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The trapped two-dimensional Bose gas: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics

We analyze the results of a recent experiment with bosonic rubidium atoms harmonically confined in a quasi-two-dimensional geometry. In this experiment a well defined critical point was identified, which separates the high-temperature normal state characterized by a single component density distribution, and the lowtemperature state characterized by a bimodal density distribution and the emergence of high-contrast interference between independent two-dimensional clouds. We first show that this transition cannot be explained in terms of conventional Bose-Einstein condensation of the trapped ideal Bose gas. Using the local density approximation, we then combine the mean-field (MF) Hartree-Fock theory with the prediction for the Berezinskii-Kosterlitz-Thouless transition in an infinite uniform system. If the gas is treated as a strictly 2D system, the MF predictions for the spatial density profiles significantly deviate from those of a recent Quantum Monte-Carlo (QMC) analysis. However when the residual thermal excitation of the strongly confined degree of freedom is taken into account, an excellent agreement is reached between the MF and the QMC approaches. For the interaction strength corresponding to the experiment, we predict a strong correction to the critical atom number with respect to the ideal gas theory (factor ∼ 2). A quantitative agreement between theory and experiment is reached concerning the critical atom number if the predicted density profiles are used for temperature calibration.

Introduction

As first noticed by Peierls [START_REF] Peierls | Quelques propriétés typiques des corps solides[END_REF], collective physical phenomena in an environment with a reduced number of dimensions can be dramatically changed with respect to our experience in three dimensions. The example of Bose-Einstein condensation in a uniform gas is a good illustration of the crucial role of dimensionality. In three dimensions (3D), condensation occurs at a finite temperature, and the phase of the macroscopic wave function exhibits long range order [START_REF] Penrose | Bose-Einstein condensation and liquid helium[END_REF]. In two dimensions, such long range order is destroyed by thermal fluctuations at any finite temperature, both for an ideal and for an interacting Bose gas [START_REF] Hohenberg | Existence of long-range order in one and two dimensions[END_REF][START_REF] Mermin | Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[END_REF]. In presence of repulsive interactions between particles, a uniform 2D Bose gas can nevertheless undergo a phase transition from a normal to a superfluid state at a finite critical temperature. This transition was predicted by Berezinskii [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group -ii. quantum systems[END_REF] and by Kosterlitz and Thouless [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two dimensional systems[END_REF] (BKT), and it has been observed in several macroscopic quantum systems, such as helium films adsorbed on a substrate [START_REF] Bishop | Study of the superfluid transition in two-dimensional 4 He films[END_REF]. The superfluid state exhibits quasi-long range order, such that the one-body correlation function decays algebraically at large distance. By contrast the decay is exponential in the normal phase. The recent advances in the manipulation of quantum atomic gases have made it possible to address the properties of low-dimensional Bose gases with novel tools and diagnostic techniques [START_REF] Görlitz | Realization of Bose-Einstein condensates in lower dimensions[END_REF][START_REF] Rychtarik | Two-dimensional Bose-Einstein condensate in an optical surface trap[END_REF][START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF][START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF][START_REF] Burger | Quasi-2D Bose-Einstein condensation in an optical lattice[END_REF][START_REF] Köhl | Superfluid to Mott insulator transition in one, two, and three dimensions[END_REF][START_REF] Orzel | Squeezed states in a Bose-Einstein condensate[END_REF][START_REF] Spielman | The Mott insulator transition in two dimensions[END_REF][START_REF] Hadzibabic | Interference of an array of independent Bose-Einstein condensates[END_REF][START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] (for recent reviews, see [START_REF] Posazhennikova | Weakly interacting, dilute Bose gases in 2D[END_REF][START_REF] Bloch | Many-body physics with ultracold gases[END_REF]). A recent cold atom experiment also addressed the BKT problem by realizing a twodimensional array of atomic Josephson junctions [START_REF] Schweikhard | Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates[END_REF]. All these systems bring new questions, since one is now dealing with a harmonically trapped, instead of a uniform, fluid. In particular, due to a different density of states, even in 2D one expects to recover the Bose-Einstein condensation phenomenon in the ideal Bose gas case [START_REF] Bagnato | Bose-Einstein condensation in low-dimensional traps[END_REF]. The total number of atoms in the excited states of the trap is bounded from above, and a macroscopic population of the ground state appears for large enough atom numbers. However real atomic gases do interact. It is therefore a challenging question to understand whether in presence of atomic interactions, a trapped Bose gas will undergo a BKT superfluid transition like in the uniform case, or whether conventional Bose-Einstein condensation will take place, as for an ideal system. In recent experiments performed in our laboratory [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], a gas of rubidium atoms was trapped using a combination of a magnetic trap providing harmonic confinement in the xy plane, and an optical lattice, ensuring that the third degree of freedom (z) of the gas was frozen. The analysis of the atomic density profile revealed a critical point, between a high temperature phase with a single component density distribution, and a low temperature phase with a clear bimodal distribution [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF]. This critical point also corresponded to the onset of clearly visible interferences between independent gases, which were used to study the coherence properties of the system [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF]. Surprisingly, the density profile of the normal component was observed to be close to a gaussian all the way down (in temperature) to the critical point. This density profile is strikingly different from the one expected for the ideal gas close to the BEC critical temperature. Furthermore, if the width of the observed quasi-gaussian distribution is interpreted as an empirical measure of the temperature, this leads to a critical atom number at a given temperature which is about five times larger than that needed for conventional Bose-Einstein condensation in the ideal gas. These two facts showed that, in sharp contrast to the 3D case, interactions in 2D cannot be treated as a minor correction to the ideal gas BEC picture, but rather qualitatively change the behavior of the system. The main goal of the present paper is to analyze this critical point. We start in § 2 with a brief review of the properties of an ideal Bose gas in the uniform case and in the case of harmonic confinement. In § 3 we adapt the ideal gas treatment to the experimental geometry of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], and provide a detailed calculation showing that the experimental results cannot be explained by this theory. Next, in § 4, we take interactions into account at the mean-field (MF) level and we combine this analysis with the numerically known threshold for the BKT transition in the uniform case [START_REF] Prokof'ev | Critical point of a weakly interacting two-dimensional Bose gas[END_REF]. We first present a MF treatment for a strictly 2D gas. For the parameter range explored experimentally, it leads to a critical atom number in good agreement with the prediction of the most recent Quantum Monte Carlo (QMC) calculations [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF]. However the predicted MF density profiles significantly differ from the QMC ones in the vicinity of the critical point. In a second step, we take into account the residual excitation of the z motion in the mean-field model and we obtain an excellent agreement with the QMC calculation. The predicted density distribution near the critical point has a quasi-gaussian shape and the "empirical" temperature extracted from this distribution is in fact somewhat lower than the real temperature. Taking this into account we obtain good quantitative agreement between experimental results and theoretical predictions. Finally we summarize our findings and discuss the connection between the BEC and the BKT transition in a 2D gas. While in a uniform, infinite system only the latter can occur at finite temperature, in a trapped gas both are possible, and the BEC transition can be viewed as a special, non-interacting limit of the more general BKT behavior.

Bose-Einstein condensation in an ideal 2D Bose gas

This section is devoted to a review of well known results concerning the ideal Bose gas in two dimensions. We first address the case of a uniform system at the thermodynamic limit, and we then consider a gas confined in a harmonic potential.

The uniform case

In the thermodynamic limit a uniform, ideal Bose gas does not undergo Bose-Einstein condensation when the temperature T is reduced, or the 2D spatial density n is increased. Bose-Einstein statistics leads to the following relation between the phase space density D = nλ 2 and the fugacity Z = exp(βµ)

D = g 1 (Z) , g α (Z) = ∞ j=1 Z j /j α . (1) 
Here λ = h(2π/(mk B T )) 1/2 is the thermal wavelength, m is the atomic mass, β = 1/(k B T ) and µ is the chemical potential. The function g α (Z) is the polylogarithm, that takes the simple form g 1 (Z) =ln(1 -Z) for α = 1. Because g 1 (Z) → +∞ when Z → 1, (1) has a solution in Z for any value of D. Hence no singularity appears in the distribution of the population of the single particle levels, even when the gas is strongly degenerate (D ≫ 1). This is to be contrasted with the well known 3D case: the relation D (3D) = g 3/2 (Z) ceases to have a solution for a phase space density above the critical value D (3D) c = g 3/2 (1) ≃ 2.612, where the 3D Bose-Einstein condensation phenomenon takes place.

The ideal 2D Bose gas in a harmonic confinement

We now consider an ideal gas confined in a harmonic potential V (r) = mω 2 r 2 /2. We assume that thermal equilibrium has been reached, so that the population of each energy level is given by Bose-Einstein statistics. Since the chemical potential µ is always lower than the energy hω of the ground state of the trap, the number of atoms N ′ occupying the excited states of the trap cannot exceed the critical value

N (id) c N (id) c = +∞ j=1 j + 1 exp(jβhω) -1 . (2) 
This expression can be evaluated in the so-called semi-classical limit k B T ≫ hω by replacing the discrete sum by an integral over the energy ranging from 0 to +∞ [START_REF] Bagnato | Bose-Einstein condensation in low-dimensional traps[END_REF]:

N (id) c = k B T hω 2 g 2 (1) , (3) 
with g 2 (1) = π 2 /6. This result also holds in the case of an anisotropic harmonic potential in the xy plane, in which case ω is replaced by the geometric mean ω = √ ω x ω y , where ω x , ω y are the two eigenfrequencies of the trap. The saturation of the number of atoms in the excited states is a direct manifestation of Bose-Einstein condensation: any total atom number N above N (id) c must lead to the accumulation of at least N -N (id) c in the ground state of the trap. Equation ( 3) is very reminiscent of the result for the harmonically trapped 3D gas, where the saturation number is N (3D,id) c = (k B T /(hω)) 3 g 3 [START_REF] Peierls | Quelques propriétés typiques des corps solides[END_REF]. However an important difference arises between the 2D and the 3D cases for the spatial density profile. In 3D the phase space density in r is given by D (3D) (r) = g 3/2 (Ze -βV (r) ) in the limit k B T ≫ hω. The threshold for Bose-Einstein condensation is reached for Z = 1; at this point N is equal to the critical number N (3D,id) c and simultaneously the phase space density at the center of the trap D (3D) (0) equals the critical value g 3/2 (1). This allows for a simple connection between the BEC thresholds for a homogenous gas and for a trapped system in the semi-classical limit k B T ≫ hω. In 2D such a simple connection between global properties (critical atom number N (id) c ) and local properties (critical density at center n(0)) does not exist. Indeed the semi-classical expression of the 2D phase space density is

D(r) = g 1 (Ze -βV (r) ) . (4) 
Because g 1 (1) = +∞ this leads to a diverging value at the center of the trap when Z approaches 1. Therefore, although the integral of D(r) over the whole space converges for Z = 1 and allows to recover (3), the semiclassical result (4) cannot be used to derive a local criterion for condensation at the center of the trap. One can go beyond the semi-classical approximation and calculate numerically the central phase space density as a function of the total number of atoms. We consider as an example the trap parameters used in [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], where ω x /(2π) = 9.4 Hz, ω y /(2π) = 125 Hz.

In the typical case k B T /(hω) = 50 (T ≃ 80 nK), the discrete summation of the Bose-Einstein occupation factors for Z = 1 gives N c ≃ 4800 (the value obtained from the semi-classical result (3) is 4100). Using the expression of the energy eigenstates (Hermite functions), we also calculate the phase space density at the origin and we find D(0) ≃ 13.

Let us emphasize that this value is a mere result of the finite size of the system, and does not have any character of universality.

Condensation of an ideal Bose gas in a harmonic + periodic potential

In order to produce a quasi two-dimensional gas experimentally, one needs to freeze the motion along one direction of space, say z. In practice this is conveniently done using the potential V (lat) (z) = V 0 sin 2 (kz) created by an optical lattice along this direction.

A precise comparison between the measured critical atom number and the prediction for an ideal gas requires to properly model the confining potential and find its energy levels. This is the purpose of the present section.

The confining potential

The optical lattice is formed by two running laser waves of wavelength λ L , propagating in the yz plane with an angle ±θ/2 with respect to the y axis. The period ℓ = π/k = λ L /(2 sin(θ/2)) of the lattice along the z direction can be adjusted to any value above λ L /2 by a proper choice of the angle θ. For a blue-detuned lattice (λ L is smaller than the atomic resonance wavelength), V 0 is positive and the atoms accumulate in the vicinity of the nodal planes z = 0, z = ±π/k, etc. The oscillation frequency at the bottom of the lattice wells is

ω (lat) z = 2 √ V 0 E r /h
, where E r = h2 k 2 /(2m). In order for the quasi-2D regime to be reached, hω (lat) z must notably exceed the typical thermal energy k B T as well as the interaction energy per particle for a non ideal gas. For a blue detuned lattice an additional confinement in the xy plane must be added to the optical lattice potential. This is conveniently achieved using a magnetic trap, that creates a harmonic potential with frequencies ω x , ω y . The magnetic trap also provides an additional trapping potential mω 2 z z 2 /2 along the z direction. The oscillation frequency ω z created by the magnetic trap is usually much lower than the one created by the lattice ω (lat) z . The main effect of the magnetic confinement along the z direction is to localize the atoms in the N central lattice planes, where the effective number of planes N ∼ 4 k B T /(mω 2 z ℓ 2 ). As we see below this number is on the order of 2 to 4 for the range of parameters explored in [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF]. The fact that more than just one plane is populated is an important ingredient of the experimental procedure used in [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF]. It allows one to look for the interferences between planes, and to access in this way the spatial coherence of the quasi-2D gas.

In order to extract thermodynamic information from the interference between planes, one must ensure that the various populated planes have the same temperature. This is achieved by using finite size lattice beams in the xy plane, so that atoms in the high energy tail of the thermal distribution can actually travel quasi freely from one plane to the other, thus ensuring thermalization. In the experiments described in [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], the waist W x of the lattice beams along the x direction was chosen accordingly. The total trapping potential can then be written in the following way

V (r) = V (mag) (r) + V (lat) (r) (5) 
with

V (mag) (r) = 1 2 m ω 2 x x 2 + ω 2 y y 2 + ω 2 z z 2 (6) 
V (lat) (r) = V 0 e -2x 2 /W 2 x sin 2 (k(z -z 0 )) (7) 
Note that we have included here the offset z 0 between the optical lattice and the bottom of the magnetic potential; this quantity was not set to a fixed value in the experiments [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF]. We consider below two limiting situations: (A) kz 0 = π/2, with two principal equivalent minima in kz = ±π/2, (B) kz 0 = 0, with one principal minimum in z = 0 and two side minima in kz = ±π. At very low temperatures, we expect that A will lead to two equally populated planes whereas configuration B will lead to one populated plane. For the temperature range considered in practice, the differences between the predictions for A and B are minor, as we will see below.

Renormalization of the trapping frequency ω x by the optical lattice

In order to use the Bose-Einstein statistics for an ideal gas, one needs to know the position of the single particle energy levels. For the potential (5) it is not possible to find an exact analytical expression of these levels. However if the extension of the atomic motion along the x direction is smaller than the laser waist, an approximate expression can be readily obtained, as we show now. The frequencies of the magnetic trap used in [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] are ω x = 2π × 10.6 Hz and x in the laser intensity, causes a renormalization of the x frequency:

ω y = ω z = 2π × 125 Hz. The optical lattice has a period π/k = 3 µm (E r = h2 k 2 /(2m) = h × 80 
ω 2 x → ω ′ 2 x = ω 2 x - 2 √ V 0 E r mW 2 x . (8) 
The waist of the lattice beams is W x = 120 µm which leads to ω ′ x = 2π × 9.4 Hz. A similar effect should in principle be taken into account for the frequency ω y . However the scale of variation of the laser intensity along the y axis is the Rayleigh length, which is much larger than the waist W x , and the effect is negligible. This simple way of accounting for the finiteness of the waist W x is valid when the extension of the motion along x is small compared to W x . For T = 100 nK, the width of the thermal distribution along x is k B T /mω 2

x ∼ 50 µm, which is indeed notably smaller than W x . Taking into account the finiteness of W x by a mere reduction of the trapping frequency along x is therefore valid for the major part of the energy distribution. We note however that atoms in the high energy tail of the distribution (E > 5 k B T for our largest temperatures) can explore the region |x| > W x , where the influence of the lattice beams is strongly reduced. In this region the atoms can move from one lattice plane to the other. As explained above these atoms play an important role by ensuring full thermalization between the various planes. We now turn to an accurate treatment of the critical atom number required for Bose-Einstein condensation, taking into account these high energy levels for which the 2D approximation is not valid.

The critical atom number in a 'Born-Oppenheimer' type approximation

In order to get the single particle energy eigenstates in the lattice + harmonic potential confinement, and thus the critical atom number, one could perform a numerical diagonalization of the 3D hamiltonian with the potential [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group -ii. quantum systems[END_REF]. This is however a computationally involved task and it is preferable to take advantage of the well separated energy scales in the problem. We first note that the trapping potential [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group -ii. quantum systems[END_REF] is the sum of a term involving the variables x and z, and a quadratic component in y. The motion along the y axis can then be separated from the xz problem, and it is easily taken into account thanks to its harmonic character. For treating the xz problem we use a 'Born-Oppenheimer' type approximation. We exploit the fact that the characteristic frequencies of the z motion are in any point x notably larger than the frequency of the x motion. This is of course true inside the lattice laser waist, since ω (lat) z /ω x ∼ 300, and it is also true outside the laser waist as the x direction corresponds to the weak axis of our magnetic trap. Therefore we can proceed in two steps:

(i) For any fixed x we numerically find the eigenvalues E j (x), j = 0, 1, . . . of the z motion in the (V (mag) + V (lat) )(x, z) potential. We determine the E j 's up to the threshold 6 k B T above which the thermal excitation of the levels is negligible. The result of this diagonalization is shown in figure 1 for configurations A and B.

(ii) We then treat semi-classically the x-motion on the various potential curves E j (x).

Adding the result for the independent harmonic y motion -also treated semiclassically-we obtain the surface density n(x, y) (integral of the spatial density 

n 3 (r) along the direction z) n(x, y) = 1 λ 2 j g 1 Ze -β(E j (x)+V (mag) (y)) . (9) 
This procedure yields a result that is identical to the semi-classical prediction in two limiting cases:

(i) The pure 2D case, that is recovered for large waists and low temperatures. In this case the restriction to the closest-to-center lattice plane and to the first z-level is legitimate, and the sum over j contains only one significant term corresponding to (4).

(ii) the pure 3D harmonic case with zero lattice intensity where E j (x) = mω 2 x x 2 /2 + (j + 1/2)hω z . In this case the sum over j in (9) leads to n(x, y) λ 2 = g 2 Ze -βV (mag) (x,y) /(βhω z ), which coincides with the 3D result D (3D) (r) = g 3/2 (Ze -βV (r) ) when integrated along z.

Of course this procedure also allows to interpolate between these two limiting cases, which is the desired outcome. The integral of n in the xy plane for µ = min E j (x) + V (mag) (y) gives the critical atom number N (lat,id) c (T ) in the ideal gas model for this lattice geometry. It is shown in figure 2a for the two configurations A and B. The critical atom number N (lat,id) c can be compared with the result for a single plane N (id) c with eigenfrequencies ω ′

x and ω y . The ratio gives the effective number of planes N eff , shown as a function of temperature in figure 2b for the two configurations A and B. This ratio increases with temperature, which means that N (lat,id) c increases faster than T 2 with temperature in the temperature domain considered here. For example in the range 50 -110 nK, the variation of N (lat,id) c is well represented by T β , with β = 2.8. Three phenomena contribute significantly to this "faster than T 2 " increase of N (lat,id) c . First in the lattice + harmonic potential geometry, the number of contributing planes increases with temperature, even if the atomic motion in each plane remains two-dimensional (i.e. the atom number per plane increasing strictly as T 2 ). Second, we are exploring here a region of temperature where k B T becomes non negligible with respect to hω (lat) z (the two quantities are equal for T = 150 nK), and the thermal excitations of the z-motion in each lattice plane cannot be fully neglected. Third, for the largest considered temperatures, the extension of the atomic motion along x becomes comparable to the laser waist, and the lattice strength is then significantly reduced. in the ideal gas model for the optical lattice + magnetic trap configuration, as a function of temperature. The points represent the experimental results of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], and the error bars combine the systematic and statistical uncertainties on atom numbers. (b) Effective number of planes

N eff = N (lat,id) c /N (id) c
as a function of temperature. In both panels the continuous (dashed) line is for configuration A (B). The calculation is performed using the first 100 eigenvalues of the z motion, and the first neglected levels E j (x) are 22 kHz (1 µK) above the bottom of the trap.

Comparison with experimental results

In [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] the critical atom number in the lattice + magnetic trap configuration was measured for various "effective" temperatures, deduced from the width of the quasigaussian atomic distribution. Each critical point (N (exp) c , T (exp) c ) was defined as the place where a bimodal spatial distribution appeared, if the atom number was increased beyond this point at constant temperature, or the temperature reduced at constant atom number. The critical point also corresponded to the threshold for the appearance of interferences with a significant contrast between adjacent planes. The experimental measurements of critical points, taken over the effective temperature range 50-110 nK, are shown as dots in figure 2a. The systematic + statistical uncertainties of the atom number calibration are 25%. Assuming that the effective temperatures coincide with the true ones (this point will be examined in § 4.6) we find N (exp) c /N (lat,id) c ∼ 5.3 (±1.2). In addition to this large discrepancy between experiment and ideal gas model for the critical atom numbers, one also finds a strong mismatch concerning the functional shape of the column density n(x, y)dy that was measured in absorption imaging in [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF].

While the experimental result is quasi-gaussian, the column density profiles calculated for an ideal gas at the critical point are much 'peakier'. An example is given in the appendix for a single plane, and we checked that a similar shape remains valid for our harmonic + lattice potential. We therefore conclude that the experimental results of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] cannot be accounted for with this ideal gas prediction for 'conventional' BEC.

Interactions in a quasi 2D trapped Bose gas

To improve the agreement between the experimental results and the theoretical modeling we now take repulsive atomic interactions into account. In a first stage we present a 2D mean-field analysis, in which the motion along z is assumed to be completely frozen whereas the xy motion is treated semi-classically. In order to model interactions in this case, we start from the 3D interaction energy (g (3D) /2) n 2 3 (r) d 3 r, where g (3D) = 4πh 2 a/m and a is the scattering length. The z-degree of freedom is restricted to the gaussian ground state of the confining potential, with an extension a z = h/(mω

(lat) z
), and the interaction energy is

E int = g 2 n 2 (r) d 2 r .
We set g = h2 g/m, where the dimensionless parameter g = √ 8π a/a z characterizes the strength of the 2D interaction (for a more elaborate treatment of atomic interactions in a quasi-2D geometry, see [START_REF] Petrov | Bose-Einstein condensation in quasi-2D trapped gases[END_REF][START_REF] Petrov | Interatomic collisions in a tightly confined Bose gas[END_REF]). For the optical lattice used in [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] we find g = 0.13. In a second stage we take into account the residual excitation of the z-motion in a 'hybrid' 3D mean-field approximation. We calculate in a self-consistent way the quantum levels of the z motion, whereas the motion in the xy plane is still treated semi-classically.

Criticality within mean-field solutions: 3D vs. 2D

We start our discussion with a brief reminder of the role of (weak) interactions in a trapped 3D Bose gas [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]. One often uses the mean-field Hartree-Fock approximation, that gives in particular a relatively accurate value for the shift of the critical temperature for Bose-Einstein condensation. In order to calculate this shift, one assumes that above the critical temperature, the atoms evolve in the effective potential V eff (r) = V (r) + 2g (3D) n 3 (r). The phase space density in r is thus a solution of D (3D) (r) = g 3/2 (Ze -βV eff (r) ). As for the ideal case this equation ceases to have a solution when the central phase space density goes above g 3/2 (1). The mere effect of repulsive interactions within the mean-field approximation is to increase the number of atoms for which this threshold is met. The increase is typically ∼ 10% for standard trap and interaction parameters [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]. For a trapped 2D gas this treatment based on a local criterion (phase space density at center) cannot be used. Indeed as explained in section 2.2, it is not possible to identify a critical phase space density at which BEC of the 2D gas is expected. On the contrary the semiclassical approximation leads to an infinite central density at the critical point, and it is unclear whether one can achieve an arbitrarily large spatial density in presence of repulsive interactions. One could also look for a global criterion for criticality based on the total atom number. The starting point is the solution of the mean-field equation

D(r) = g 1 Ze -βV eff (r) (10) 
with V eff (r) = V (r) + 2g n(r). When g = 0, we saw in §2 that the solution of ( 10) can only accommodate a finite number of atoms [START_REF] Hohenberg | Existence of long-range order in one and two dimensions[END_REF]. However the situation is dramatically changed in presence of repulsive interactions. Indeed for any non zero g, a solution to [START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF] exists for arbitrarily large atom numbers [START_REF] Bhaduri | The effect of interactions on Bose-Einstein condensation in a quasi two-dimensional harmonic trap[END_REF]. Consequently no critical point can be found by simply searching for a maximal atom number compatible with [START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF]. In the following we will therefore turn to a different approach, starting from the known exact (i.e. non mean-field) results concerning the critical BKT point in a uniform interacting 2D Bose gas. The mean-field approximation will be used in a second stage, in combination with the local density approximation (LDA), to determine the critical atom number in the trapped system. Note that it is also possible to pursue the search for a critical point only within the meanfield approach, by looking for example whether its solution exhibits a thermodynamical or dynamical instability above a critical atom number [START_REF] Fernández | The two-dimensional Bose-Einstein condensate[END_REF][START_REF] Gies | Coherence properties of the two-dimensional Bose-Einstein condensate[END_REF]. This instability would be an indication that the system tends to evolve towards a different kind of state, with a non-zero quasi-condensed and/or superfluid component, and quasi-long range order [START_REF] Petrov | Low-dimensional trapped gases[END_REF][START_REF] Simula | Thermal activation of vortex-antivortex pairs in quasi-twodimensional Bose-Einstein condensates[END_REF].

The Berezinskii-Kosterlitz-Thouless transition and the local density approximation

In an infinite uniform 2D Bose fluid, repulsive interactions have a dramatic effect since they can induce a transition from the normal to the superfluid state, when the temperature is lowered below a critical value. The superfluid density jumps from 0 to 4/λ 2 at the transition point [START_REF] Nelson | Universal jump in the superfluid density of two-dimensional superfluids[END_REF]. The microscopic mechanism of the 2D superfluid transition has been elucidated by Berezinskii [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group -ii. quantum systems[END_REF] and by Kosterlitz and Thouless [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two dimensional systems[END_REF]. For a temperature larger than the critical temperature, free vortices proliferate in the gas, destroying the superfluidity. Below the transition, vortices exist only in the form of bound pairs involving two vortices of opposite circulations, which have little influence on the superfluid properties of the system. In a uniform system the phase space density D is a function of the chemical potential and temperature D = F (µ, T ). For any given T , the superfluid transition occurs when µ is equal to a critical value µ c (T ). The corresponding critical value D c for the phase space density depends on the interaction strength as [START_REF] Popov | Functional Integrals in Quantum Field Theory and Statistical Physics[END_REF][START_REF] Kagan | Influence on inelastic processes of the phase transition in a weakly collisional two-dimensional Bose gas[END_REF][START_REF] Fisher | Dilute Bose gas in two dimensions[END_REF]]

D c = ln(ξ/g) ( 11 
)
where ξ is a dimensionless number. A recent Monte-Carlo analysis provided the result ξ = 380 ± 3 [START_REF] Prokof'ev | Critical point of a weakly interacting two-dimensional Bose gas[END_REF] (see also [START_REF] Al Khawaja | Low dimensional Bose gases[END_REF]). For g = 0.13 this gives a critical phase space density D c = 8.0. ) is plotted as a function of the total atom number N in the harmonic trap + lattice configuration. Within the LDA for a single plane, n col (x c ) should be independent of N , which is indeed nearly the case. The small variation of n col (x c ) for large N may be due to the appearance of a non negligible population in side planes of the optical lattice potential. The data have been taken for the effective temperature T = 105 nK. Each point is extracted from a single image.

We consider now a trapped gas whose size is large enough to be well described by the local density approximation (LDA). The phase space density in r is given by D(r) = F (µ -V (r), T ) and a superfluid component forms around the center of the trap if the central phase density D(0) is larger than D c [START_REF] Holzmann | Superfluid transition of homogeneous and trapped two-dimensional Bose gases[END_REF]. The edge of the superfluid region corresponds to the critical line where µ -V (r) = µ c . The phase space density along this line is equal to D c , independently of the total number of atoms in the trap. This can be checked experimentally and constitutes a validation of the LDA. The integration of the experimental data along the line of sight y does not lead to any complication because the trapping potential is separable, V (r) = V 1 (x) + V 2 (y). Therefore the edges of the superfluid region along the x axis are located in ±x c such that V 1 (x c ) = µµ c (see figure 3a), and the column density along the line of sight passing in x = x c is

n col (x c ) = 1 λ 2 D(x c , y) dy = 1 λ 2 F (µ c -V 2 (y), T ) dy (12) 
which is also independent of the total atom number N. This is confirmed experimentally, as shown in figure 3b where we plot n col (x c ) as a function of N. The slight increase (10%) of n col (x c ) for atom numbers larger than 3 × 10 5 may be due to the fact that the population of additional planes becomes non-negligible for such large N.

The possibility to use the LDA to study the Berezinskii-Kosterlitz-Thouless critical point in a harmonically trapped quasi-2D Bose gas has been checked recently by Holzmann and Krauth using a quantum Monte-Carlo analysis [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF]. For trap parameters close to the ones of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] they have shown that a superfluid component, characterized by a reduced moment of inertia, indeed appears at the center of the trap when the local phase space density reaches a critical value close to the prediction (11).

Density profile in the 2D mean-field theory

In this section we use the mean-field Hartree-Fock approximation [START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF] to calculate the density profile of the trapped atomic cloud. As we mentioned above, this equation admits a solution for any value of the fugacity Z, and therefore for an arbitrarily large number of particles. Rewriting [START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF] as

D(r) = -ln 1 -Ze -gD(r)/π e -βV (r) (13) 
we see that the value of D for any temperature and at any point in space depends only on the parameter R defined by R 2 = (x/x T ) 2 + (y/y T ) 2 , where x T = (ω 2 x mβ) -1/2 and y T = (ω 2 y mβ) -1/2 . The total atom number is given by

N = k B T hω 2 ∞ 0 D(R) R dR (14) 
where D(R) is the solution of the reduced equation

D(R) = -ln 1 -Ze -g D(R)/π e -R 2 /2 . ( 15 
)
Quite remarkably this result for D(R) neither depends on the trap parameters, nor on the temperature. The only relevant parameters are the fugacity Z and the reduced interaction strength g. The scaling of the atom number N with the temperature and the trap frequency in ( 14) is therefore very simple. In particular it does not depend on the trap anisotropy ω y /ω x but only on the geometric mean ω. For atom numbers much larger than N (id) c it is interesting to note that the radial density profile deduced from the mean-field equation ( 13) exhibits a clear bi-modal shape, with wings given by n(r)λ 2 ≃ Ze -βV (r) and a central core with a Thomas-Fermi profile 2g n(r) ≃ µ -V (r). However this prediction of a bi-modal distribution using the Hartree-Fock approximation cannot be quantitatively correct. Indeed the Hartree-Fock treatment assumes a mean-field energy 2gn. The factor 2 in front of this energy originates from the hypothesis that density fluctuations are those of a gaussian field n 2 = 2 n 2 . Actually when the phase space density becomes significantly larger than 1, density fluctuations are reduced and one approaches a situation closer to a quasicondensate in which n 2 ∼ n 2 [START_REF] Prokof'ev | Critical point of a weakly interacting two-dimensional Bose gas[END_REF]. Taking into account this reduction could be done for example using the equation of state obtained from a classical field Monte-Carlo analysis in [START_REF] Prokof | Two-dimensional weakly interacting Bose gas in the fluctuation region[END_REF] .

Critical atom number in the 2D mean-field approach

We now use the solution of the mean-field equation [START_REF] Köhl | Superfluid to Mott insulator transition in one, two, and three dimensions[END_REF] to evaluate the critical atom number N (mf) c that is needed to reach the threshold [START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF] for the BKT transition at the center of the trap D(0) = ln(ξ/g). For a given interaction strength g we vary the fugacity Z and solve numerically (13) at any point in space. Examples of spatial density profiles at the critical point are given in the appendix, both before and after time-of-flight. The integration of the density profile over the whole xy plane gives the total atom number = 36 000 atoms in an isotropic trap (ω x = ω y = ω, g = 0.13, k B T = 110 ω). The dashed line is the result of the 2D mean-field analysis of § 4.3. The continuous line is the 3D quantum Monte-Carlo result obtained in [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF], with ω z = 83ω and a = ga z / √ 8π. The dots are the result of the hybrid 3D mean-field calculation of § 4.5 for the same parameters. Inset: Prediction of the hybrid 3D mean-field approach for the phase space density (log scale) as a function of r 2 (a gaussian distribution leads to a straight line). Continuous line: total phase space density; dashed line: phase space density associated to the ground state ϕ 1 of the z motion; dash-dot line: phase space density associated to all other states ϕ j , j ≥ 2.

N. From ( 14) and [START_REF] Spielman | The Mott insulator transition in two dimensions[END_REF], it is clear that the scaling of N (mf) c with the frequencies ω x,y and with the temperature is identical to the one expected for an ideal trapped gas. We have plotted in figure 4a the variation of D(0) as a function of N/N (id) c for various interaction strengths. For a given atom number the phase space density at center decreases when the strength of the interactions increases, as expected. The numerical result for N (mf) c is plotted as a dashed line in figure 4a. We find that it is in excellent agreement -to better than 1%-with the result of [START_REF] Holzmann | Superfluid transition of homogeneous and trapped two-dimensional Bose gases[END_REF] 

N (mf) c N (id) c = 1 + 3g π 3 D 2 c ( 16 
)
over the whole range g = 0 -1. This analytical result was initially derived in [START_REF] Holzmann | Superfluid transition of homogeneous and trapped two-dimensional Bose gases[END_REF] for g ≪ 1 using an expansion around the solution for the ideal Bose gas, but this approximation can actually be extended to an arbitrary value of g [40]. The strongly interacting limit (3gD 2 c /π 3 > 1) can be easily understood by noticing that in this case, the atomic distribution [START_REF] Smith | Quasi-2D confinement of a BEC in a combined optical and magnetic potential[END_REF] nearly coincides with the Thomas-Fermi profile 2gn(r) = µ -V (r). Using the relation between the total atom number and the central density for this Thomas-Fermi distribution N = 2πg (n(0)a 2 ho ) 2 (with a ho = (h/(mω)) 1/2 ), one then recovers the second term of the right-hand side of ( 16). Let us emphasize that figure 4a is a mix of two approaches: (i) The mean-field model, that does not lead in itself to a singularity along the dashed line of figure 4a. (ii) The BKT theory for a uniform system, which is a beyond mean-field treatment and which has been adapted to the trapped case using the local density approximation in order to obtain the critical number indicated by the dashed line. We now compare the 2D MF prediction with the results of the QMC calculation of [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF], looking first at the critical atom number and then at the density profiles. For g = 0.13 the mean field prediction for the critical number [START_REF] Hadzibabic | Interference of an array of independent Bose-Einstein condensates[END_REF] is

N (mf) c /N (id) c = 1.
8. This is in relatively good agreement with the QMC calculation of [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF], which gives

T (QMC) c = 0.70 T (id) c or equivalently N (QMC) c /N (id) c
= 2.0. The QMC calculation has been performed for various atom numbers N, for a 3D harmonic trap such that ω z /ω = 0.43 √ N and a 3D scattering length a = ga z / √ 8π, with g = 0.13. The agreement between the 2D MF and the QMC approaches is not as good for the density profiles close to the critical point. An example is shown in figure 4b, where we take k B T = 110 hω (N (id) c = 20 000). We choose N = N (mf) c = 36 000 and we plot the column density n col (x) obtained by integrating the spatial density along the directions y and z. The mean field result is shown as a dashed line, and it notably differs from the QMC result, plotted as a continuous line. As we show below this disagreement is essentially a consequence of the residual excitation of the z motion (k B T /(hω z ) = 1.4), that is neglected in the 2D MF approach, whereas it is implicitly taken into account in the 3D QMC calculation.

The hybrid 3D mean-field approach

In this section we extend the 2D mean-field treatment to take into account the residual excitation of the z motion. As pointed out to us by the authors of [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF], this is necessary for a quantitative analysis of the experiment [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], since the temperature and the chemical potential at the critical point were not very small compared to hω (lat) z , but rather comparable to it. We follow here a method related to the one developed in section 3 to analyze the ideal gas case. We start from a trial 3D density distribution n 3 (r). At any point (x, y), we treat quantum mechanically the z motion and solve the eigenvalue problem for the z variable -h 2 2m

d 2 dz 2 + V eff (r) ϕ j (z|x, y) = E j (x, y) ϕ j (z|x, y) , (17) 
where 

V eff (r) = m(ω 2 x x 2 + ω 2 y y 2 + ω 2 z z 2 )/2 + 2g (3D) n 3 (
n ′ 3 (r) = - 1 λ 2 j |ϕ j (z|x, y)| 2 ln 1 -e β(µ-E j (x,y)) . (18) 
We then iterate this calculation until the spatial density n 3 (r) reaches a fixed point [START_REF] Kadanoff | Quantum Statistical Mechanics[END_REF].

With this method, we fulfill two goals: (i) We take into account the residual thermal excitation of the levels in the z direction. (ii) Even at zero temperature we take into account the deformation of the z ground state due to interactions.

This 'hybrid 3D mean-field' method is different from the standard mean-field treatment used to describe 3D Bose gases. In the latter case, all three degrees of freedom are treated semi-classically, which is valid when the particle population is distributed smoothly over several quantum states. This standard 3D mean-field would not be applicable in our case, where a significant part of the total population accumulates in the lowest state ϕ 1 .

An example of a result is shown in figure 4b, where we plot the column density n col (x) obtained with this hybrid MF method, taking into account the first 5 eigenstates ϕ j . The agreement between the hybrid 3D mean-field prediction and the 'exact' QMC prediction of [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF] is excellent. This shows that the predictions of this hybrid 3D mean-field approach are reliable as long as the superfluid transition has not been reached at the center of the trap. We show in the inset the variations of the phase space density D(r). We plot ln(D) as a function of r 2 , so that a gaussian distribution would appear as a straight line. The dashed line is the phase-space density associated to the ground state of the z-motion ϕ 1 , and the dash-dot line corresponds to the excited states ϕ j , j ≥ 2. The continuous line is the total phase-space density. At the center of the trap, as a consequence of Bose statistics, most of the population (80%) accumulate in the ground state ϕ 1 . For r ≥ r T , the repartition of the population among the eigenstates of the z motion follows the Boltzmann law, and ∼ 50% of the atoms occupy the excited states ϕ j , j ≥ 2.

A practical consequence of this increasing influence of excited states of the z-motion with increasing r is that the total phase space density profile is notably closer to a gaussian distribution than when only the ground state of the z-motion is retained in the calculation, as it is the case in the 2D mean-field approach.

Finally we mention that we have also developed a simpler version of this hybrid 3D mean-field analysis, in which the ϕ j levels are not calculated self-consistently, but are assumed to coincide with the energy eigenstates in the potential mω 2 z z 2 /2 (see also [START_REF] Holzmann | Semiclassical theory of the quasi two-dimensional trapped gas[END_REF]). For the domain of parameters relevant for the experiment, the two approaches lead to very similar results.

Mean-field approach for the lattice configuration and comparison with experiment

In order to compare the predictions of the mean-field approach with the experimental results, we now turn to the lattice geometry, corresponding to a stack of parallel planes located in z j = z 0 + jℓ, j integer. For simplicity we assume that the laser waist W x is large compared to the spatial extent of the atomic cloud, so that we can treat the gas as a superposition of independent harmonically trapped systems. Each system is located at the vicinity of a nodal plane of the optical lattice, and is treated as a harmonic trap with frequencies ω ′

x , ω y , ω (lat) z . Note that we include here 'by hand' the renormalization ω x → ω ′

x of the x frequency due to the finiteness of the laser waist, that we discussed in § 3.2. The magnetic trap adds an extra confinement along the z axis with a frequency ω z so that the chemical potential for the plane z j is µ j = µmω 2 z (z 0 + jℓ) 2 /2. We assume that the critical point is reached when the phase space density associated to the lowest eigenstate ϕ 1 in the most populated plane reaches the critical value [START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF]. Once the corresponding fugacity is determined, we calculate the spatial distribution in each plane, sum up the various contributions, and integrate the spatial distribution over the line of sight y to obtain the column density n col (x).

A typical result for n col is given in figure 5a for the temperature T = 150 nK and for the lattice configuration A. The total atom number is 1.1 × 10 5 . It is well fitted by a gaussian distribution exp(-x 2 /2x 2 0 ) (dotted line), so that we can assign an effective temperature to this distribution T eff = mω 2 x x 2 0 /k B . In the example of fig. 5a, we find T eff = 0.64 T (96 nK). For the same T and a lattice in configuration B, the effective temperature obtained with a gaussian fit is T eff = 0.69 T (103 nK) and the total atom number is N = 1.0 × 10 5 . We have repeated this procedure for temperatures T in the range 100-200 nK and consistently found the ratio T eff /T in the range 0.6-0.7, with a quality of the gaussian fit similar to what is shown in figure 5a. We have plotted in figure 5b the calculated total number of atoms in the lattice at the critical point, as a function of the effective temperature deduced from the gaussian fit to the column density. We have also plotted the experimental points of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] already shown in figure 2. We remind the reader that the experimental 'effective' temperature is also deduced from a gaussian fit to the measured column density. One reaches in this way a good agreement between the experimental results and the hybrid 3D mean-field prediction. The predicted density profiles with the 3D MF approach therefore provide a satisfactory means for temperature calibration. They indicate in particular that for the experiment [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF], the effective temperatures are typically 30-40% below the real ones.

To improve on the comparison between theory and experiment, a more controlled setup will be needed with an accurate independent measurement of temperature, as well as the possibility of addressing only a single or a fixed number of planes.

Summary and concluding remarks

In this paper we have analyzed the critical point of a trapped quasi-2D Bose gas. We have shown that the experimental results of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] are not in agreement with the ideal Bose gas theory. The differences are found first at the qualitative level: the predicted shape for the ideal gas distribution is 'peaky' around its center, which clearly differs from the quasi-gaussian measured profile. Also the measured critical atom numbers N c (T ) do not agree with the predictions for the ideal gas. Using the 'effective' temperatures obtained by treating the gaussian profiles as Boltzmann distributions, the measured N c (T ) are larger by a factor ∼ 5 than the predicted ones. We then discussed the predictions of a hybrid approach based on the local density approximation. It combines the density profile calculated using a mean-field Hartree-Fock treatment, and the known result for the critical phase space density for the BKT transition in an infinite, uniform 2D Bose gas [START_REF] Prokof'ev | Critical point of a weakly interacting two-dimensional Bose gas[END_REF]. We compared the predictions of this approach with the results of a recent Quantum Monte-Carlo calculation [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF] and reached the following conclusions: (i) If one is interested only in the critical atom number, it is sufficient to use a strictly 2D meanfield approach. It leads to the approximate analytical result [START_REF] Hadzibabic | Interference of an array of independent Bose-Einstein condensates[END_REF], in good agreement with the QMC prediction. For the experimental parameters of [START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] the critical atom number is N c ∼ 2 N (id) c . (ii) In order to calculate accurately the density profiles for the experimental temperature range (k B T between 0.5 hω z and hω z ), it is important to take into account the residual excitation of the z degree of freedom (the same conclusion has been reached in [START_REF] Holzmann | Semiclassical theory of the quasi two-dimensional trapped gas[END_REF]). We have presented a hybrid 3D mean-field approximation which leads to density distributions in excellent agreement with the QMC predictions close to the critical point. When generalized to the lattice geometry used in the experiment, the predicted density profiles are close to a gaussian distribution, and a good agreement between theory and experiment is reached concerning the critical number N c (T ) when the predicted density profile is used for temperature calibration. We now briefly discuss the nature of the critical point that appears in the trapped 2D Bose gas and compare it with 'standard' Bose-Einstein condensation. For a harmonically trapped ideal gas, we recall that conventional Bose-Einstein condensation is expected in the thermodynamic limit N → ∞, ω → 0, Nω 2 constant. This is a consequence of the density of states for a quadratic hamiltonian around the zero energy. The price to pay for this condensation in a 2D system is a diverging atomic density at the center of the trap. On the contrary when interactions are taken into account, the mean-field approximation leads to the potential V (r) + 2gn(r) that is flat at the origin (figure 6a and [START_REF] Holzmann | Superfluid transition of homogeneous and trapped two-dimensional Bose gases[END_REF]). The 'benefit' of the harmonic trapping potential is lost and the physics of the trapped interacting gas is very similar to that of a uniform system. In particular one expects in the thermodynamic limit the appearance of quasi-long range order only, V eff (r) = V (r)+2gn(r) in continuous line, for g = 0.13 and a central phase space density equal to the critical value [START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF]. (b) Schematic representation of the condensed fraction in a finite 2D Bose gas for a given interaction strength g (continuous line). Two limits can be considered: (1) thermodynamic limit N → ∞, ω → 0, N ω 2 constant; the condensed fraction tends to zero for any non zero value of g. ( 2) ideal gas limit g → 0.

with no true Bose-Einstein condensate [START_REF] Petrov | Bose-Einstein condensation in quasi-2D trapped gases[END_REF]. ‡ The transition between the ideal and the interacting case is explicit in equations ( 11) and ( 16), where the limit g → 0 gives D c → +∞ and N (mf) c /N (id) c → 1. In particular ( 16) can be used to separate a 'BECdominated' regime where η = 3gD 2 c /π 3 ≪ 1 and N c ≃ N (id) c , and a 'BKT-dominated' regime, where the contribution of η is dominant and N c ≫ N (id) c . In the latter case, the spatial distribution in the mean-field approximation is a Thomas-Fermi disk with radius R TF and ( 16) is equivalent (within a numerical factor) to the BKT threshold [START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF] for a uniform gas with density n = N/(πR 2 TF ). The rubidium gas studied in [START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Krüger | Critical point of an interacting two-dimensional atomic Bose gas[END_REF] is at the border of the 'BKT-dominated' regime (η ≃ 1), whereas previous experiments performed on quasi-2D gases of sodium atoms [START_REF] Görlitz | Realization of Bose-Einstein condensates in lower dimensions[END_REF] corresponded to η ∼ 0.1, well inside the 'BEC-dominated' regime. Finally, we must take into account the finite size of the gas in our discussion. It is known from simulations of 2D spin assemblies that for a finite size system, the average magnetization increases rapidly around the BKT transition [START_REF] Bramwell | Magnetization: A characteristic of the Kosterlitz-Thouless-Berezinskii transition[END_REF]. It is at first sight surprising that this magnetization can be used as a signature of BKT physics, since it would not exist in an infinite system where a genuine BKT transition takes place. However it is relevant for all practical 2D situations: as emphasized in [START_REF] Bramwell | Magnetization: A characteristic of the Kosterlitz-Thouless-Berezinskii transition[END_REF] one would need extremely large systems ('bigger than the state of Texas') to avoid a significant magnetization even just below the transition point. A similar phenomenon occurs for a finite size Bose gas. A few states acquire a large population around the transition point, and this allows for the observation of good contrast interferences between two independent gases. In particular the condensed fraction f 0 (largest eigenvalue of the one-body density matrix) is expected to grow rapidly at the critical point, and this has been quantitatively confirmed by the QMC calculation of [START_REF] Holzmann | Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas[END_REF]. To illustrate this point we have schematically plotted in figure 6b the expected variations of f 0 with the parameters of the problem. For given g and N, f 0 takes significant values for T < T c (continuous line). If the strength of the interactions g is kept constant, the condensed fraction f 0 tends to zero for any finite temperature if the thermodynamic limit is taken (arrow 1 in figure 6b). Note that the superfluid fraction should tend to a finite value in this limiting procedure. Now one can also keep N constant and decrease g to zero (arrow 2 in figure 6b). In this case one expects to recover the ideal gas result f 0 = 1 -(T /T (id) c ) 2 for any value of N. Therefore we are facing here a situation where two limits do not commute: lim N →∞ lim g→0 = lim g→0 lim N →∞ . Of course this does not cause any problem in practice since none of these limits is reached. In this sense the phenomenon observed in our interacting, trapped 2D Bose gas is hybrid: the transition point is due to BKT physics (the density of states of the ideal 2D harmonic oscillator does not play a significant role because of the flattening of the potential), but thanks to the finite size of the system, some diagnoses of the transition such as the appearance of interferences, take benefit of the emergence of a significant condensed fraction. this appendix we take into account the time-of-flight and the integration along the y direction, both for an ideal and for an interacting gas within the 2D mean-field approximation. The spatial distribution n(r, t) at time t can be calculated from the phase space distribution ρ(r, p) at initial time using n(r, t) = ρ(rpt/m, p) d 2 p .

(A.1)

In the semi-classical approximation the in-trap phase space density is given by ρ(r, p) = 1 h 2 exp p 2 /(2m)

+ V eff (r) -µ /k B T -1 -1 , (A.2)
where V eff = V (r) + 2gn(r), and n(r) is obtained by solving [START_REF] Köhl | Superfluid to Mott insulator transition in one, two, and three dimensions[END_REF]. The result for the column density can be written as

n col (x, t) = 1 x T k B T hω 2 F (X, Z, g, τ ) , X = x x T , τ = ω x t. (A.3)
The results for F are shown in figure A1a for an ideal gas, and in figure A1b for an interacting gas in the mean field approximation. In the ideal gas case, the initial column density can be calculated analytically : In figure A1a, the fugacity is such that the atom number equals the critical number (3).

F (X, Z, 0, 0) = 1 √ 2π g 3/2 Ze -X 2 /2 (A.
In the interacting case of figure A1b, the number of atoms is such that the criterion for superfluidity is met at the center of the trap. In all cases, it is clear that the observed profiles are very different from a gaussian, in clear disagreement with the experimental observation. 

  Hz) and a potential height at center U 0 /h = 35 kHz (1.7 µK). The lattice oscillation frequency at center (x = 0) is thus ω (lat) z (x = 0) = 2π × 3 kHz (hω (lat) z /k B = 150 nK). When the atoms occupy the ground state of the z motion, they acquire the zero-point energy hω (lat) z (x)/2 from the z-degree of freedom. The dependance on x of ω (lat) z (x), due to the gaussian term e -2x 2 /W 2
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 1 Figure 1. Eigenvalues of the z-motion in the magnetic+optical xz potential, for fixed values of the x coordinate (left: configuration A, right: configuration B).
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 2 Figure 2. (a) Critical atom number N (lat,id) c
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 3 Figure 3. Check of the local density approximation (LDA). (a) The column density n col is measured at the edge x = x c of the central part (in grey) of the bimodal distribution. (b) n col(x c) is plotted as a function of the total atom number N in the harmonic trap + lattice configuration. Within the LDA for a single plane, n col (x c ) should be independent of N , which is indeed nearly the case. The small variation of n col (x c ) for large N may be due to the appearance of a non negligible population in side planes of the optical lattice potential. The data have been taken for the effective temperature T = 105 nK. Each point is extracted from a single image.
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 4 Figure 4. (a) Central phase space density predicted by the 2D mean field theory, as a function of the atom number for various interaction strengths g. The dotted line represents the semi-classical prediction for the ideal gas. The dashed line indicates where the threshold for superfluidity (11) is met at the center of the trap. (b) Column density for N = N (mf) c

  r) and |ϕ j (z|x, y)| 2 dz = 1. Treating semi-classically the xy degrees of freedom, we obtain a new spatial density

Figure 5 .

 5 Figure 5. (a) Hybrid 3D mean-field prediction for the normalized column density for the lattice configuration A, T = 150 nK and N = 110 000 atoms. For these parameters the phase space density associated to the lowest eigenvalue of the z motion reaches the critical value D c at the center of the most populated planes. The dotted line is a gaussian fit which gives the effective temperature T eff = 0.64 T = 96 nK. (b) Critical atom number as a function of the effective temperature obtained from a gaussian fit of the MF result. The continuous line (resp. dashed) line is for configuration A (resp. B). The points are the experimental results of [18], already shown in fig. 2.

Figure 6 .

 6 Figure 6. (a) Trapping potential V (r) in dashed line and effective mean-field potential V eff (r) = V (r)+2gn(r) in continuous line, for g = 0.13 and a central phase space density equal to the critical value[START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF]. (b) Schematic representation of the condensed fraction in a finite 2D Bose gas for a given interaction strength g (continuous line). Two limits can be considered: (1) thermodynamic limit N → ∞, ω → 0, N ω 2 constant; the condensed fraction tends to zero for any non zero value of g. (2) ideal gas limit g → 0.
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 41121 and the column density after time of flight is deduced from the initial value by a simple dilatation F (X, Z, 0, τ ) = τ 2 , Z, 0, 0 .(A.5)

Figure A1 .

 A1 Figure A1. Reduced column density F in the trap (dashed line) and after a time of flight t such that ω x t = 1.3 (continuous line). (a) Ideal gas case, for an atom number equal to the critical value (3). (b) Mean-field result for g = 0.13. The fugacity is chosen such that the threshold for superfluidity (11) is met at the center of the trap.

‡ A similar flattening of the mean-field potential occurs in 3D, but it has no important consequence in this case since true BEC is possible in an infinite, uniform 3D system.
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Appendix: The time-of-flight in the 2D mean-field approximation

We have emphasized in this paper that the measured density profiles differ from those calculated for an ideal gas or within the 2D mean-field theory. The profiles calculated in steady-state in the trap are found much 'peakier' than the experimental ones. As the experimental profiles were actually measured after a time of flight of t = 22 ms (ω x t = 1.3), it is important to check that this mismatch between predicted and observed profiles remain valid when the ballistic expansion of the atoms is taken into account. Also the atom distributions were measured using an absorption imaging technique, with an imaging beam propagating along the y axis. Therefore the measurement gave access to the column density n col (x, t), obtained by integrating the total density along y. In