resp. if and only if)
EH(u, v) holds.

generate subgraph (resp. generate induced subgraph)
Input: any graph H and a graph G of degree bounded by d

Parameter: |H |, d.
Output: All the subgraphs (resp. induced subgraphs) of G isomorphic to H .

The treewidth of a graph G is the maximal size minus one of a node in a tree
decomposition of G (see, [Robertson and Seymour 1983; 1984] or [Downey and
Fellows 1999]). In [Plehn and Voigt 1990] it is proved that for graphsH of treewidth
at most w, testing if a given graph H is an induced subgraph of a graph G of degree
at most d can be done in time f(|H |, d).|G|w+1. In what follows, we show that there
is no reason to focus on graphs of bounded treewidth and that a better bound can
be obtained for any graphH (providedG is of bounded degree). In the result below,
we prove that not only the complexity of this decision problem is f(|H |, d).|G| but
that generating all the (induced) subgraphs isomorphic to H can be done with
constant delay.

Corollary 3.6. The problem generate subgraph (resp. generate induced

subgraph) belongs to Constant-Delaylin.

Proof. The proof is given for the problem generate induced subgraph. Let
G = 〈V ;E〉 and H = 〈VH = {h1 , . . . , hk};EH〉 (|VH | = k) be the two inputs of
the problem. In case there exists a vertex in H of degree greater than d, it can
be concluded immediately that the problem has no solution. Now, let ϕ be the
following formula:

ϕ(x1, . . . , xk) ≡
∧

i<j≤k

xi �= xj ∧
∧

¬EH(hi,hj)

¬E(xi, xj) ∧
∧

EH(hi,hj)

E(xi, xj).
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Note that the formula ϕ depends only on H . The result follows now from Theo-
rem 3.5.

4. CONCLUSION

In this paper, we study the complexity of evaluating first-order queries on bounded
degree structures and consider this evaluation as a dynamical process, i.e., as an
enumeration problem. Our main contributions are two-fold. First, we define a
simple quantifier elimination method suitable for first-order formulas which have
to be evaluated in bijective structures. Second, we define a new complexity class,
called Constant-Delaylin. It can be seen as the minimal robust complexity class
for enumeration problems and we prove that our query problems on bounded degree
structures belong to this class.

There are several interesting directions for further research. Among them, the
following series of questions seem worth to be studied:

—Which ”natural” query problems belong to Constant-Delaylin ? More gen-
erally, which kind of combinatorial or algorithmic enumeration problems admit
constant delay procedures ? is it the case, for example, of first-order queries on
trees of unbounded degree or on relations of locally bounded tree-width (see [Frick
and Grohe 2001]) ?
The same questions can be asked for the strictly larger class Constant-Delaypoly

of constant delay enumeration problems for which polynomial time (instead of
linear time) precomputations are allowed.

—What are the structural properties of the complexity classes Constant-Delaylin

and Constant-Delaypoly ? Do they have complete problems ? Under which
kind of reductions ? Could they be proved to be different from the classes of
enumeration problems solvable with linear or polynomial delay, respectively ?
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