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Abstract

The aim of this paper is first the detection of multiple abrupt changes of the
long-range dependence (respectively self-similarity, local fractality) parameters from
a sample of a Gaussian stationary times series (respectively time series, continuous-
time process having stationary increments). The estimator of the m change instants
(the number m is supposed to be known) is proved to satisfied a limit theorem
with an explicit convergence rate. Moreover, a central limit theorem is established
for an estimator of each long-range dependence (respectively self-similarity, local
fractality) parameter. Finally, a goodness-of-fit test is also built in each time domain
without change and proved to asymptotically follow a Khi-square distribution. Such
statistics are applied to heart rate data of marathon’s runners and lead to interesting
conclusions.

Keywords: Long-range dependent processes; Self-similar processes; Detection of abrupt
changes; Hurst parameter; Self-similarity parameter; Wavelet analysis; Goodness-of-fit
test.

1 Introduction

The content of this paper was motivated by a general study of physiological signals of run-
ners recorded during endurance races as marathons. More precisely, after different signal
procedures for ”cleaning” data, one considers the time series resulting of the evolution of
heart rate (HR data in the sequel) during the race. The following figure provides several
examples of such data (recorded during Marathon of Paris 2004 by Professor V. Billat and
her laboratory LEPHE, see http://www.billat.net). For each runner, the periods (in ms)
between the successive pulsations (see Fig. 1) are recorded. The HR signal in number of
beats per minute (bpm) is then deduced (the HR average for the whole sample is of 162
bpm).
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Figure 1: Heat rate signals of Athlete 1 in ms, Hertz and BPM (up), of Athletes 2, 3 and
4 in BPM (down)

Numerous authors have studied heartbeat time series (see for instance [24], [25] or [3]).
A model proposed to fit these data is a trended long memory process with an estimated
Hurst parameter close to 1 (and sometimes more than 1). In [17] three improvements
have been proposed to such a model: 1/ data are stepped in three different stages which
are detected using a change point’s detection method (see for instance [19] or [21]). The
main idea of the detection’s method is to consider that the signal distribution depends
on a vector of unknown characteristic parameters constituted by the mean and the vari-
ance. The different stages (beginning, middle and end of the race) and therefore the
different vectors of parameters, which change at two unknown instants, are estimated. 2/
during each stage, a time-continuous Gaussian process is proposed for modelling the de-
trended time series. This process is a generalization of a fractional Gaussian noise (FGN)
also called locally fractional Gaussian noise such that, roughly speaking, there exists a
local-fractality parameter H ∈ R (corresponding to Hurst parameter for FGN) only for
frequencies |ξ| ∈ [fmin , fmax] with 0 < fmin < fmax (see more details below). 3/ this
parameter H which is very interesting for interpreting and explaining the physiological
signal behaviours, is estimating from a wavelet analysis. Rigorous results are also proved
providing a central limit theorem satisfied by the estimator.
In order to improve this study of HR data and since the eventual changes of H values are
extremely meaningful for explaining the eventual physiological changes of the athlete’s
HR during the race, the detection of abrupt change of H values is the aim of this pa-
per. By this way the different stages detected during the race will be more relevant for
explaining the physiological status of the athlete than stages detected from changes in
mean or variance. For instance, the HR of a runner could decrease in mean even if the
”fluctuations” of the HR does not change.

In this paper, an estimator of m instants (m ∈ N∗) of abrupt changes of long-range
dependence, self-similarity or local-fractality (more details about these terms will be pro-
vided below) is developed for a sample of a Gaussian process. Roughly speaking, the
principle of such estimator is the following: in each time’s domain without change, the
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parameter of long-range dependence (or self-similarity or local self-fractality) can be esti-
mated from a log-log regression of wavelet coefficients’ variance onto several chosen scales.
Then a contrast defined by the sum on every m + 1 possible zones of square distances
between points and regressions lines is minimized providing an estimator of the m instants
of change. Under general assumptions, a limit theorem with a convergence rate satisfied
by such an estimator is established in Theorem 2.1.
Moreover, in each estimated no-change zone, parameters of long-range dependence (or
self-similarity or local self-similarity) can be estimated, first with an ordinary least square
(OLS) regression, secondly with a feasible generalized least square (FGLS) regression.
Central limit theorems are established for both these estimators (see Theorem 2.2 and
Proposition 2.3 below) and confidence intervals can therefore be computed. The FGLS
estimator provides two advantages: from the one hand, its asymptotic variance is smaller
than OLS estimator one. From the other hand, it allows to construct a very simple
(Khi-square) goodness-of-fit test based on a squared distance between points and FGLS
regression line. The asymptotic behavior of this test is provided in Theorem 2.4.

Then, different particular cases of Gaussian processes are studied:

1. long-range dependent processes with abrupt changes of values of LRD parameters.
In such time series case, a semi-parametric frame is supposed (including fractional
Gaussian noises (FGN) and Gaussian FARIMA processes) and assumptions of limit
theorems are always satisfied with interesting convergence rates (see Corollary 3.2).

2. self-similar time series with abrupt changes of values of self-similarity parameters.
In such case, fractional Brownian motions (FBM) are only considered. Surprisingly,
convergences of estimators are only established when the maximum of differences
between self-similarity parameters is sufficiently small. Simulations exhibit a non
convergence of the estimator of instant change when a difference between two pa-
rameters is too large (see Corollary 3.4).

3. locally fractional Gaussian processes with abrupt changes of values of local-fractality
parameters. In such a continuous time processes’ case, a semi-parametric frame is
supposed (including multiscale fractional Brownian motions) and assumptions of
limit theorems are always satisfied with interesting convergence rates (see Corollary
3.6).

The problem of change-point detection using a contrast minimization was first studied in
the case of independent processes (see for instance Bai and Perron [5]), then for weakly
dependent processes (see for instance Bai [4], Lavielle [19] or Lavielle and Moulines [20])
and since middle of 90’s in the case of processes which exhibit long-range dependance
(see for instance Giraitis et al. [13], Kokoszka and Leipus [18] or Lavielle and Teyssière
[21]). Of the various approaches, some were associated with a parametric framework for
a change points detection in mean and/or variance and others where associated with a
non-parametric framework (typically like detecting changes in distribution or spectrum).
To our knowledge, the semi-parametric case of abrupt change detection for long-range
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dependent or self-similarity parameter is treated here for the first time.
However, in the literature different authors have proposed test statistics for testing the no-
change null hypothesis against the alternative that the long-memory parameter changes
somewhere in the observed time series. Beran and Terrin [10] proposed an approach
based on the Whittle estimator, Horváth and Shao [16] obtained limit distribution of the
test statistic based on quadratic forms and Horváth [15] suggested another test based
on quadratic forms of Whittle estimator of long-memory parameter. The goodness-of-fit
test presented below and which satisfies the limit theorem 2.4 also allows to test if the
long-range memory (or self-similarity or local-fractality) parameter changes somewhere in
the time series.

Our approach is based on the wavelet analysis. This method applied to LRD or self-
similar processes for respectively estimating the Hurst or self-similarity parameter was
introduced by Flandrin [12] and was developed by Abry, Veitch and Flandrin [2] and
Bardet et al. [9]. The convergence of wavelet analysis estimator was studied in the case
of a sample of FBM in [6], and in a semi-parametric frame of a general class of stationary
Gaussian LRD processes by Moulines et al. [22] and Bardet et al. [9]. Moreover, wavelet
based estimators are robust in case of polynomial trended processes (see Corollary 2.1)
and is therefore very interesting for studying stochastic fluctuations of a process without
taking care on its smooth variations.
A method based on wavelet analysis was also developed by Bardet and Bertrand [7] in
the case of multiscale FBM (a generalization of the FBM for which the Hurst parameter
depends on the frequency as a piecewise constant function) providing statistics for the
identification (estimation and goodness-of-fit test) of such a process. Such a process was
used for modelling biomechanics signals. In the same way, the locally fractional Gaussian
process (a generalization of the FBM for which the Hurst parameter, called the local-
fractality parameter, is constant in a given domain of frequencies) was studied in [17]
for modelling HR data during the three characteristics stages of the race. An increasing
evolution of the local-fractality parameter during the race was generally showed for any
runner from this method. Using the method of abrupt change detection of local-fractality
parameter H developed in Corollary 3.6, this result is confirmed by estimations of H for
each runner even if the change’s instants seem to vary a lot depending on the fatigue of
the runner (see the application to HR’s time series in Section 3).

The paper is organized as follows. In Section 2, notations, assumptions and limit theo-
rems are provided in a general frame. In Section 3, applications of the limit theorems to
three kind of ”piecewise” Gaussian process are presented with also simulations. The case
of HR data is also treated. Section 4 is devoted to the proofs.
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2 Main results

2.1 Notations and assumptions

First, a general and formal frame can be proposed. Let (Xt)t∈T be a zero-mean Gaussian
process with T = N or T = R and assume that

(
X0, XδN

, X2δN
, . . . , XNδN

)
is known with δN = 1 or δN −→

N→∞
0,

following data are modeled with a time series (T = N) or a continuous time process
T = R. In the different proposed examples X could be a stationary long memory time
series or a self-similar or locally fractional process having stationary increments.
For estimations using a wavelet based analysis, consider ψ : R→ R a function called ”the
mother wavelet”. In applications, ψ is a function with a compact (for instance Daubeshies
wavelets) or an essentially compact support (for instance Lemarié-Meyer wavelets). For
(Xt)t∈T and (a, b) ∈ R∗

+ ×R, the wavelet coefficient of X for the scale a and the shift b is

dX(a, b) :=
1√
a

∫R ψ(
t− b

a
)X(t)dt.

When only a discretized path of X is available (or when T = N), approximations eX(a, b)
of dX(a, b) are only computable. We have chosen to consider for (a, b) ∈ R∗

+ ×N,

eX(a, b) :=
δn√
a

N∑

p=1

ψ
(p− b

a

)
Xp δN

, (1)

which is the formula of wavelet coefficients computed from Mallat’s algorithm for com-
pactly supported discrete (a ∈ 2N) wavelet transform (for instance Daubeshies wavelets)
when N is large enough and nearly this formula for discrete wavelet transform with an
essentially compact support (for instance Lemarié-Meyer wavelets). Now assume that
there exist m ∈ N (the number of abrupt changes) and

• 0 = τ ∗0 < τ ∗1 < . . . < τ∗m < τ ∗m+1 = 1 (unknown parameters);

• two families (α∗
j )0≤j≤m ∈ Rm+1 and (β∗

j )0≤j≤m ∈ (0,∞)m+1 (unknown parameters);

• a sequence of ”scales” (an)n∈N ∈ RN (known sequence) satisfying an ≥ amin for all
n ∈ N, with amin > 0,

such that for all j = 0, 1, . . . , m and k ∈ D∗
N(j) ⊂

[
[NδNτ

∗
j ] , [NδNτ

∗
j+1]
]
,E[e2X(aN , k)

]
∼ β∗

j ·
(
aN

)α∗
j when N → ∞ and NδN → ∞. (2)

Roughly speaking, for N ∈ N∗ the change instants are [NδNτ
∗
j ] for j = 1, . . . , m, the

variance of wavelet coefficients follows a power law of the scale, and this power law is
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piecewise varying following the shift. Thus piecewise sample variances can be appropriated
estimators of parameters of these power laws. Hence let us define

Sk′

k (aN) :=
aN

k′ − k

[k′/aN ]−1∑

p=[k/aN ]

e2X(aN , aN p) for 0 ≤ k < k′ ≤ NδN . (3)

Now set 0 < r1 < . . . < rℓ with ℓ ∈ N∗ and let us suppose that a multidimensional central
limit theorem can also be established for

(
Sk′

k (ri aN)
)
1≤i≤ℓ

, i.e.

(
Sk′

k (ri aN )
)
1≤i≤ℓ

=
(
β∗

j ·
(
ri aN

)α∗
j
)
1≤i≤ℓ

+
(
aN

)α∗
j ×

√
aN

k′ − k

(
ε
(N)
i (k, k′)

)
1≤i≤ℓ

, (4)

with [NδNτ
∗
j ] ≤ k < k′ ≤ [NδNτ

∗
j+1] and it exists Γ(j)(α∗

j , r1, . . . , rℓ) =
(
γ

(j)
pq

)
1≤p,q≤ℓ

a

(ℓ × ℓ) matrix not depending on N such that α 7→ Γ(j)(α, r1, . . . , rℓ) is a continuous
function, a positive matrix for all α and

(
ε
(N)
i (k, k′)

)
1≤i≤ℓ

L−→
N→∞

N
(
0,Γ(j)(α∗

j , r1, . . . , rℓ)
)

when k′ − k → ∞. (5)

With the usual Delta-Method, relation (4) implies that for 1 ≤ i ≤ ℓ,

log
(
Sk′

k (ri aN)
)

= log(β∗
j ) + α∗

j log
(
ri aN

)
+

√
aN

k′ − k
ε
(N)
i (k, k′), (6)

for [NδNτ
∗
j ] ≤ k < k′ ≤ [NδNτ

∗
j+1] and the limit theorem (5) also holds. This is a linear

model and therefore a log-log regression of
(
Sk′

k (ri aN )
)

i
onto

(
ri aN

)
i
provides an estima-

tor of α∗
j and log(β∗

j ).

The first aim of this paper is the estimation of unknown parameters (τ ∗j )j, (α∗
j )j and

(β∗
j )j. Therefore, define a contrast function

UN

(
(αj)0≤j≤m, (βj)0≤j≤m, (kj)1≤j≤m

)
=

m∑

j=0

ℓ∑

i=1

(
log
(
S

kj+1

kj
(ri aN)

)
−
(
αj log(ri aN)+log βj

))2

with






• (αj)0≤j≤m ∈ Am+1 ⊂ Rm+1

• (βj)0≤j≤m ∈ Bm+1 ⊂ (0,∞)m+1

• 0 = k0 < k1 < . . . < km < km+1 = NδN , (kj)1≤j≤m ∈ Km(N) ⊂ Rm

.

The vector of estimated parameters α̂j , β̂j and k̂j (and therefore τ̂j) is the vector which
minimizes this contrast function, i.e.,

(
(α̂j)0≤j≤m, (β̂j)0≤j≤m, (k̂j)1≤j≤m

)

:= Argmin
{
UN

(
(αj)0≤j≤m, (βj)0≤j≤m, (kj)1≤j≤m

)}
in Am+1 ×Bm+1 ×Km(N)(7)

τ̂j := k̂j/(NδN ) for 1 ≤ j ≤ m. (8)
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For a given (kj)1≤j≤m, it is obvious that (α̂j)0≤j≤m and (log β̂j)0≤j≤m are obtained from a

log-log regression of
(
S

kj+1

kj
(ri aN)

)
i
onto

(
ri aN

)
i
, i.e.

(
α̂j

log β̂j

)
=
(
L′

1 · L1)
−1L′

1 · Y
kj+1

kj

with Y
kj+1

kj
:=
(
log
(
S

kj+1

kj
(ri · aN)

))
1≤i≤ℓ

and LaN
:=




log(r1 aN ) 1
...

...
log(rℓ aN) 1


 . Therefore the

estimator of the vector (kj)1≤j≤m is obtained from the minimization of the contrast

GN(k1, k2, . . . , km) := UN

(
(α̂j)0≤j≤m, (β̂j)0≤j≤m, (kj)1≤j≤m

)
(9)

=⇒ (k̂j)1≤j≤m = Argmin
{
GN(k1, k2, . . . , km), (kj)1≤j≤m ∈ Km(N)

}
. (10)

2.2 Estimation of abrupt change time-instants (τ ∗j )1≤j≤m

In this paper, parameters (α∗
j ) are supposed to satisfied abrupt changes. Such an hypoth-

esis is provided by the following assumption:

Assumption C: Parameters (α∗
j ) are such that |α∗

j+1−α∗
j | 6= 0 for all j = 0, 1, . . . , m−1.

Now let us define:

τ ∗ := (τ ∗1 , . . . , τ
∗
m), τ̂ := (τ̂1, . . . , τ̂m) and ‖τ‖m := max

(
|τ1|, . . . , |τm|

)
.

Then τ̂ converges in probability to τ ∗ and more precisely,

Theorem 2.1 Let ℓ ∈ N \ {0, 1, 2}. If Assumption C and relations (4), (5) and (6)
hold with (α∗

j )0≤j≤m such that α∗
j ∈ [a , a′] and a < a′ for all j = 0, . . . , m, then if

a
1+2(a′−a)
N (N δN)−1 −→

N→∞
0, for all (vn)n satisfying vN · a1+2(a′−a)

N (N δN)−1 −→
N→∞

0,P(vN‖τ ∗ − τ̂‖m ≥ η
)

−→
N→∞

0 for all η > 0. (11)

Several examples of applications of this theorem will be seen in Section 3.

2.3 Estimation of parameters (α∗
j)0≤j≤m and (β∗

j )0≤j≤m

For j = 0, 1, . . . , m, the log-log regression of
(
S

k̂j+1

k̂j

(riaN )
)
1≤i≤ℓ

onto (riaN )1≤i≤ℓ pro-

vides the estimators of α∗
j and β∗

j . However, even if τj converges to τ ∗j , k̂j = NδN · τ̂j
does not converge to k∗j (except if N = o(vN) which is quite impossible), and therefore
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P([k̂j , k̂j+1] ⊂ [k∗j , k
∗
j+1]
)

does not tend to 1. So, for j = 0, 1, . . . , m, define k̃j and k̃′j such
that

k̃j = k̂j +
NδN
vN

and k̃′j = k̂j+1 −
NδN
vN

=⇒ P([k̃j, k̃
′
j] ⊂ [k∗j , k

∗
j+1]
)

−→
N→∞

1,

from (11) with η = 1/2. Let Θ∗
j :=

(
α∗

j

log β∗
j

)
and Θ̃j := (L

′

1 ·L1)
−1L

′

1 ·Y
k̃′

j

k̃j
:=

(
α̃j

log β̃j

)
.

Thus, estimators (α̃j)0≤j≤m and (β̃j)0≤j≤m satisfy

Theorem 2.2 Under the same assumptions as in Theorem 2.1, for j = 0, . . . , m
√
δN N

(
τ ∗j+1 − τ ∗j

)

aN

(
Θ̃j − Θ∗

j

)
L−→

N→∞
N
(
0,Σ(j)(α∗

j , r1, . . . , rℓ)
)

(12)

with Σ(j)(α∗
j , r1, . . . , rℓ) := (L

′

1 · L1)
−1L

′

1 · Γ(j)(α∗
j , r1, . . . , rℓ) · L1 · (L′

1 · L1)
−1.

A second estimator of Θ∗
j can be obtained from feasible generalized least squares (FGLS).

Indeed, the asymptotic covariance matrix Γ(j)(α∗
j , r1, . . . , rℓ) can be estimated with the

matrix Γ̃(j) := Γ(j)(α̃j , r1, . . . , rℓ) and Γ̃(j) P−→
N→∞

Γ(j)(α∗
j , r1, . . . , rℓ) since α 7→ Γ(j)(α, r1, . . . , rℓ)

is supposed to be a continuous function and α̃j
P−→

N→∞
α∗

j . Since also α 7→ Γ(j)(α, r1, . . . , rℓ)

is supposed to be a positive matrix for all α then
(
Γ̃(j)
)−1

P−→
N→∞

(
Γ(j)(α∗

j , r1, . . . , rℓ)
)−1

.

Then, the FGLS estimator Θj of Θ∗
j is defined from the minimization for all Θ of the

following criterion

‖ Y k̃′
j

k̃j
− LaN

· Θ ‖2
Γ̃(j)=

(
Y

k̃′
j

k̃j
− LaN

· Θ
)′ ·
(
Γ̃(j)
)−1 ·

(
Y

k̃′
j

k̃j
− LaN

· Θ
)
.

and therefore

Θj =
(
L′

1 ·
(
Γ̃(j)
)−1 · L1

)−1 · L′
1 ·
(
Γ̃(j)
)−1 · Y k̃′

j

k̃j
.

Proposition 2.3 Under the same assumptions as in Theorem 2.2, for j = 0, . . . , m
√
δN N

(
τ ∗j+1 − τ ∗j

)

aN

(
Θj − Θ∗

j

)
L−→

N→∞
N
(
0,M (j)(α∗

j , r1, . . . , rℓ)
)

(13)

with M (j)(α∗
j , r1, . . . , rℓ) :=

(
L

′

1 ·
(
Γ(j)(α∗

j , r1, . . . , rℓ)
)−1 ·L1

)−1 ≤ Σ(j)(α∗
j , r1, . . . , rℓ) (with

order’s relation between positive symmetric matrix).

Therefore, the estimator Θj converges asymptotically faster than Θ̃j ; αj is more interesting
than α̃j for estimating α∗

j when N is large enough. Moreover, confidence intervals can be
easily deduced for both the estimators of Θ∗

j .
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2.4 Goodness-of-fit test

For j = 0, . . . , m, let T (j) be the FGLS distance between both the estimators of LaN
·

Θ∗
j , i.e. the FGLS distance between points

(
log(ri aN ), log

(
S

k̃′
j

k̃j

))

1≤i≤ℓ
and the FGLS

regression line. The following limit theorem can be established:

Theorem 2.4 Under the same assumptions as in Theorem 2.1, for j = 0, . . . , m

T (j) =
δN N

(
τ ∗j+1 − τ ∗j

)

aN
‖ Y k̃′

j

k̃j
− LaN

· Θj ‖2
Γ̃(j)

L−→
N→∞

χ2(ℓ− 2). (14)

Mutatis mutandis, proofs of Proposition 2.3 and Theorem 2.4 are the same as the proof
of Proposition 5 in [7]. This test can be applied to each segment [k̃j, k̃

′
j[. However, under

the assumptions, it is not possible to prove that a test based on the sum of T (j) for
j = 0, . . . , m converges to a χ2

(
(m + 1)(ℓ − 2)

)
distribution (indeed, nothing is known

about the eventual correlation of
(
Y

k̃′
j

k̃j

)
0≤j≤m

).

2.5 Cases of polynomial trended processes

Wavelet based estimators are also known to be robust to smooth trends (see for instance
[1]). More precisely, assume now that one considers the process Y = {Yt, t ∈ T} satisfying
Yt = Xt +P (t) for all t ∈ T where P is an unknown polynomial function of degree p ∈ N.
Then,

Corollary 2.1 Under the same assumptions as in Theorem 2.1 for the process X, and if
the mother wavelet ψ is such that

∫
tr ψ(t)dt = 0 for r = 0, 1, . . . , p, then limit theorems

(4), (5) and (6) hold for X and for Y .

Let us remark that Lemarié-Meyer wavelet is such that
∫
tr ψ(t)dt = 0 for all r ∈ N.

Therefore, even if the degree p is unknown, Corollary 2.1 can be applied. It is such the
case for locally fractional Brownian motions and applications to heartbeat time series.

3 Applications

In this section, applications of the limit theorems to three kinds of piecewise Gaussian
processes and HR data are studied. Several simulations for each kind of process are
presented. In each case estimators (τ̂j)j and (α̃j)j are computed. To avoid an overload
of results, FGLS estimators (αj)j which are proved to be a little more accurate than
(α̃j)j are only presented in one case (see Table 2) because the results for (αj)j are very
similar to (α̃j)j ones but are much more time consuming. For the choice of the number
of scales ℓ, we have chosen a number proportional to the length of data (0.15 percent of
N which seems to be optimal from numerical simulations) except in two cases (the case
of goodness-of-fit test simulations for piecewise fractional Gaussian noise and the case
of HR data, for which the length of data and the employed wavelet are too much time
consuming).
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3.1 Detection of change for Gaussian piecewise long memory

processes

In the sequel the process X is supposed to be a piecewise long range dependence time
series (and therefore δN = 1 for all N ∈ N). First, some notations have to be provided.
For Y = (Yt)t∈N a Gaussian zero mean stationary process, with r(t) = E(Y0 ·Yt) for t ∈ N,
denote (when it exists) the spectral density f of Y by

f(λ) =
1

2π
·
∑

k∈Z r(k) · e−ikλ for λ ∈ Λ ⊂ [−π, π].

In the sequel, the spectral density of Y is supposed to satisfy the asymptotic property,

f(λ) ∼ C · 1

λD
when λ→ 0,

with C > 0 and D ∈ (0, 1). Then the process Y is said to be a long memory process
and its Hurst parameter is H = (1 +D)/2. More precisely the following semi-parametric
framework will be considered:

Assumption LRD(D): Y is a zero mean stationary Gaussian process with spectral
density satisfying

f(λ) = |λ|−D · f ∗(λ) for all λ ∈ [−π, 0[∪]0, π],

with f ∗(0) > 0 and f ∗ is such that |f ∗(λ) − f ∗(0)| ≤ C2 · |λ|2 for all λ ∈ [−π, π] with
C2 > 0.

Such assumption has been considered in numerous previous works concerning the esti-
mation of the long range parameter in a semi-parametric framework (see for instance
Robinson, 1995,, Giraitis et al., 1997, Moulines and Soulier, 2003). First and famous ex-
amples of processes satisfying Assumption LRD(D) are fractional Gaussian noises (FGN)
constituted by the increments of the fractional Brownian motion process (FBM) and the
fractionally autoregressive integrated moving average FARIMA[p, d, q] (see more details
and examples in Doukhan et al. [11]).

In this section, X = (Xt)t∈N is supposed to be a Gaussian piecewise long-range dependent
process, i.e.

• there exists a family (D∗
j )0≤j≤m ∈ (0, 1)m+1;

• for all j = 0, . . . , m, for all k ∈
{
[Nτ ∗j ], [Nτ ∗j ] + 1, . . . , [Nτ ∗j+1] − 1

}
, Xk = X

(j)
k−[Nτ∗

j ]

and X(j) = (X
(j)
t )t∈N satisfies Assumption LRD(D∗

j ).

Several authors have studied the semi-parametric estimation of the parameter D using
a wavelet analysis. This method has been numerically developed by Abry et al. (1998,
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2003) and Veitch et al. (2004) and asymptotic results are provided in Bardet et al. (2000)
and recently in Moulines et al. (2007) and Bardet et al. (2007). The following results
have been developed in this last paper. The ”mother” wavelet ψ is supposed to satisfy
the following assumption: first ψ is included in a Sobolev space and secondly ψ satisfies
the admissibility condition.

Assumption W1 : ψ : R 7→ R with [0, 1]-support with ψ(0) = ψ(1) = 0 and
∫ 1

0
ψ(t) dt =

0 and such that there exists a sequence (ψℓ)ℓ∈Z satisfying ψ(λ) =
∑

ℓ∈Z ψℓe
2πiℓλ ∈ L2([0, 1])

and
∑

ℓ∈Z(1 + |ℓ|)5/2|ψℓ| <∞.

For ease of writing, ψ is supposed to be supported in [0, 1]. By an easy extension the
following propositions are still true for any compactly supported wavelets. For instance,
ψ can be a dilated Daubechies ”mother” wavelet of order d with d ≥ 6 to ensure the
smoothness of the function ψ. However, the following proposition could also be extended
for ”essentially” compactly supported ”mother” wavelet like Lemarié-Meyer wavelet. Re-
mark that it is not necessary to choose ψ being a ”mother” wavelet associated to a
multi-resolution analysis of L2(R) like in the recent paper of Moulines et al. (2007). The
whole theory can be developed without resorting to this assumption. The choice of ψ is
then very large. Then, in Bardet et al. (2007), it was established:

Proposition 3.1 Let X be a Gaussian piecewise long-range dependent process defined as
above and (an)n∈N be such that N/aN −→

N→∞
∞ and aN ·N−1/5 −→

N→∞
∞. Under Assump-

tion W1, limit theorems (4), (5) and (6) hold with α∗
j = D∗

j and β∗
j = log

(
f ∗

j (0)
∫∞

−∞
|ψ̂(u)|2·

|u|−Ddu
)

for all j = 0, 1, . . . , m and with dpq = GCD(rp , rq) for all (p, q) ∈ {1, . . . , ℓ},

γ(j)
pq =

2(rprq)
2−D∗

j

dpq

∞∑

m=−∞




∫∞

0
ψ̂(urp)ψ̂(urq) u

−D∗
j cos(u dpqm) du

∫∞

0
|ψ̂(u)|2 · |u|−D∗

j du




2

.

As a consequence, the results of Section 2 can be applied to Gaussian piecewise long-range
dependent processes:

Corollary 3.2 Under assumptions of Proposition 3.1 and Assumption C, for all 0 < κ <
2/15, if aN = Nκ+1/5 and vN = N2/5−3κ then (11), (12), (13) and (14) hold.

Thus, the rate of convergence of τ̂ to τ ∗ (in probability) is N2/5−3κ for 0 < κ as small
as one wants. Estimators D̃j and Dj converge to the parameters D∗

j following a central

limit theorem with a rate of convergence N2/5−κ/2 for 0 < κ as small as one wants.

Results of simulations: The following Table 1 represents the change point and parameter
estimations in the case of a piecewise FGN with one abrupt change point. We observe
the good consistence property of the estimators. Kolmogorov-Smirnov tests applied to
the sample of estimated parameters lead to the following results:
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1. the estimator τ̂1 can not be modeled with a Gaussian distribution;

2. the estimator Ĥj seems to follow a Gaussian distribution.

N = 20000, τ1 = 0.75, D0 = 0.2 and D1 = 0.8

τ̂1 σ̂τ1

√
MSE D̃0 σ̂D0

√
MSE D̃1 σ̂D1

√
MSE

0.7605 0.0437 0.0450 0.2131 0.0513 0.0529 0.7884 0.0866 0.0874

Table 1: Estimation of τ1, D0 and D1 in the case of a piecewise FGN (H0 = 0.6 and
H1 = 0.9) with one change point when N = 20000 and ℓ = 30 (50 realizations)

The distribution of the test statistics T (0) and T (1) (in this case ℓ = 20 and N = 20000
and 50 realizations) are compared with a Chi-squared-distribution with eighteen degrees of
freedom. The goodness-of-fit Kolmogorov-Smirnov test for T (j) to the χ2(18)-distribution
is accepted (with 0.3459 for the sample of T (0) and p = 0.2461 for T (1)). In this case and
for the same parameters as in Table 1, the estimator Dj seems to be a little more accurate
than D̃j (see Table 2).

τ̂1 σ̂τ1

√
MSE D0 σ̂D0

√
MSE D1 σ̂D1

√
MSE

0.7652 0.0492 0.0515 0.1815 0.0452 0.0488 0.8019 0.0721 0.0722

Table 2: Estimation of D0 and D1 in the case of a piecewise FGN (D0 = 0.2 and D1 = 0.8)
with one change point when N = 20000 and ℓ = 20 (50 realizations)

Simulations are also applied to a piecewise simulated FARIMA(0,dj,0) processes and re-
sults are similar (see Table 3). The following Figure 2 represents the change point instant
and its estimation for such a process with one abrupt change point.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−6

−4

−2

0

2

4

6

Estim. D
1
 : 0.7510

Estim. D
0
 : 0.2083

Estim. τ
1
 : 0.7504

Figure 2: Detection of the change point in piecewise FARIMA(0,dj,0) (for the first segment
d0 = 0.1 (D0 = 0.2) for the second d1 = 0.4 (D1 = 0.8))
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N = 20000, τ1 = 0.75, D0 = 0.2 and D1 = 0.8

τ̂1 σ̂τ1

√
MSE D̃0 σ̂D0

√
MSE D̃1 σ̂D1

√
MSE

0.7540 0.0215 0.0218 0.1902 0.0489 0.0499 0.7926 0.0761 0.0764

Table 3: Estimation of τ1, D0 and D1 in the case of piecewise FARIMA(0,dj ,0) (d0 = 0.1
and d1 = 0.4) with one change point when N = 20000 and ℓ = 30 (50 realizations)

3.2 Detection of abrupt change for piecewise Gaussian self-similar

processes

Let us recall that BH = (BH
t )t∈R is a fractional Brownian motion (FBM) with two param-

eters H ∈ (0, 1) and σ2 > 0 when BH is a Gaussian process having stationary increments
and such as

Var(BH
t )) = σ2|t|2H ∀t ∈ R.

It can be proved that BH is the only Gaussian self-similar process having stationary
increments and its self-similar parameter is H (a process Y = (Yt)t∈E is said to be a
Hs-self-similar process if for all c > 0 and for all (t1, . . . , tk) ∈ Ek where k ∈ N∗, the
vector

(
Yct1 , . . . , Yctk

)
has the same distribution than the vector cHs

(
Yt1, . . . , Ytk

)
).

Now, X will be called a piecewise fractional Brownian motion if:

• there exist two families of parameters (H∗
j )0≤j≤m ∈ (0, 1)m+1 and (σ∗2

j )0≤j≤m ∈
(0,∞)m+1;

• for all j = 0, . . . , m, for all t ∈
[
[Nτ ∗j ], [Nτ ∗j ] + 1, . . . , [Nτ ∗j+1] − 1

]
, Xt = X

(j)
t−[Nτ∗

j ]

and X(j) = (X
(j)
t )t∈R is a FBM with parameters H∗

j and σ∗2
j .

The wavelet analysis of FBM has been first studied by Flandrin (1992) and developed
by Abry (1998) and Bardet (2002). Following this last paper, the mother wavelet ψ is
supposed to satisfy:

Assumption W2: ψ : R → R is a piecewise continuous and left (or right)-differentiable
in [0, 1], such that |ψ′(t−)| is Riemann integrable in [0, 1] with ψ′(t−) the left-derivative

of ψ in t, with support included in [0, 1] and
∫R tpψ(t) dt =

∫ 1

0
tpψ(t) dt = 0 for p = 0, 1.

As in Assumption W1, ψ is supposed to be supported in [0, 1] but the following proposi-
tions are still true for any compactly supported wavelets. Assumption W2 is clearly weaker
than Assumption W1 concerning the regularity of the mother wavelet. For instance, ψ
can be a Daubechies wavelet of order d with d ≥ 3 (the Haar wavelet, i.e. d = 2, does not

satisfy
∫ 1

0
t ψ(t) dt = 0). Another choice could be infinite support wavelets with compact

effective support (it is such the case with Meyer or Mexican Hat wavelets) but the proof
of the following property has to be completed.
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Proposition 3.3 Assume that X is a piecewise FBM as it is defined above and let
(X1, X2, . . . , XN) be a sample of a path of X (therefore δN = 1). Under Assumption
W2, if (an)n∈N is such that N/aN −→

N→∞
∞ and aN ·N−1/3 −→

N→∞
∞, then limit theorems

(4), (5) and (6) hold with α∗
j = 2H∗

j +1 and β∗
j = log

(
− σ∗2

j

2

∫ 1

0

∫ 1

0
ψ(t)ψ(t′)|t−t′|2H∗

j dt dt′
)

for all j = 0, 1, . . . , m and with dpq = GCD(rp , rq) for all (p, q) ∈ {1, . . . , ℓ},

γ(j)
pq =

2dpq

r
2H∗

j +1/2
p r

2H∗
j +1/2

q

∞∑

k=−∞

(∫ 1

0

∫ 1

0
ψ(t)ψ(t′) |k dpq + rpt− rqt

′|2H∗
j dt dt′

∫ 1

0

∫ 1

0
ψ(t)ψ(t′)|t− t′|2H∗

j dt dt′

)2

.

Then, Theorem 2.1 can be applied to piecewise FBM but 2(a′ − a) + 1 = 2(supj α
∗
j −

infj α
∗
j ) + 1 has to be smaller than 3 since aN ·N−1/3 −→

N→∞
∞. Thus,

Corollary 3.4 Let A :=
∣∣ supj H

∗
j − infj H

∗
j

∣∣. If A < 1/2, under assumptions of Propo-

sition 3.3 and Assumption C, for all 0 < κ < 1
1+4A

− 1
3
, if aN = N1/3+κ and vN =

N2/3(1−2A)−κ(2+4A) then (11), (12), (13) and (14) hold.

Thus, the rate of convergence of τ̂ to τ ∗ (in probability) can be N2/3(1−2A)−κ′

for 0 < κ′

as small as one wants when aN = N1/3+κ′/(2+4A).

Remark: This result of Corollary 3.4 is quite surprising: the smaller A, i.e. the smaller
the differences between the parameters Hj, the faster the convergence rates of estimators
τ̂j to τ ∗j . And if the difference between two successive parameters Hj is too large, the
estimators τ̂j do not seem to converge. Following simulations in Table 5 will exhibit this
paroxysm. This induces a limitation of the estimators’ using especially for applying them
to real data (for which a priori knowledge is not available about the values of H∗

j ).

Estimators H̃j and Hj converge to the parameters H∗
j following a central limit theo-

rem with a rate of convergence N1/3−κ/2 for 0 < κ as small as one wants.

Results of simulations: The following Table 4 represent the change point and parame-
ter estimations in the case of piecewise FBM with one abrupt change point. Estimators
of the change points and parameters seem to converge since their mean square errors
clearly decrease when we double the number of observations.
For testing if the estimated parameters follow a Gaussian distribution, Kolmogorov-
Smirnov goodness-of-fit tests (in the case with N = 10000 and 50 replications) are applied:

1. this test for H̃0 is accepted as well as for H̃1 and the following Figure 3 represents
the relating distribution.

2. this is not such the case for the change point estimator τ̂1 for which the hypothesis
of a possible fit with a Gaussian distribution is rejected (KStest = 0.2409) as showed
in the Figure 3 below which represents the empirical distribution function with the
correspondant Gaussian cumulative distribution function.
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N = 5000 N = 10000

τ1

0.4

H0

0.4

H1

0.8

τ̂1 σ̂τ1

√
MSE

0.4467 0.0701 0.0843

H̃0 σ̂H0

√
MSE

0.3147 0.0404 0.0943

H̃1 σ̂H1

√
MSE

0.7637 0.0534 0.0645

τ̂1 σ̂τ1

√
MSE

0.4368 0.0319 0.0487

H̃0 σ̂H0

√
MSE

0.3761 0.0452 0.0511

H̃1 σ̂H1

√
MSE

0.7928 0.0329 0.0337

Table 4: Estimation of τ1, H0 and H1 in the case of piecewise FBM with one change point
when N = 5000 (100 realizations) and N = 10000 (50 realizations)
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Figure 3: Left: Modeling of sample estimations of H̃0 with normal distribution; Right:
Comparison of the generated empirical cumulative distribution for τ̂1 (when N=10000)
and the theoretical normal distribution.

From the following example in Table 5, we remark that the estimated parameters seem
to be non convergent when the difference between the parameters Hj is too large.

N = 5000, τ1 = 0.6, H0 = 0.1 and H1 = 0.9

τ̂1 σ̂τ1

√
MSE H̃0 σ̂H0

√
MSE H̃1 σ̂H1

√
MSE

0.5950 0.1866 0.1866 -0.1335 0.0226 0.2346 0.6268 0.4061 0.4894

Table 5: Estimation of τ1, H0 and H1 (when H1−H0 = 0.8 > 1/2) in the case of piecewise
FBM with one change point when N = 5000 (50 realizations)

Simulations for goodness-of-fit tests T (j) provide the following results: when N = 5000,
the drawn distributions of the computed test statistics (see Figure 4) exhibit a Khi-square
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distributed values (χ2(5) since ℓ = 7) and 95% of the 100 of the values of T (0) and T (1) do
not exceed χ2

95%(5) = 11.0705. These results are also validated with Kolmogorov-Smirnov
tests.
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Figure 4: Testing for χ2(5) distribution in the first detected zone (left) and the second
detected zone (right) (50 realizations when N = 5000)

The results below in Table 6 are obtained with piecewise fractional Brownian motion
when two change points are considered. As previously, both the KStest tests for deciding
whether or not samples of both estimated change points is consistent with Gaussian
distributions are rejected. However, such KStest tests are accepted for H̃j samples. A
graphical representation of the change point detection method applied to a piecewise
FBM is given in Figure 5.

N = 5000 N = 10000

τ1

0.3

τ2

0.78

H0

0.6

H1

0.8

H2

0.5

τ̂1 σ̂τ1

√
MSE

0.3465 0.1212 0.1298

τ̂2 σ̂τ2

√
MSE

0.7942 0.1322 0.1330

H̃0 σ̂H0

√
MSE

0.5578 0.0595 0.0730

H̃1 σ̂H1

√
MSE

0.7272 0.0837 0.1110

H̃2 σ̂H2

√
MSE

0.4395 0.0643 0.0883

τ̂1 σ̂τ1

√
MSE

0.3086 0.0893 0.0897

τ̂2 σ̂τ2

√
MSE

0.7669 0.0675 0.0687

H̃0 σ̂H0

√
MSE

0.5597 0.0449 0.0604

H̃1 σ̂H1

√
MSE

0.7633 0.0813 0.0892

H̃2 σ̂H2

√
MSE

0.4993 0.0780 0.0780

Table 6: Estimation of τ1, τ2, H0, H1 and H2 in the case of piecewise FBM with two
change points when N = 5000 and N = 10000 (50 realizations)

The distribution of the test statistics T (0), T (1) and T (2) (in this case ℓ = 10, N = 10000
and 50 realizations) are compared with a Chi-squared-distribution with eight degrees of
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Figure 5: (left)Detection of the change point in piecewice FBM(Hj) (τ1 = 0.3, τ2 = 0.78,
H0 = 0.6, H1 = 0.8 and H2 = 0.5). The change points estimators are τ̂1 = 0.32 and τ̂2 =
0.77. (right) Representation of log-log regression of the variance of wavelet coefficients
on the chosen scales for the three segments (H̃0 = 0.5608 (*), H̃1 = 0.7814 (⊳) and
H̃2 = 0.4751 (o))

freedom. The goodness-of-fit Kolmogorov-Smirnov test for T (j) to the χ2(8)-distribution
is accepted (with p = 0.4073 for the sample of T (0), p = 0.2823 for T (1) and p = 0.0619
for T (2)).

3.3 Detection of abrupt change for piecewise locally fractional

Gaussian processes

In this section, a continuous-time process X is supposed to model data. Therefore assume
that (XδN

, X2δN
, . . . , XN δN

) is known, with δN −→
N→∞

0 and N δN −→
N→∞

∞. A piecewise

locally fractional Gaussian process X = (Xt)t∈R+ is defined by

Xt :=

∫R eitξ − 1

ρj(ξ)
Ŵ (dξ) for t ∈ [τ ∗j N δN , τ

∗
j+1N δN ) (15)

where the functions ρj : R → [0,∞) are even Borelian functions such that for all j =
0, 1, . . . , m,:

• ρj(ξ) =
1

σ∗
j

|ξ|H∗
j +1/2 for |ξ| ∈ [fmin , fmax] with H∗

j ∈ R, σ∗
j > 0;

•
∫R (1 ∧ |ξ|2

) 1

ρ2
j (ξ)

dξ <∞

and W (dx) is a Brownian measure and Ŵ (dξ) its Fourier transform in the distribution
meaning. Remark that parameters H∗

j , called local-fractality parameters, can be sup-
posed to be included in R instead the usual interval (0, 1). Here 0 < fmin < fmax are
supposed to be known parameters. Roughly speaking, a locally fractional Gaussian pro-
cess is nearly a self-similar Gaussian process for scales (or frequencies) included in a band
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of scales (frequencies).

For locally fractional Gaussian process already studied in Bardet and Bertrand (2007)
and Kammoun et al. (2007), the mother wavelet is supposed to satisfy

Assumption W3: ψ : R 7→ R is a C∞(R) function such that for allm ∈ N,
∫R |tmψ(t)| dt <

∞ and the Fourier transform ψ̂ of ψ is an even function compactly supported on [−µ,−λ]∪
[λ, µ] with 0 < λ < µ.

These conditions are sufficiently mild and are satisfied in particular by the Lemarié-Meyer
”mother” wavelet. The admissibility property, i.e.

∫R ψ(t)dt = 0, is a consequence of the
second condition and more generally, for all m ∈ N,

∫R tmψ(t)dt = 0.

Since the function ψ is not a compactly supported mother wavelet, wavelet coefficients
dX(a, b) can not be well approximated by eX(a, b) when the shift b is close to 0 or N δN .
Then, a restriction S̃k′

k (aN) of sample wavelet coefficient’s variance Sk′

k (aN ) has to be
defined:

S̃k′

k (aN ) :=
aN

(1 − 2w)k′ − k

[(k′−w(k′−k))/aN ]−1∑

p=[(k+w(k′−k))/aN ]+w

e2X(aN , aN p) with 0 < w < 1/2.

Proposition 3.5 Assume that X is a piecewise locally fractional Gaussian process as it is
defined above and (XδN

, X2δN
, . . . , XN δN

) is known, with N(δN)2 −→
N→∞

0 and N δN −→
N→∞

∞.

Under Assumptions W3 and C, using S̃k′

k (aN) instead of Sk′

k (aN ), if µ
λ
< fmax

fmin
and

ri = fmin

λ
+ i

ℓ

(
fmax

µ
− fmin

λ

)
for i = 1, . . . , ℓ with aN = 1 for all N ∈ N, then limit theorems

(4), (5) and (6) hold with α∗
j = 2H∗

j + 1 and β∗
j = log

(
− σ∗2

j

2

∫R ∣∣ψ̂(u)
∣∣2 |u|−1−2H∗

j du
)

for
all j = 0, 1, . . . , m, for all (p, q) ∈ {1, . . . , ℓ},

γ(j)
pq =

2

(1 − 2w) (rp rq)
2H∗

j

∫R (∫R ψ̂(rp ξ)ψ̂(rq ξ) |ξ|−1−2H∗
j e−iuξdξ

∫R ∣∣ψ̂(u)
∣∣2 |u|−1−2H∗

j du

)2

du. (16)

Theorem 2.1 can be applied to a piecewise locally fractional Gaussian process without
conditions on parameters H∗

j . Thus,

Corollary 3.6 Under assumptions of Proposition 3.5 and Assumption C, then for all
0 < κ < 1

2
, if δN = N−1/2−κ and vN = N1/2−κ then (11), (12), (13) and (14) hold.

Therefore the convergence rate of τ̂ to τ ∗ (in probability) is as well close to N1/2 as one
wants. Estimators H̃j and Hj converge to the parameters H∗

j following a central limit

theorem with a rate of convergence N1/4−κ/2 for 0 < κ as small as one wants.
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3.4 Application to heart rate’s time series

The study of the regularity of physiological data and in particular the heartbeat signals
have received much attention by several authors (see for instance [24], [25] or [3]). These
authors studied HR series for healthy subjects and subjects with heart disease. In [17],
a piecewise locally fractional Brownian motion is studied for modeling the cumulative
HR data during three typical phases (estimated from Lavielle’s algorithm) of the race
(beginning, middle and end). The local-fractality parameters are estimated with wavelet
analysis. The conclusions obtained are relatively close to those obtained by Peng. et al..
Indeed we remarked that the local-fractality parameter increases thought the race phases
which may be explained with fatigue appearing during the last phase of the marathon.
In this paper, we tray to unveil in which instants the behaviour of HR data changes. The
following Table 7 presents the results for the detection of one change point.

τ̂1 H̃0 H̃1 T (0) T (1)

Ath1 0.0510 0.7880 1.2376 1.0184 1.0562

Ath2 0.4430 1.3470 1.4368 5.0644 1.5268

Ath3 0.6697 0.9542 1.2182 0.7836 0.9948

Ath4 0.4856 1.1883 1.2200 2.8966 1.2774

Ath5 0.8715 1.1512 1.3014 0.7838 0.8748

Ath6 0.5738 1.1333 1.1941 2.2042 0.7464

Ath7 0.3423 1.1905 1.1829 0.4120 1.5598

Ath8 0.8476 1.0222 1.2663 3.1704 0.5150

Ath9 0.7631 1.4388 1.3845 9.6574 0.5714

Table 7: Estimated change points τ1, parameters H0, H1 and goodness-of-fit test statistics
(T (0) for the first zone and T (1) for the second one) in the case of one change point observed
in HR series of different athletes.

It is noticed that the estimator of the local-fractality parameter is generally larger on
the second zone than on the first although the detected change point differs from an
athlete to another (only the case of Athlete 1 seems not to be relevant). This result is
very interesting and confirms our conclusions in [17]. Whatever is the position of change
point, the estimation of the local-fractality parameter is larger in the second segment than
in the first segment (see the example of HR data recorded for one athlete in Figure 6).

In general, the goodness-of-fit tests, with values T (0) and T (1), are less than χ2
95%(4) =

9.4877 (except T (0) for Ath9) when ℓ = 6. So, the HR data trajectory in the both zones
seems to be correctly modeled with a stationary locally fractional Gaussian trajectory.
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Figure 6: Evolution of local-fractality parameter estimators (observed for HR series of
one athlete) in the two zones when the change point varies in time.

4 Proofs

Before establishing the proof of Theorem 2.1 an important lemma can be stated:

Lemma 4.1 Let k ∈ N \ {0, 1}, (γi)1≤i≤k ∈ (0,∞)k and α1 > α2 > · · · > αk be k ordered
real numbers. For (α, β) ∈ R2, consider the function fα,β : x ∈ R 7→ R such that

fα,β(x) := αx+ β − log
( k∑

q=1

γq exp
(
αq x

))
for x ∈ R.

Let 0 < t1 < · · · < tℓ with ℓ ∈ N \ {0, 1, 2} and (un)n∈N be a sequence of real numbers
such that there exists m ∈ R satisfying un ≥ m for all n ∈ N. Then there exists C > 0
not depending on n such that

inf
(α,β)∈R2

ℓ∑

i=1

∣∣fα,β

(
log(un) + ti

)∣∣2 ≥ C min
(
1, |un|2(α2−α1)

)
.

Proof of Lemma 4.1: For all (α, β) ∈ R2, the function fα,β is a C∞(R) function and

∂2

∂x2
fα,β(x) = −

∑k−1
q=1 γqγq+1(αq − αq+1)

2 exp
(
(αq + αq+1) x

)
(∑k

q=1 γq exp
(
αq x

))2 < 0.

Therefore the function fα,β is a concave function such that sup(α,β)∈R2
∂2

∂x2 fα,β(x) < 0 (not
depending on α and β) and for all (α, β) ∈ R2, fα,β vanishes in 2 points at most. Thus,
since ℓ ≥ 3 and

(
x+ti

)
i
are distinct points, for all x ∈ R, it exists C(x) > 0 not depending

on α and β such that

inf
(α,β)∈R2

ℓ∑

i=1

∣∣fα,β

(
x+ ti

)∣∣2 ≥ C(x).

Therefore, since for all M ≥ 0,

inf
x∈[−M,M ]

{
inf

(α,β)∈R2

ℓ∑

i=1

∣∣fα,β

(
x+ ti

)∣∣2
}

≥ inf
x∈[−M,M ]

{
C(x)

}
> 0. (17)
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Moreover, if un → +∞,

log
( k∑

q=1

γq exp
(
αq log(un)

))
= log

(
γ1 exp

(
α1 log(un)

)
+ γ2 exp

(
α2 log(un)

)(
1 + o(1)

))

= log(γ1) + α1 log(un) + γ2 exp
(
(α2 − α1) log(un)

)(
1 + o(1)

)
.

Thus, for n large enough,

1

2
γ2 u

α2−α1
n ≤

∣∣∣ log
( k∑

q=1

γq exp
(
αq log(un)

))
− log(γ1) + α1 log(un)

∣∣∣ ≤ 2 γ2 u
α2−α1
n . (18)

Therefore, for all (α, β) ∈ R2,

∣∣fα,β

(
log(un)+ti

)∣∣2 =
∣∣fα1,log(γ1)

(
log(un)+ti

)∣∣2+
∣∣∣(log(γ1)−β)+(α1−α)(log(un)+ti)

∣∣∣
2

− 2fα1,log(γ1)

(
log(un) + ti

)
×
(
(log(γ1) − β) + (α1 − α)(log(un) + ti)

)
.

Using inequalities (18),
1

4
γ2

2 u
2(α2−α1)
n ≤

∣∣fα1,log(γ1)

(
log(un) + ti

)∣∣2 ≤ 4 γ2
2 u

2(α2−α1)
n and for

all (α, β) ∈ R2, lim
n→∞

fα1,log(γ1)

(
log(un)+ ti

)
×
(
(log(γ1)−β)+(α1−α)(log(un)+ ti)

)
= 0.

Then, for all (α, β) 6= (α1, log(γ1)), lim
n→∞

∣∣fα,β

(
log(un) + ti

)∣∣2 = ∞. Consequently, for n

large enough,

inf
(α,β)∈R2

ℓ∑

i=1

∣∣fα,β

(
log(un) + ti

)∣∣2 ≥ 1

2

ℓ∑

i=1

∣∣fα1,log(γ1)

(
log(un) + ti

)∣∣2

≥ 1

8
γ2

2

ℓ∑

i=1

(un + ti)
2(α2−α1)

≥ C u2(α2−α1)
n ,

which combined with (17) achieves the proof. �

Proof of Theorem 2.1: Let wN =
NδN
vN

, k∗j = [NδNτ
∗
j ] for j = 1, . . . , m and

Vη wN
= {(kj)1≤j≤m, max

j∈1,...,m
|kj − k∗j | ≥ η wN}.

Then, for NδN large enough,P(NδN
wN

‖τ ∗ − τ̂‖m ≥ η
)

≃ P( max
j∈1,...,m

|k̂j − k∗j | ≥ η wN)

= P( min
(kj)1≤j≤m∈Vη wN

GN

(
(kj)1≤j≤m

)
≤ min

(kj)1≤j≤m /∈Vη wN

GN

(
(kj)1≤j≤m

))

≤ P( min
(kj)1≤j≤m∈Vη wN

GN

(
(kj)1≤j≤m

)
≤ GN

(
(k∗j )1≤j≤m

))
. (19)

For j = {0, . . . , m} and 0 = k0 < k1 < . . . < km < km+1 = NδN , let
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• Y
kj+1

kj
:=
(
log
(
S

kj+1

kj
(ri · aN)

))
1≤i≤ℓ

,

• Θ
kj+1

kj
=

(
αj

log βj

)
, Θ̂

kj+1

kj
=

(
α̂j

log β̂j

)
and Θ∗

j =

(
α∗

j

log β∗
j

)
.

1/ Using these notations, GN

(
(kj)1≤j≤m

)
=

m∑

j=0

‖ Y kj+1

kj
− LaN

· Θ̂kj+1

kj
‖2, where ‖ · ‖ de-

notes the usual Euclidean norm in Rℓ. Then, with Iℓ the (ℓ× ℓ)-identity matrix

GN

(
(k∗j )1≤j≤m

)
=

m∑

j=0

‖ Y k∗
j+1

k∗
j

− LaN
· Θ∗

j ‖2

=

m∑

j=0

∥∥∥(Iℓ − PLaN
) · Y k∗

j+1

k∗
j

∥∥∥
2

with PLaN
= LaN

· (L′
aN

· LaN
)−1 · L′

aN

=
m∑

j=0

aN

k∗j+1 − k∗j

∥∥∥(Iℓ − PLaN
) ·
(
ε
(N)
i (k∗j , k

∗
j+1)

)
1≤i≤ℓ

∥∥∥
2

from (6)

≤ 1

min0≤j≤m(τ ∗j+1 − τ ∗j )
· aN

N δN

m∑

j=0

∥∥∥
(
ε
(N)
i (k∗j , k

∗
j+1)

)
1≤i≤ℓ

∥∥∥
2

.

Now, using the limit theorem (5),
∥∥∥
(
ε
(N)
i (k∗j , k

∗
j+1)

)
1≤i≤ℓ

∥∥∥
2

L−→
N→∞

∥∥∥N (0,Γ(r1, . . . , rℓ))
∥∥∥

2

since k∗j+1 − k∗j ∼ NδN (τ ∗i+1 − τ ∗i ) −→
N→∞

∞, and thus

GN

(
(k∗j )1≤j≤m

)
= OP

( aN

N δN

)
, (20)

where ξN = OP (ψN) as N → ∞ is written, if for all ρ > 0, there exists c > 0, such as

P
(
|ξN | ≤ c · ψN

)
≥ 1 − ρ for all sufficiently large N .

2/ Now, set (kj)1≤j≤m ∈ Vη wN
. Therefore, for N and N δN large enough, there exists

j0 ∈ {1, . . . , m} and (j1, j2) ∈ {1, . . . , m}2 with j1 ≤ j2 such that kj0 ≤ k∗j1 − η wN and
kj0+1 ≥ k∗j2 + η wN . Thus,

GN

(
(kj)1≤j≤m

)
≥
∥∥Y kj0+1

kj0
− LaN

Θ̂
kj0+1

kj0

∥∥2
.

Let Ω∗ :=
(
Ω∗

i

)
1≤i≤ℓ

be the vector such that

Ω∗
i :=

k∗j1 − kj0

kj0+1 − kj0

β∗
j1−1 exp

(
α∗

j1−1 log(ri aN )
)

+

j2−1∑

j=j1

k∗j+1 − k∗j1
kj0+1 − kj0

β∗
j exp

(
α∗

j log(ri aN)
)

+
kj0+1 − k∗j2
kj0+1 − kj0

β∗
j2 exp

(
α∗

j2 log(ri aN)
)
.
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Then,

GN

(
(kj)1≤j≤m

)
≥‖ Y kj0+1

kj0
−
(
log Ω∗

i

)
1≤i≤ℓ

‖2 + ‖
(
log Ω∗

i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0
‖2 +2Q,(21)

with Q =
(
Y

kj0+1

kj0
−
(
log Ω∗

i

)
1≤i≤ℓ

)′ ·
((

log Ω∗
i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0

)
.

In the one hand, with Sk′

k (·) defined in (3),

S
kj0+1

kj0
(ri aN) =

k∗j1 − kj0

kj0+1 − kj0

S
k∗

j1
kj0

(ri aN ) +

j2−1∑

j=j1

k∗j+1 − k∗j1
kj0+1 − kj0

S
k∗

j+1

k∗
j

(ri aN) +
kj0+1 − k∗j2
kj0+1 − kj0

S
k∗

j0+1

kj2
(ri aN).

Using the central limit theorems (6), for N and N δN large enough,E[(Skj0+1

kj0
(ri aN) − Ω∗

i

)2] ≤ m

(( k∗j1 − kj0

kj0+1 − kj0

)2E[(Sk∗
j1

kj0
(ri aN) − β∗

j1−1

(
ri aN

)α∗
j1−1
)2]

+

j2−1∑

j=j1

( k∗j+1 − k∗j1
kj0+1 − kj0

)2E[(Sk∗
j+1

k∗
j

(ri aN ) − β∗
j

(
ri aN

)α∗
j
)2]

+
(kj0+1 − k∗j2
kj0+1 − kj0

)2 E[(Sk∗
j0+1

kj2
(ri aN) − β∗

j2

(
ri aN

)α∗
j2
)2]
)

=⇒ E[(Skj0+1

kj0
(ri aN )

Ω∗
i

− 1
)2] ≤ mγ2

Ω∗
i

aN

( 1

k∗j1 − kj0

+

j2−1∑

j=j1

1

k∗j+1 − k∗j1
+

1

k∗j0+1 − kj∗2

)

≤ C
aN

η wN
,

with γ2 = maxi,j{γ(j)
ii } (where (γ

(j)
pq ) is the asymptotic covariance of vector ε

(N)
p (k, k′)

and ε
(N)
q (k, k′)) and C > 0 not depending on N . Therefore, for N large enough, for all

i = 1, . . . , ℓ, E[( log(S
kj0+1

kj0
(ri aN)) − log(Ω∗

i )
)2] ≤ 2C

aN

η wN
.

Then we deduce with Markov Inequality that

‖ Y kj0+1

kj0
−
(
log Ω∗

i

)
1≤i≤ℓ

‖2= OP

( aN

η wN

)
. (22)

¿From the other hand,

‖
(
log Ω∗

i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0
‖2=

ℓ∑

i=1

((
α̂j0 log(ri aN ) + log β̂j0

)
− log Ω∗

i

)2

.

Define γ1 :=
k∗j1−1 − kj0

kj0+1 − kj0

· β∗
j1−1, for all p ∈ {0, 1, . . . , j2 − j1 − 1}, γp :=

k∗j1+p − k∗j1+p−1

kj0+1 − kj0

·

β∗
j1+p−1 and γj2−j1+1 :=

kj0+1 − k∗j2
kj0+1 − kj0

· β∗
j2

. Then, using Lemma 4.1, one obtains

inf
α,β

{ ℓ∑

i=1

((
α log(ri aN) + log β

)
− log Ω∗

i

)2}
≥ C min

(
1,, |aN |2(α∗

(2)
−α∗

(1)
)),
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where C > 0 and α∗
(1) = maxj=j1−1,...,j2 α

∗
j , α

∗
(2) = maxj=j1−1,...,j2, j 6=(1) α

∗
j . As a conse-

quence, for satisfying all possible cases of j0, j1 and j2, one obtains

‖
(
log Ω∗

i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0
‖2≥ C |aN |2(mini α∗

i −maxi α∗
i ). (23)

Finally, using Cauchy-Schwarz Inequality,

Q ≤
(∥∥Y kj0+1

kj0
−
(
log Ω∗

i

)
1≤i≤ℓ

∥∥2 ·
∥∥( log Ω∗

i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0

∣∣2
)1/2

Therefore, using (22) and (23), since under assumptions of Theorem 2.1,

aN

η wN
= o
(
|aN |2(mini α∗

i −maxi α∗
i )
)
,

then

Q = oP

(
‖
(
log Ω∗

i

)
1≤i≤ℓ

− LaN
· Θ̂kj0+1

kj0
‖2
)
. (24)

We deduce from relations (21), (22), (23) and (24) thatP( min
(kj)1≤j≤m∈Vη wN

GN

(
(kj)1≤j≤m

)
≥ C

2
|aN |2(mini α∗

i −maxi α∗
i )
)

−→
N→∞

1.

�

Proof of Theorem 2.2: From Theorem 2.1, it is clear thatP([k̃j , k̃
′
j] ⊂ [k∗j , k

∗
j+1]
)

−→
N→∞

1 and
k̃′j − k̃j

NδN (τ ∗j+1 − τ ∗j )

P−→
N→∞

1. (25)

Now, for j = 0, . . . , m, (xi)1≤i≤ℓ ∈ Rℓ and 0 < ε < 1, let Aj and Bj be the events such
that

Aj :=
{

[k̃j , k̃
′
j] ⊂ [k∗j , k

∗
j+1]
}⋂

{∣∣∣
k̃′j − k̃j

NδN (τ ∗j+1 − τ ∗j )
− 1
∣∣∣ ≤ ε

}

and Bj :=






√
k̃′j − k̃j

aN

(
Y

k̃′
j

k̃j
− LaN

· Θ∗
j

)
∈

ℓ∏

i=1

(−∞, xi]






First, it is obvious thatP(Aj)P(Bj | Aj) ≤ P(Bj) ≤ P(Bj | Aj) + 1 −P(Aj). (26)

Moreover, from (4),P(Bj | Aj) = P((ε(N)
i (k̃j, k̃

′
j)
)
1≤i≤ℓ

∈
ℓ∏

i=1

(−∞, xi] | Aj

)

−→
N→∞

P(N (0,Γ(j)(α∗
j , r1, . . . , rℓ)

)
∈

ℓ∏

i=1

(−∞, xi]
)
.
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Using (25), it is straightforward that P(Aj) −→
N→∞

1. Consequently,P(Bj) −→
N→∞

P(N (0,Γ(j)(α∗
j , r1, . . . , rℓ)

)
∈

ℓ∏

i=1

(−∞, xi]
)

and therefore

√
k̃′j − k̃j

aN

(
Y

k̃′
j

k̃j
−LaN

·Θ∗
j

)
L−→

N→∞
N
(
0,Γ(j)(α∗

j , r1, . . . , rℓ)
)
. Now using again

(25) and Slutsky’s Lemma one deduces

√
δN
(
N(τ ∗j+1 − τ ∗j )

)

aN

(
Y

k̃′
j

k̃j
− LaN

· Θ∗
j

)
L−→

N→∞
N
(
0,Γ(j)(α∗

j , r1, . . . , rℓ)
)
.

Using the expression of Θ̃j as a linear application of Y
k̃′

j

k̃j
, this achieves the proof of Theorem

2.2. �
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2. Abry P., Veitch D., Flandrin P., Long-range dependent: revisiting aggregation with
wavelets J. Time Ser. Anal., Vol. 19, 253-266, 1998.

3. Absil P.A., Sepulchre R., Bilge A., Gérard P., Nonlinear analysis of cardiac rhythm
fluctuations using DFA method, J. Physica A : Statistical mechanics and its appli-
cations, 235-244, 1999.

4. Bai J. Least squares estimation of a shift in linear processes. J. of Time Series Anal.
5, p. 453-472, 1998.

5. Bai J., Perron P. Estimating and testing linear models with multiple structural
changes. Econometrica 66, p. 47-78, 1998.

6. Bardet J.M., Statistical Study of the Wavelet Analysis of Fractional Brownian Mo-
tion, IEEE Trans. Inf. Theory, Vol. 48, No. 4, 991-999, 2002.

7. Bardet J.M., Bertrand P., Identification of the multiscale fractional Brownian mo-
tion with biomechanical applications, Journal of Time Series Analysis, 1-52, 2007.

8. Bardet J.M., Bibi H., Jouini A., Adaptative wavelet based estimator of the memory
parameter for stationary Gaussian processes, To appear in Bernouilli, 2007.

25



9. Bardet J.M., Lang G., Moulines E., Soulier P., Wavelet estimator of long range-
dependant processes, Statist. Infer. Stochast. Processes, Vol. 3, 85-99, 2000.

10. Beran J., Terrin N., Testing for a change of the long-memory parameter, Biometrika,
83, 627-638, 1996.

11. Doukhan, P., G. Openheim, G. and Taqqu, M.S. (Editors), Theory and applications
of long-range dependence, Birkhäuser, Boston, 2003.
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