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Chapter 1

Introduction

These notes have been written to complete a mini-course "Introduction to (generalized) Gibbs measures" given at the universities UFMG (Universidade Federal de Minas Gerais, Belo Horizonte) and UFRGS (Universidade Federal do Rio Grande do Sul, Porto Alegre) during the first semester 2007. The main goal of the lectures was to describe Gibbs and generalized Gibbs measures on lattices at a rigorous mathematical level, as equilibrium states of systems of a huge number of particles in interaction. In particular, our main message is that although the historical approach based on potentials has been rather successful from a physical point of view, one has to insist on (almost sure) continuity properties of conditional probabilities to get a proper mathematical framework.

Gibbs measures are "probably" the central object of Equilibrium statistical mechanics, a branch of probability theory that takes its origin from Boltzmann ( [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF], 1876) and Gibbs ([51], 1902), who introduced a statistical approach to thermodynamics that allows to deduce collective macroscopic behaviors from individual microscopic information. Starting from the observation that true physical systems with a very disordered microscopic structure, like gases, ferromagnets like irons etc., could present a more ordered, non-fluctuating, macroscopic behavior, they start to consider the microscopic components as random variables and macroscopic equilibrium states as probability measures that concentrate on the "most probable" states among the possible "configurations" of the microscopic system, in a sense consistent with the second laws of thermodynamics. Of course, they did not use these modern probabilistic terms at that time, and it is one of the tasks of mathematical statistical mechanics to translate their intuitions in a more modern and rigorous formalism.

These ideas have been first introduced and justified by Boltzmann in his introduction of statistical entropy [START_REF] Boltzmann | The second law of Thermodynamics[END_REF] and have been thereafter used by Gibbs as a postulate to introduce his microcanonical, canonical and grand canonical ensembles [START_REF] Gibbs | Elementary principles in statistical mechanics[END_REF], providing three different ways of describing equilibrium states, which would nowadays be called "probability measures", at the macroscopic level. The main goal of modern mathematical statistical mechanics is thus to describe rigorously these concepts in the standard framework of probability and measure theory that has been developed during the century following Boltzmann's ideas, pursuing two main goals: To describe these ensembles as proper probability measures allowing the modelization of phase transitions phenomena, and to interpret them as equilibrium states in a probabilistic sense that would incorporate ideas taken from the second law of thermodynamics.

For this purpose of describing phase transitions phenomena, roughly seen as the possibility to get different macroscopic structures for the same microscopic interaction (e.g. gas versus liquid, positive or negative magnetization of iron, etc.), we shall see that an infinite-volume CHAPTER 1. INTRODUCTION formalism, which can be loosely justified by the large number of microscopic components in any macroscopic part of interacting systems, is required. For the sake of simplicity, and because it already incorporates many of the most interesting features of the theory, we shall focus on systems where the whole space is modelled by a discrete infinite lattice (mainly Z d ), with, attached at each site, a microscopic element modelled by a finite value (e.g. +1 for a positive "microscopic magnetization" in iron).

To describe equilibrium states and to model phase transitions phenomena in such a framework, we are led to construct probability measures on an infinite product probability space in an alternative way to the standard Kolmogorov's construction. This alternative "DLR" construction, rigorously introduced in the late sixties by Dobrushin [START_REF] Dobrushin | Description of a random field by means of conditional probabilities and the conditions governing its regularity[END_REF] and Lanford/Ruelle [START_REF] Lanford | Observables at infinity and states with short range correlations in statistical mechanics[END_REF], makes use of systems of compatible conditional probabilities with respect to the outside of finite subsets, when the outside is fixed in a boundary condition, to reach thereafter infinitevolume quantities. This DLR approach can also be seen as an extension of the Markov chains formalism and to describe Gibbs measures we shall focus on an extension of the Markov property, quasilocality, closely related to topological properties of conditional probability measures.

As we shall see, this approach allows to model phase transitions and the related critical phenomena. In that case, a qualitative change of the macroscopic system at a "critical point" is physically observed, together with a very chaotic critical behavior. This criticality is physically interpreted as a highly correlated system without any "proper scale", namely where a physical quantity called the correlation length should diverge, and such a system should be thus reasonably scaling-invariant. These considerations have led to the use of the so-called Renormalization group (RG) transformations, which appeared to be a very powerful tool in the theoretical physics of critical phenomena [START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF][START_REF] Gawedski | Rigorous renormalization group at work[END_REF]. It also gave rise to ill-understood phenomena, the RG pathologies, detected in the early seventies by Griffiths/Pearce [START_REF] Griffiths | Mathematical properties of position-space renormalizationgroup transformations[END_REF] and Israel [START_REF] Israel | Banach algebras and Kadanoff transformations[END_REF], and interpreted a few decades later by van Enter et al. [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] as the manifestation of the occurrence of non-Gibbsianness. This last observation was the starting point of the Dobrushin program of restoration of Gibbsianness, launched by Dobrushin in 1995 in a talk in Renkum [START_REF] Dobrushin | Gibbsian description of "non Gibbsian" field[END_REF] and consisting in two main goals: Firstly, to provide alternative (weaker) definitions of Gibbs measures that would be stable under the natural scaling transformations of the RG, and secondly to restore the thermodynamics properties for these new notions in order to still be able to interpret them as equilibrium states. This gave rise to generalized Gibbs measures.

These notes are organized as follows: We introduce in Chapter 2 the necessary mathematical background, focusing on topological and measurable properties of functions and measures on an infinite product probability space; we also recall there important properties of conditional expectations and introduce regular versions of conditional probabilities to describe the DLR construction of measures on infinite probability product spaces, mainly following [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. We describe then the general structure of the set of DLR measures in the realm of convexity theory and mention a few general consequences and examples at the end of the same chapter. We introduce Gibbs measures in the context of quasilocality and describe the main features of the set of Gibbs measures for a given interacting system in Chapter 3. The interpretation of Gibbs and quasilocal measures as equilibrium states is rigorously established in a general set-up in Chapter 4, and we describe renormalization group pathologies and generalized Gibbs measures in Chapter 5.

Chapter 2

Topology and measures on product spaces 2.1 Configuration space: set-up and notations

Lattices

For the sake of simplicity, which could also be loosely justified by the very discrete nature of physics, the physical space will be modelled by a lattice S, which in our examples will mostly be the d-dimensional regular lattice Z d . It is endowed with a canonical distance d and its elements, called sites, will be designed by Latin letters i, j, x, y, etc. A pair of sites {i, j} such that d(i, j) = 1 will be called nearest neighbor (n.n.) and denoted by ij . Finite subsets of the lattice S will play an important role for us and will be generically denoted by capital Greek letters Λ, Λ ′ , ∆, etc. We denote the set of these finite subsets of S by

S = Λ ∈ S, |Λ| < ∞ = Λ ⊂⊂ S
where |Λ| denotes the cardinality of Λ and ⊂⊂ means inclusion of a finite set in a bigger set. This notation | • | will be used for many different purposes without giving its exact meaning when it is obvious. It will be moreover mostly sufficient to work with increasing sequences (Λ n ) n∈N of cubes, defined e.g. when the lattice is Z d by Λ n = [-n, n] d ∩ S for all n ∈ N.

Single-spin state spaces

To each (microscopic) site i of the lattice we attach the same finite1 measurable space (E, E, ρ 0 ), of cardinality e := |E|. The a priori measure ρ 0 will then be chosen to be the normalized uniform counting measure on the σ-algebra E = P(E), formally defined in terms of Dirac measures by δ 0 = 1 e q∈E δ q . In our guiding example, the Ising model of ferromagnetism [70,[START_REF] Peierls | On Ising's model of ferromagnetism[END_REF], this set is E = {-1, +1}, but other models might be considered. At each site i of the lattice will be thus attached a random variable σ i ∈ E, called spin to keep in mind this seminal Ising model.

CHAPTER 2. TOPOLOGY AND MEASURES ON PRODUCT SPACES

This finite measurable space E will be called the single-spin state space and will be endowed with the discrete topology, for which the singleton sets are open, so that the open sets are all the subsets of E.

Configuration space

The microscopic states are then represented by the collections of random variables σ = (σ i ) i∈S , living in the infinite product space (Ω, F, ρ) = (E S , E ⊗S , ρ ⊗S 0 ) called the configuration space. (Infinite-volume) configurations will be denoted by Greek letters σ, ω, etc.

For any Λ ∈ S, the finite product space Ω Λ = E Λ comes with a finite collection of the random variables σ i for the sites i ∈ Λ and for any σ ∈ Ω, one denotes by σ Λ = (σ i ) i∈Λ this configuration at finite volume Λ. We also define concatenated configurations at infinite-volume by prescribing values on partitions of S, writing e.g. σ Λ ω Λ c for the configuration which agrees with a configuration σ in Λ and with another configuration ω outside Λ.

Measurable properties of the configuration space

The product σ-algebra F = E ⊗S is the smallest σ-algebra generated by the set of cylinders C σ ∆ = ω ∈ Ω : ω ∆ = σ ∆ , when σ ∆ runs over Ω ∆ and ∆ runs over S. We also write C = (C σ ∆ ), σ ∆ ∈ Ω ∆ , ∆ ∈ S and C Λ = (C σ ∆ ), σ ∆ ∈ Ω ∆ , ∆ ⊂⊂ Λ for the family of cylinders restricted to any sub-lattice Λ ⊂ S, not necessarily finite. Alternatively, one defines for all sites i of the lattice, the canonical projection Π i : Ω -→ E defined for all ω ∈ Ω by π i (ω) = ω i , and denotes by Π Λ the canonical projection from Ω to Ω Λ for all Λ ∈ S, defined for ω ∈ Ω by Π Λ (ω) = ω Λ := (ω i ) i∈Λ . Then, using the following rewriting of the cylinders,

C σ Λ = Π -1 Λ ({σ Λ }), ∀σ ∈ Ω
one gets that F is also the smallest σ-algebra that makes the projections measurable.

The macroscopic states will be represented by random fields, i.e. probability measures on (Ω, F), whose set will be denoted by M + 1 (Ω, F), or more briefly M + 1 (Ω). The simplest one is the a priori product measure ρ = ρ ⊗S 0 defined as the product of ρ 0 on the cylinders and extended to the whole lattice by virtue of the Kolmogorov's extension theorem [START_REF] Billingsley | Probability and measures. 3rd ed. Wiley series in probability and mathematical statistics[END_REF][START_REF] Feller | An introduction to probability theory and its applications[END_REF], recalled later in this chapter. This particular random field models the equilibrium state of a non-interacting particle system, for which the spins are independent random variables.

In order to mathematically describe microscopic and macroscopic behaviors, one would like to distinguish local and non-local events. The local ones are the elements of a sub-σ-algebra F Λ for a finite Λ ∈ S, where F Λ is the σ-algebra generated by the finite cylinders C Λ defined above. A function f : ω -→ R is said to be F Λ -measurable if and only if (iff) "it depends only on the spins in Λ":

f ∈ F Λ ⇐⇒ ω Λ = σ Λ =⇒ f (ω) = f (σ) .
Definition 2.1 (Local functions) A function f : Ω -→ R is said to be local if it is F Λmeasurable for some Λ ∈ S. The set of local functions will be denoted by F loc .

We shall use the same notation f ∈ F for the measurability w.r.t a σ-algebra or f ∈ H for the membership in a space H of functions.

Another important sub-σ-algebra concerns macroscopic non-local events. It is the so-called σ-algebra at infinity, of tail or asymptotic events σ-algebra, formally defined by

F ∞ = Λ∈S F Λ c .
Equivalently, it is the σ-algebra (countably) generated by the tail cylinders C ∞ := ∩ Λ∈S C Λ c . It consists of events that do not depend on what happens in microscopic subsets of the systems; they are typically defined by some limiting procedure. In our description of the Ising model, we shall encounter for example the tail events B m , defined, for m ∈ [-1, +1], by

B m = ω : lim n→∞ 1 |Λ n | i∈Λn ω i = m (2.2)
that will help to distinguish the physical phases of the system. Similarly, a function g is F ∞ -measurable (g ∈ F ∞ ) if it does not depend on the spins in any finite region, i.e. iff ∃Λ ∈ S s.t. σ Λ c = ω Λ c =⇒ g(ω) = g(σ).

These functions will be important later on to characterize macroscopic quantities and to detect non-Gibbsianness. They are also generally defined by some limiting procedure, the following function being e.g. tail-measurable:

∀ω ∈ Ω, g(ω) =    lim n→∞ 1 |Λn| i∈Λn ω i
if the limit exists.

anything otherwise.

Similar tail σ-algebras are also used in ergodic theory or in classical probability theory, in some 0-1-laws for example [START_REF] Berti | 0-1 laws for regular conditional distributions[END_REF][START_REF] Williams | Probability with martingales[END_REF]. To connect with these fields, we introduce here the basic notion of translation-invariance, which will also be important for physical interpretations later on. For simplicity, we introduce this notion on the lattice S = Z d but it could be easily extended to other lattices.

First one defines translations on the lattice as a family of invertible transformations (τ x ) x∈Z d indexed by the sites of the lattice and defined for all x ∈ Z d by τ x : y -→ τ x y = y + x ∈ Z d where additions and subtractions on the lattice are standard. They induce translations on Ω: The translate by x of ω ∈ Ω is the configuration τ x ω defined for all i ∈ S by

(τ x ω) i = ω τ -x i = ω i-x .
It also extends naturally to measurable sets (our "events"), measurable functions and measures. In particular, the set of translation-invariant probability measures on (Ω, F) is denoted by M + 1, inv (Ω) and the σ-algebra generated by the translation-invariant functions is the translation-invariant σ-algebra denoted by F inv .

Let us briefly leave the field of lattices to consider another framework that links our approach to exchangeability in the context of the so-called mean-field models. When S = N, one can define first a group I n of permutations at finite volume n, that are bijections that leave invariant the sites i > n, and define its union I = ∪ n∈N I n to be the group of all permutations of finitely many coordinates. The I-invariant probability measures on (Ω, F) form the set M I of exchangeable probability measures. For n ∈ N, the σ-algebra of the events invariant under permutations of order n is defined to be

I n = A ∈ I n : π -1 A = A, ∀π ∈ I n
and its intersection is the σ-algebra of symmetric or permutation-invariant events

I = n∈N I n .
(2.3)

Topological properties of the configuration space 2.3.1 Product topology

As we shall see, the notion of Gibbs measures is based on the interplay between topology and measure theory, and to relate these notions we need to introduce a topology T whose Borel σ-algebra coincides with F. The latter and T are then said to be compatible in the sense that both open sets and continuous functions are then measurable. Thus, the topology T is endowed with the same generators as those of F and T is the smallest topology on Ω containing the cylinders or making the projections continuous. To do so, we consider on the whole configuration space (Ω, F) the product topology T = T ⊗ S 0 of the discrete topology T 0 on E. Endowed with these topological and measurable structures, our configuration space has the following nice properties: Theorem 2.4 [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] The topological space (Ω, T ) is compact, its Borel σ-algebra coincides with the product σ-algebra F, and the measurable space (Ω, F) is a Polish space, i.e. metrizable, separable and complete.

Compactness follows from Tychonov's theorem and will be helpful in proving existence results and to simplify the topological characterizations of Gibbs measures.

As a metric, one can choose δ : Ω × Ω -→ R + , defined for all ω, σ ∈ Ω by

δ(ω, σ) = i∈S 2 -n(i) 1 {ω i =σ i }
where n : S -→ N is any bijection assumed to be fixed and known. With this topology, open sets are finite unions of cylinders and in particular, a typical neighborhood of ω ∈ Ω is given by a cylinder for Λ ∈ S denoted in this context by

N Λ (ω) = σ ∈ Ω : σ Λ = ω Λ , σ Λ c arbitrary .
Similarly, when S = Z d , a basis of neighborhoods of a configuration ω ∈ Ω is given by the family of cylinders (N Λn (ω)) n∈N , for a sequence of cubes (Λ n ) n∈N . Thus, two configurations are closed in this topology if they coincide over large finite regions, and the larger the region is, the closer they are2 . Moreover, the set of asymptotic events is dense for this topology, because they are insensitive to changes in finite regions. In particular, the set of configurations that are asymptotically constant is a countable and dense subset, leading thus to separability of the product topology by compatibility of the latter with the measurable structure.

Quasilocality for functions

This nice topological setting allows us to provide different equivalent characterizations of microscopic quantities. Firstly, we find it natural to say that a microscopic function f on Ω is arbitrarily "close" to functions which depend on finitely many coordinates, i.e. local functions. This leads to the important concept of a quasilocal function:

Definition 2.5 A function f : Ω -→ R is said to be quasilocal if it can be uniformly approximated by local functions, i.e. if for each ǫ > 0, there exists f ǫ ∈ F loc s.t.

sup ω∈Ω f (ω) -f ǫ (ω) < ǫ.
We denote by F qloc the set of quasilocal functions. It is the uniform closure of F loc in the sup-norm, and by compactness is automatically bounded. Moreover, due to the Polish and compact structure of Ω, one can use sequences and makes coincide continuity and uniform continuity. Quasilocal functions are continuous while asymptotic tail-measurable functions are discontinuous. Then, using the metric δ or the basis of neighborhoods described above, it is a simple exercise to prove that quasilocal functions are in fact the (uniformly) continuous functions on Ω, and we use it in the next lemma to give alternative definitions of quasilocality. When we do not use sequences, we shall deal with the following convergence: 

∀ǫ > 0, ∃ K ǫ ∈ S s.t. S ∋ Λ ⊃ K ǫ =⇒ F (Λ) -a ≤ ǫ.
Lemma 2.7 [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] A function f : Ω -→ R is quasilocal iff one of the following holds:

• Continuity: It is continuous at every ω ∈ Ω, i.e. ∀ω ∈ Ω, ∀ǫ > 0, ∃n ∈ N s.t.

sup σ∈Ω f (ω Λn σ Λ c n ) -f (ω) < ǫ.
• Uniform limit of local functions: There exists

(f n ) n∈N s.t. ∀n ∈ N, f n ∈ F Λn and lim n→∞ sup ω∈Ω f n (ω) -f (ω) = 0.
• Sequential uniform continuity: For each ǫ > 0, there exists n ∈ N s.t.

sup σ,ω∈Ω f (ω Λn σ Λ c n ) -f (ω) < ǫ.
• Uniform continuity:

lim Λ↑S sup ω,σ∈Ω,ω Λ =σ Λ f (ω) -f (σ) = 0.
An important consequence of this lemma is that a non-constant tail-measurable function can never be quasilocal. For example, let us consider the event

B 0 = ω : lim n→∞ 1 | Λ n | i∈Λn ω i = 0 .
The indicator function f of this event is tail-measurable, non-constant and non-quasilocal. Take for example Ω = {0, 1} Z . The configuration ω = 0, null everywhere, belongs to B 0 and f (0) = 1. Let N be a neighborhood of this null configuration, and choose it to be N Λn (0) for some n > 0. There exists then σ ∈ N Λn (0) such that σ Λ c n = 1 Λ c n , where 1 ∈ Ω is the configuration which value is 1 everywhere. For this configuration, lim n→∞ 1 |Λn| i∈Λn σ i = 1 and thus f (σ) = 0: This proves that f is discontinuous and thus non-quasilocal. Nonquasilocal functions will be important to detect non-Gibbsian measures in Chapter 5.

Weak convergence of probability measures

We have already introduced the space M + 1 (Ω, F) of probability measures on (Ω, F) that represents the macroscopic possible states of our systems. Before introducing different ways of constructing such measures on our infinite product spaces, we need a proper notion for the convergence of probability measures, i.e. to introduce a topology on M + 1 (Ω). For any µ ∈ M + 1 (Ω) and f ∈ F qloc , we write µ[f ] = f dµ for the expectation of f under µ. A strong way to do so is to consider the topology inherited from the so-called total-variation norm but this is indeed too strong a notion of convergence due to our willing of describing "non-chaotic" equilibrium states: Physically, this convergence means that expected values converges, uniformly for all bounded or continuous observables, i.e. microscopic in our point of view, and this occurs rarely in physical situations. We shall thus require a topology whose convergence mainly concerns non-uniform expectations of microscopic variables. This is the famous weak convergence of probability measures, which is indeed weaker than most ways of convergence, see [START_REF] Billingsley | Probability and measures. 3rd ed. Wiley series in probability and mathematical statistics[END_REF][START_REF] Feller | An introduction to probability theory and its applications[END_REF][START_REF] Williams | Probability with martingales[END_REF].

Definition 2.8 (Weak convergence) A sequence (µ n ) n∈N in M + 1 (Ω)
is said to converge weakly to µ ∈ M + 1 (Ω) if expectations of continuous functions converge:

µ n W -→ µ ⇐⇒ lim n→∞ µ n [f ] = µ[f ], ∀f ∈ F qloc .
This convergence gives no information on the convergence of the expectations of discontinuous (macroscopic, asymptotic) quantities. This will be important for our purpose of modelling phase transitions phenomena by working at finite but larger and larger sets through some infinite-volume limit. By definition, the set of local functions is dense in F qloc , so it is enough to test this convergence on F loc or on cylinders.

To describe, at the end of the chapter, the general convex structure of the set of Gibbs measures in case of phase transitions, we shall also need to deal with probability measures on spaces of probability measures, and we first endow such spaces with a canonical measurable structure. For any subset of probability measures M ⊂ M + 1 (Ω, F), the natural way to do so is to evaluate any µ ∈ M via the numbers µ(A), A ∈ F . One introduces then the evaluation maps on M defined for all A ∈ F by

e A : M -→ [0, 1]; µ -→ e A (µ) = µ(A).
(2.9)

The evaluation σ-algebra e(M) is then the smallest σ-algebra on M that makes measurable these evaluation maps, or equivalently the σ-algebra generated by the sets {e A ≤ c} for all A ∈ F, 0 ≤ c ≤ 1. For any bounded measurable function f ∈ F, the map

e f : M -→ [0, 1]; µ -→ e f (µ) := µ[f ]
is then e(M)-measurable.

Probability theory on infinite product spaces 2.4.1 Kolmogorov's consistency

The standard way to construct probability measures on an infinite product measurable space is to start from a consistent system of finite dimensional marginals, following a terminology of Kolmogorov [START_REF] Billingsley | Probability and measures. 3rd ed. Wiley series in probability and mathematical statistics[END_REF]:

Definition 2.10 A family (µ Λ ) Λ∈S of probability measures on (Ω Λ , F Λ ) is said to be consistent in the sense of Kolmogorov iff for all Λ ⊂ Λ ′ ∈ S, µ Λ (A) = µ Λ ′ Π Λ ′ Λ -1 (A) , ∀A ∈ F Λ where Π Λ ′ Λ is the natural projection from Ω Λ ′ to Ω Λ .
Given a consistent family of conditional probabilities, it is possible to extend it, in our mild framework, to the whole configuration space: Theorem 2.11 (Kolmogorov's extension theorem) Let (µ Λ ) Λ∈S be a consistent family of marginal distributions on a Polish infinite-product probability space (Ω, F). Then there exists a unique probability measure µ ∈ M + 1 (Ω) s.t. for all Λ ∈ S,

∀A ∈ F Λ , µ Π -1 Λ (A) = µ(A)
where Π -1 Λ (A) is the pre-image of A by the projection from Ω to Ω Λ , defined by

Π -1 Λ (A) = σ ∈ Ω : Π Λ (σ) = σ Λ ∈ A .
The main example of application of this theorem is the construction of the a priori product measure ρ on (E, E). Consider the counting measure ρ 0 ∈ M + 1 (Ω) on the single-site state space and the finite product measure ρ Λ = ρ ⊗Λ 0 on any of the finite product probability spaces (Ω Λ , F Λ ), defined for all Λ ∈ S on the cylinders by

ρ Λ (σ Λ ) = i∈Λ ρ 0 (i), ∀σ Λ ∈ Ω Λ and extended on F Λ by requiring, for all A ∈ F Λ , ρ Λ (A) = σ Λ ∈A ρ Λ (σ Λ ).
The system (ρ Λ ) Λ∈S is trivially a consistent family of marginals, and our configuration space being a Polish space, it extends into a unique probability measure ρ = ρ ⊗S 0 .

Hence, we know how to build elements µ of the (convex) set M + 1 (Ω, F), which are interpreted as a macroscopical description of the physical phases of the systems in our settings. The problem now is that we also want to model phase transitions, i.e. to get different infinitevolume measures corresponding to the same finite volume description, and to do so we have to proceed differently and work with systems of conditional probabilities consistent in a different sense than that of Kolmogorov, based on successive conditionings w.r.t. decreasing sub-σalgebras. Let us first recall a few important properties of conditional probabilities on infinite product probability Polish spaces.

Regular versions of conditional probabilities

Definition 2.12 [Conditional expectation] Let (Ω, F) be a measurable space, µ ∈ M + 1 (Ω, F), G a sub-σ-algebra of F and f ∈ F, µ-integrable. A conditional expectation of f given G, w.r.t. µ, is a function E µ [f | G] : Ω -→, R; ω -→ E µ [f | G](ω) such that 1. E µ [f | G] is G-measurable.

For any

g ∈ G bounded, g • E µ [f | G] dµ = g • f dµ and in particular E µ [f | G] dµ = f dµ.
The existence of such functions is insured by the Radon-Nikodým theorem [START_REF] Meyer | Probabilities and potential. North Holland mathematics studies[END_REF][START_REF] Williams | Probability with martingales[END_REF]. Nevertheless, a µ-integral being involved in point 2. of the definition above, such a conditional expectation is not unique, but two different versions of it can only differ at most on a set of µ-measure zero. Thus, Definition 2.12 does not define a unique function, but measure-zero modifications are however the only one possible: The conditional expectation E µ [f | G] is thus defined "µ-a.s." At this point, in the purpose of defining a probability via a prescribed system of conditional probabilities w.r.t. the outside of finite sets, one could get into troubles when trying without care to give a sense to conditional probabilities w.r.t. a sub-σ-algebra. In the same settings as the definition above, the good candidate for such an almost-surely defined conditional probability µ G (• | ω) would be defined to be, for all A ∈ F,

µ G (A | ω) := E µ [1 A | G](ω), µ-a.s.(ω).
Indeed the following characterizing properties of a probability measure are (a.s.) true:

• µ G (Ω | •) = 1, µ-a.s. and µ G (∅ | •) = 0, µ-a.s. • For all A ∈ F, 0 ≤ µ G (A | •) ≤ 1, µ-a.s. • For any countable collection (A i ) i∈I of pairwise disjoints elements of F, µ G (∪ i A i | • ) = i µ G (A i | • ), µ-a.s.

and one also has that for all

B ∈ G, µ G [B | •] = 1 B (•), µ-a.s.
The problem in this definition comes from the fact that the previous properties are only valid almost surely, and that the sets of measure zero that appear depend on the sets A and (A i ) i∈I ∈ F considered; the later being uncountably many, we cannot say that we have defined these conditional probabilities µ-almost everywhere 3 . What is needed to say so is to get a unique set of µ-measure zero, independent of the sets A, outside which the above properties are true. In such a case one says that there exists a regular version of the conditional probabilities of µ w.r.t. sub-σ-algebras of F. More precisely, this occurs when there exists a probability kernel (see next subsection) µ G from (Ω, F) to itself such that

µ-a.s., µ G [f | •] = µ[f | G](•), ∀f ∈ F bounded
where the "µ-a.s." means that there exists a (mostly abstract) measurable set of full µ-measure Ω µ where the above characterizing properties of a probability measure hold for all ω ∈ Ω µ , independently of the measurable set A ∈ F. In our framework, this is hopefully granted: Theorem 2.13 [START_REF] Meyer | Probabilities and potential. North Holland mathematics studies[END_REF] Any measure on a Polish probability space (Ω, F) admits a regular conditional probability w.r.t. any sub-σ-algebra of F.

We also mention here two direct consequences of Definition 2.12 which will be useful to characterize measures in terms of systems of regular conditional probabilities. Keeping the same settings, one has, µ-almost surely, for any bounded G-measurable function g, any bounded measurable function f and any sub-σ-algebra

G ′ ⊂ G, µ G [g • f | •] = E µ [g • f | G](•) = g • E µ [f | G] = g • µ G [f | •] and µ G ′ µ G [f | •] • = E µ E µ [f | G] | G ′ (•) = E µ [f | G ′ ](•) = µ G ′ [f | •]. (2.14) 
We recall now the useful concept of probability kernel to describe the alternative way of defining probability measures on infinite product probability spaces introduced in the late sixties by Dobrushin, Lanford and Ruelle to model phase transitions. Definition 2.15 A probability kernel from a probability space (Ω, F) to a probability space

(Ω ′ , F ′ ) is a map γ(• | •) : F ′ × Ω → [0, 1] such that • For all ω ∈ Ω, γ(• | ω) is a probability measure on (Ω ′ , F ′ ). • For all A ′ ∈ F ′ , γ(A ′ | •) is F-measurable.
The simplest example is the map γ(A | ω) = 1 A (ω) defined for any probability space (Ω, F), any A ∈ F, any ω ∈ Ω. It is a probability kernel from (Ω, F) into itself. More interesting examples concern regular versions of conditional probabilities, Markov transition kernels etc. We extend this notion in order to introduce the concept of specification and to prescribe conditional probabilities of a measure to try to define it. To do so, we state a few definitions.

Definition 2.16 Let γ be a probability kernel from (Ω, F) to (Ω ′ , F ′ ). For any function f ∈ F ′ , we define γf ∈ F to be the function defined for all ω ∈ Ω by

γf (ω) = Ω ′ f (σ) γ(dσ | ω).
We also define for any

µ ∈ M + 1 (Ω, F) the measure µγ ∈ M + 1 (Ω ′ , F ′ ) by ∀A ′ ∈ F ′ , µγ(A ′ ) = Ω γ(A ′ | ω) µ(dω).
A little bit more has to be required for a kernel to represent a regular version of a conditional probability. In order to illustrate the "double-conditioning" stability (2.14) of conditional probabilities we also introduce the notion of product (or composition) of kernels.

Definition 2.17 Let γ be a kernel from (Ω, F) to (Ω ′ , F ′ ) and γ ′ a kernel from (Ω ′ , F ′ ) to (Ω ′′ , F ′′ ). Then the product γγ ′ is the kernel from (Ω, F) to (Ω ′′ , F ′′ ) s.t.

∀A ′′ ∈ F ′′ , ∀ω ∈ Ω, γγ ′ (A ′′ | ω) = Ω ′ γ ′ (A ′′ | σ)γ(dσ | ω).
We are now ready to give the more formal Definition 2.18 (Regular version of conditional probability) Let (Ω, F, µ) be a probability space and G a sub-σ-algebra of

F. A regular (version of) conditional probability of µ given G is a probability kernel µ G (• | •) from (Ω, G) to (Ω, F) s.t. µ-a.s., µ G [f | •] = E µ [f | G](•), ∀f ∈ F and µ -integrable
Using the action of a kernel to a measure and the definition of the conditional expectation, it is also possible to characterize it in a more closed form, which will lead soon to a consistency condition different from the Kolmogorov one. Definition 2.19 (Regular conditional probability II) In the same settings as above, regular conditional probability of µ given G is a probability kernel µ G (• | •) from (Ω, F) to itself s.t. for all f F-measurable and µ-integrable,

1. µ G [f | •] is G-measurable. 2. µ-a.s., µ G [g • f | •] = g • µ G [f | •], for each bounded g ∈ G 3. The kernel leaves invariant the probability measure µ: µµ G = µ.
This last definition, coupled to the fact that every measure on a Polish space has regular conditional probabilities, enables also to describe the double conditioning property in terms of kernels and will give rise to the concept of specification. Definition 2.20 (System of regular conditional probabilities) Let (Ω, F, µ) be a probability space and (F i ) i∈I a family of sub-σ-algebras of F. A system of regular conditional probabilities of µ given (F i ) i∈I is a family of probability kernels µ F i i∈I on (Ω, F) s.t.

For each

i ∈ I, µ F i is a regular conditional probability of µ given F i . 2. If i, j ∈ I are such that F i ⊂ F j , then µ F i µ F j = µ F i , µ-a.s.
In statistical mechanics we go in the opposite direction: Starting from a regular system of conditional probabilities, one wants to reconstruct probability measures, and so one aims at removing the "µ-a.s." of the last definition, as one wants to obtain the same conditional probabilities for different measures.

DLR-consistency and specifications

Around 1970, Dobrushin [START_REF] Dobrushin | Description of a random field by means of conditional probabilities and the conditions governing its regularity[END_REF], Lanford/Ruelle [START_REF] Lanford | Observables at infinity and states with short range correlations in statistical mechanics[END_REF] have introduced a new way to construct probability measures on infinite product probability spaces that does not immediately yield uniqueness in the case of a Polish space, leaving the door open to the modelling of phase transitions in mathematical statistical mechanics. The key-point of their approach is to replace a system of marginals consistent in the sense of Kolmogorov by a system of regular conditional probabilities with respect to the outside of any finite set, giving rise to finite volume versions of conditional probabilities with prescribed boundary condition(s).

Let us consider now Λ ′ ⊂ Λ ∈ S and the family of sub-σ-algebra's (F Λ c ) Λ∈S , directed by inclusion in the sense that if Λ ′ ⊂ Λ ∈ S, one has

F Λ c ⊂ F Λ ′c and Λ∈S F Λ c = F ∞ .
A system of regular conditional probabilities of µ ∈ M + 1 (Ω) w.r.t. the mentioned filtration exists, according to preceding section. To remove the "µ-a.s" dependency and describe candidates to represent this system in the case of an equilibrium state, Preston [START_REF] Preston | Gibbs states on Countable sets[END_REF] has introduced the concept of specification. Definition 2.21 (Specification) A specification is a family γ = (γ Λ ) Λ∈S of probability kernels from (Ω, F) into itself such that

1. For all A ∈ F, γ Λ (A|•) is F Λ c -measurable. 2. (Properness) For all ω ∈ Ω, B ∈ F Λ c , γ Λ (B|ω) = 1 B (ω) 3. (Consistency) Λ ′ ⊂ Λ ∈ S =⇒ γ Λ γ Λ ′ = γ Λ . (2.22)
We recall that γ Λ γ Λ ′ is the map on Ω × F defined by

γ Λ γ Λ ′ (A|ω) = Ω γ Λ ′ (A|ω ′ ) γ Λ (dω ′ |ω).
Specifications are thus the appropriate objects to describe conditional probabilities; an important point is that they are defined everywhere on Ω, for the convenient reason that we want to deal with objects defined everywhere (not µ-a.s.), and characterize µ afterwards. This will allow the description of different measures for a single specification, that is to model phase transitions in our settings. We also emphasize that for all σ, ω ∈ Ω, for all Λ ∈ S, γ Λ (σ|ω) depends only on σ Λ and ω Λ c . For this reason, because only the components of ω outside Λ (beyond the boundary) are involved, ω is often called boundary condition in statistical mechanics, and we shall use this term frequently in the next sections. Moreover, Conditions 1. and 2. of the definition of a specification can be removed by requiring γ Λ to be kernels from

(Ω Λ c , F Λ c ) to (Ω Λ , F Λ ).
In fact, our main goal in this course is precisely to describe the set the measures satisfying the consistency relation when Λ becomes the whole lattice. Definition 2.23 (DLR measures) Let γ be a specification on (Ω, F). The set of DLR measures for γ is the set

G(γ) = µ ∈ M + 1 (Ω, F) : ∀Λ ∈ S, µ[A | F Λ c ](•) = γ Λ (A | •), µ-a.s., ∀A ∈ F (2.24)
of the probability measures consistent with γ. Equivalently,

µ ∈ G(γ) ⇐⇒ µγ Λ = µ, ∀Λ ∈ S.
(2.25)

A DLR measure is thus a measure specified by some specification γ.

This definition reminds one of the one of the Kolmogorov: Instead of dealing with the family of marginals of the measure, we deal with its system of conditional probabilities. It will be of importance when one models equilibrium states. Indeed, for such a DLR measure, the consistency relation implies that integrating out with respect to boundary conditions typical for the "equilibrium" DLR state outside a finite volume does not change the state in the finite volume. We shall be more precise about equilibrium properties in Chapter 4. On a Polish space, the Kolmogorov compatibility yields existence and uniqueness of the consistent measure, whereas the set G(γ) could have a very different structure, the latter being a very important fact for our purpose of modelling the phenomenon of phase transitions. Indeed, in contrast to what occurs in Kolmogorov's consistency theorem, here neither existence, nor uniqueness needs to occur. Before describing more precisely various sets of DLR-measures, we provide a few examples describing these different possible structures.

Examples

We begin by two examples that illustrate the negative side of this description, the possibility of non-existence of measures specified by a specification. This will help us to extract the topological properties required to build a satisfactory framework describing Gibbs measures as equilibrium states of interacting particle systems. Thereafter, we provide as an example of uniqueness followed by an example of non-uniqueness interpreted as the occurrence of a phase transition, the standard Ising model.

One-dimensional random walk:

This analysis goes back to Spitzer but our presentation is inspired by [START_REF] Prum | Processus sur un réseau et mesures de Gibbs[END_REF]. The singlespin state E = Z is not compact and this is the reason for the non-existence of a DLR measure. The lattice is the time, modelled by S = Z. The symmetric n.n. random walk on Z, Y = (Y n ) n∈Z , is then a random element of the configuration space Ω = Z Z and we denote by P its law on (Ω, F), canonically built using Kolmogorov's extension theorem.

Let us try to define a specification γ with which P would be consistent. Using the Markov property for random walks, the candidate is given by the kernel γ Λn , defined for all cube Λ n = [-n, n] ∩ Z and for all σ, ω ∈ Ω by

γ Λn (σ | ω) = P Y Λn = σ Λn |Y -n-1 = ω -n-1 , Y n+1 = ω n+1
where the event in the conditioning is the cylinder C ω {n-1,n+1} , of positive P-measure.

It is straightforward to extend it to any finite Λ ∈ S to get a family of proper kernels γ = (γ Λ ) Λ∈S that is indeed a specification. Let us assume that there exists µ ∈ G(γ).

Then we claim that µ cannot be a probability measure because for all k ∈ Z, and for all ǫ > 0, µ[Y 0 = k] < ǫ. The reason for this is that for all n ∈ N, S n = Y n -Y 0 follows a binomial law. It is unbounded and thus for all ǫ > 0 and k ∈ Z and n big enough, P[S n = k] < ǫ. Using then the consistency relation µγ Λn = µ to evaluate µ[Y 0 = k] in terms of conditional probabilities of P, one gets this result of "escape of mass to infinity": If µ ∈ G(γ), then for all k ∈ Z, and for all ǫ > 0, µ[Y 0 = k] ≤ ǫ, and thus µ cannot be a probability measure: G(γ) = ∅.

2. Totally random single-particle:

This example has been provided by Georgii [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. Consider the case of a lattice gas, i.e. E = {0, 1}, S = Z d , denote 0 the configuration null everywhere and for any a ∈ S consider the configuration σ a characterizing a single particle localized at the site a defined for all i ∈ S by (σ a ) i = 1 iff i = a (and zero otherwise). To model a single particle evolving totally at random in a lattice gas in this DLR framework, introduce the following kernel, proper by construction:

∀Λ ∈ S, ∀ω ∈ Ω, ∀A ∈ F , γ Λ (A | ω) =    1 |Λ| a∈Λ 1 A (σ a ) if ω Λ c = 0 Λ c 1 A (0 Λ ω Λ c ) otherwise.
Firstly, one can check that the corresponding γ is a specification and that for any sequence (µ n ) n of probability measures on (Ω Λn , F Λn ), the sequence of probability measures (µ n γ Λn ) n converges weakly towards the Dirac measure δ 0 on the null configuration, and thus that the latter is a good candidate to be in G(γ). Nevertheless this is not the case and assuming that a measure µ belongs to G(γ), one proves [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] that

µ i∈Z d ω i > 1 = µ i∈Z d ω i = 1 = µ i∈Z d ω i = 0 = 0
using different techniques and expressions of the kernel in the three cases. Thus µ(Ω) = 0, µ cannot be a probability measure and G(γ) is empty.

In this case, the non-existence comes from the dependence of the kernel on what happens at infinity and this cannot be controlled by the topology of weak convergence 4 . A good framework to insure existence would be specifications where this influence is shield out, and the main one corresponds to specifications that transform local functions into quasilocal ones, giving rise to the concept of quasilocal specification, central in this theory of infinite-volume Gibbs measures as we shall see next chapter.

3. An example of existence and uniqueness: reversible Markov chain:

Let us describe reversible Markov chains by means of specifications, following again a presentation of [START_REF] Prum | Processus sur un réseau et mesures de Gibbs[END_REF]. Consider Ω = {-1, +1} Z and a stochastic matrix

M = p 1 -p 1 -q q
with p > 0, q > 0 such that M is irreducible and aperiodic. Thus5 

∃ unique ν ∈ M + 1 (E, E) such that νM = ν. This defines an ergodic Markov chain X = (X n ) n∈N and by Kolmogorov's existence theorem, one defines a unique

P ν ∈ M + 1 (Ω) s.t. for all ω ∈ Ω, k, i 1 , • • • , i k ∈ N, P ν C ω {i 1 ,••• ,i k } = ν(ω i 1 ).M i 2 -i 1 (ω i 1 , ω i 2 ). • • • .M i k -i k-1 (ω i k-1 , ω i k ).
The ergodicity of the chain is crucial to get uniqueness, using that [START_REF] Chung | Markov chains with stationary transition probabilities[END_REF] 

∀j, k ∈ E, lim n→∞ M n (j, k) = ν(k) > 0.
The considered Markov chain X = (X n ) n∈N is then the sequence of random variables on {-1, +1} N , E ⊗N of law P ν . Writing its elementary cylinders in the form

C ω k = {X k (ω) = i} = {ω k = i}, one has for all ω ∈ Ω, k ∈ N, i 1 , • • • , i k ∈ N, P ν C ω {i 1 ,••• ,i k } = ν(ω i 1 ).M i 2 -i 1 (ω i 1 , ω i 2 ). • • • .M i k -i k-1 (ω i k-1 , ω i k )
and gets the Markov property:

∀k ∈ N, ∀i, j, ǫ k-1 , • • • , ǫ 0 ∈ E P ν ω i k+1 = i|ω i k = j, • • • , ω 0 = ǫ 0 = P ν ω i k+1 = i|ω i k = j = M (j, i).
This Markov chain is also reversible: ∀k ∈ N, ∀l ∈ N, ∀i, j, ǫ k+1 ,

• • • , ǫ k+l ∈ E P ν [ω i k = i|ω i k+1 = j, • • • , ω k+l = ǫ k+l ] = P ν [ω i k = i, ω i k+1 = j, • • • , ω k+l = ǫ k+l ] P ν [ω i k+1 = j, • • • , ω k+l = ǫ k+l ] = ν(i)M (i, j) • • • M (ǫ k+l-1 , ǫ k+l ) ν(j)M (j, ǫ k+2 ) • • • M (ǫ k+l-1 , ǫ k+l ) = ν(i)M (i, j) ν(j) := N (j, i)
where N is then the stochastic matrix associated to the reverse chain. Hence, we can extend this chain on Ω = {-1, +1} Z , and in particular it is still ergodic. Introduce now a specification γ such that P ν ∈ G(γ), and compute

P ν σ Λn |σ Λ c n = ω Λ c n = P ν [ω ]-∞,-n-1] σ Λn ω [n+1,+∞[ ] P ν [ω ]-∞,-n-1] ω [n+1,+∞[ ] = P ν [ω -n-1 σ Λn ω n+1 ] P ν [ω -n-1 ω n+1 ] = ν(ω -n-1 )M (ω -n-1 , σ -n ) • • • M (σ n , ω n+1 ) ν(ω -n-1 )M 2n+2 (ω -n-1 , ω n+1 ) = M (ω -n-1 , σ -n ) • • • M (σ n , ω n+1 ) M 2n+2 (ω -n-1 , ω n+1 ) .
Denote then the (finite) normalization by Z Λn (ω) = M 2n+2 (ω -n-1 , ω n+1 ) and define a proper kernel γ Λn on (Ω, F), for all σ ∈ Ω, by

γ Λn (σ|ω) = 1 Z Λn (ω) • M (ω -n-1 , σ -n ) • • • M (σ n , ω n+1 ).
One can check that we define thus a specification γ such that P ν ∈ G(γ): In contrast to the modelization of the simple random walk described above, the existence of a DLR measure is then insured. Let us consider now any µ ∈ G(γ) and prove that µ = P ν . To do so, it is enough to prove for all ω ∈ Ω,

k, i 1 , • • • , i k ∈ N, P ν C ω {i 1 ,••• ,i k } = µ (ω i 1 , • • • , ω i k ) .
Let us prove it for the one-dimensional cylinder using Markov property and consistency:

We have for all x ∈ E and n ∈ N

µ[σ 0 = x] = i∈E,j∈E µ[σ 0 = x|σ -n-1 = i, σ n+1 = j] • µ[σ -n-1 = i, σ n+1 = j] = i∈E,j∈E M n+1 (i, x) • M n+1 (x, j) M 2n+2 (i, j) • µ[σ -n-1 = i, σ n+1 = j].
Taking now the limit when n goes to infinity, one gets

µ[σ 0 = x] = i∈E,j∈E ν(x) • ν(j) ν(j) • µ[σ -n-1 = i, σ n+1 = j] = ν(x) i∈E,j∈E µ[σ -n-1 = i, σ n+1 = j] = ν(x) = P ν [σ 0 = x].
We obtain the equality of these measures on the other cylinders in the same way. Thus G(γ) is the singleton6 {P ν }.

4. An example of phase transition: Ferromagnetic 2d-Ising model:

It is the archetype of original Gibbs specification and we present it briefly at dimension d = 2, temperature T = 1 β > 0 and no external field, as originally introduced by Lenz to model ferromagnetism7 . To do so, one considers microscopic magnets σ i ∈ E = {-1, +1} at each site i ∈ Z 2 , and to express the fact that two neighbors have a tendency to align, the following nearest neighbor potential. It is a family Φ = (Φ A ) A∈S of F A -measurable functions defined for all ω ∈ Ω by

Φ A (ω) =    -Jω i ω j if A = ij 0 otherwise.
The corresponding Hamiltonian at finite volume Λ ∈ S, temperature β -1 > 0, coupling J > 0 and boundary condition ω ∈ Ω is the well-defined8 function on Ω × Ω defined by

H βΦ Λ (σ | ω) = A∈S,A∩Λ =∅ Φ A (σ Λ ω Λ c ).
The Gibbs specification at inverse temperature β > 0 is the family of probability kernels γ βΦ = (γ βΦ Λ ) Λ∈S given for all Λ ∈ S, σ, ω ∈ Ω by

γ βΦ Λ (σ | ω) = 1 Z βΦ Λ (ω) e -βH Λ (σ|ω)
where the partition function Z βΦ Λ (ω) is a standard normalization depending on the boundary condition ω. It is indeed a specification due to the expression of the Hamiltonian in terms of a sum over local potential terms (see [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] or next section). Intensive studies have established the following: Theorem 2.26 (Phase transition at low T) There exists β c > 0 s.t.

• There exists a unique measure consistent with γ βΦ at high temperatures β < β c .

• At low temperatures β > β c , the set G(γ βΦ ) is the Choquet simplex [µ - β , µ + β ] whose extremal elements are mutually singular and can be selected by the weak limits

µ ± β (•) = lim Λ↑S γ Λ (• | ±).
with the magnetizations satisfying

µ + β [σ 0 ] = -µ - β [σ 0 ] = M 0 > 0
The existence of the weak limits is usually proved here using correlation or related (GKS, FKG,etc.) inequalities valid for some ferromagnetic systems. The existence of a critical temperature has been qualitatively established by Peierls in 1936 [START_REF] Peierls | On Ising's model of ferromagnetism[END_REF][START_REF] Griffiths | Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet[END_REF], using a geometrical computation based on the energy of contours, that are circuits in the dual of the lattice associated to a configuration and whose lengths are related to its energy. His analysis gave rise to the powerful Pirogov-Sinai theory of phase transitions for more general models [START_REF] Pirogov | Phase Diagram of Classical Lattice Systems[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]. The exact value of β c is due to Kramers and Wannier in 1941 [START_REF] Kramers | Statistics of the two-dimensional ferromagnet I[END_REF], while Yang got the magnetization in 1951 [START_REF] Yang | The spontaneous magnetization of a two-dimensional Ising model[END_REF], both using algebraic tools 9 . The full convex picture, restricted to translation-invariant measures, has been independently proved by Aizenmann [START_REF] Aizenman | Translation-invariance and instability of phase coexistence in the twodimensional Ising system[END_REF] and Higuchi [START_REF] Higuchi | On the absence of non-translation-invariant Gibbs states for the twodimensional Ising model[END_REF], both inspired by considerations on percolation raised by Russo [START_REF] Russo | The infinite cluster method in the two-dimensional Ising model[END_REF], described in [START_REF] Georgii | Probabilistic techniques in equilibrium and non-equilibrium statistical physics[END_REF]. This picture has been recently extended to higher dimension by Bodineau [START_REF] Bodineau | Translation-invariant Gibbs states for the Ising model[END_REF]. The fact that G(γ βΦ ) is the Choquet simplex [µ - β , µ + β ] means that any measure µ ∈ G(γ βΦ ) is uniquely determined by a convex combination of the extreme phases µ ± β , i.e. that there exists a unique α ∈ [0, 1] s.t. µ = αµ - β + (1α)µ + β . The situation is more complex in higher dimension or on other lattices, as we shall see.

Convexity theory of DLR-measures

Before introducing Gibbs measures properly speaking within the nice topological framework of quasilocality, we first study the general structure of the set G(γ) of probability measures consistent with a specification γ on a general Polish probability space (Ω, F), product of10 a finite single-site state space (E, E). In this case, the family C of cylinders has the nice following property of being a countable core, following a terminology of [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]: Definition 2.27 (Countable core) A countable family C ⊂ F is said to be a countable core if it has the following properties:

1. C generates F and is stable under finite intersections11 .

2. If (µ n ) n∈N is a sequence of M + 1 (Ω) such that lim n→∞ µ n (C) exists for any cylinder C ∈ C, then there exists a unique µ ∈ M + 1 (Ω) that coincides with this limit on C:

∀C ∈ C, µ(C) = lim n→∞ µ n (C).
(2.28)

The proof that the family of cylinders is indeed a core relies on Carathéodory's extension theorem [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF][START_REF] Williams | Probability with martingales[END_REF]. The main purpose of this section is to use this property to provide a general description of G(γ) when it is not an empty set12 .

Choquet simplex of DLR-measures

Theorem 2.29 Assume that G(γ) = ∅. Then G(γ) is a convex subset of M + 1 (Ω, F) whose extreme boundary is denoted exG(γ), and satisfies the following properties:

1. The extreme elements of G(γ) are the probability measures µ ∈ G(γ) that are trivial on the tail σ-field F ∞ :

exG(γ) = µ ∈ G(γ) : µ(B) = 0 or 1, ∀B ∈ F ∞ .
(2.30)

Moreover, distinct extreme elements µ, ν ∈ exG(γ) are mutually singular: ∃B ∈ F ∞ , µ(B) = 1 and ν(B) = 0, and more generally, each µ ∈ G(γ) is uniquely determined within G(γ) by its restriction to F ∞ .

2. G(γ) is a Choquet simplex: Any µ ∈ G(γ) can be written in a unique way as

µ = exG(γ) ν • α µ (dν) (2.31)
where α µ ∈ M + 1 exG(γ), e(exG(γ)) is defined for all M ∈ e(exG(γ)) by

α µ (M ) = µ ω ∈ Ω : ∃ν ∈ M, lim n γ Λn (C|ω) = ν(C) for any cylinder C . (2.32)
In particular, when M is a singleton {ν} ∈ e(exG(γ)), (2.32) reads

α µ ({ν}) = µ ω ∈ Ω : lim n γ Λn (•|ω) = ν(•) . (2.33)
The convexity of G(γ) is trivial and 1. will be a direct consequence of the following lemma, also crucial for 2. We recall that µ ∈ G(γ) is extreme iff

µ = αν + (1 -α)ν with α ∈]0, 1[ and ν, ν ∈ G(γ) =⇒ ν = ν = µ. Lemma 2.34 Assume that µ ∈ G(γ) is such that µ = αν + (1 -α)ν, with α ∈]0, 1[, ν, ν ∈ M + 1 (Ω).
Then ν << µ, ν << µ and

ν ∈ G(γ) ⇐⇒ f : dν dµ ∈ F ∞ . (2.

35)

Proof: Let µ, ν, ν and α as above. The absolute continuity of ν w.r.t. µ comes trivially from the positiveness of probability measures: Take A ∈ F with µ(A) = 0, then αν(A) + (1α)ν(A) = 0 implies ν(A) = ν(A) = 0 because 0 < α < 1, and thus ν << µ, ν << µ. Now let us prove the important statement (2.35). We follow 13 mostly the proof of [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] and introduce first two σ-algebras related to the specification γ: The σ-algebra of γ-invariant measurable sets

F γ = A ∈ F : γ Λ (A|•) = 1 A (•), ∀Λ ∈ S
and 14 the σ-algebra of µ-almost surely γ-invariant measurable sets

F γ (µ) = A ∈ F : γ Λ (A|•) = 1 A (•) µ-a.s., ∀Λ ∈ S .
We first prove that for a given µ ∈ G(γ),

ν ∈ G(γ) ⇐⇒ f := dν dµ ∈ F γ (µ). (2.36)
To prove the first part of (2.36), it is enough to prove that for all c ∈ [0, 1] the event {f ≥ c} ∈ F γ (µ). For Λ ∈ S, we want to prove that, whenever µ, ν ∈ G(γ) and f = dν dµ ,

γ Λ (f ≥ c|•) = 1 f ≥c (•), µ -a.s.
or equivalently that when g = 1 f ≥c , one has

γ Λ g = g, µ -a.s. (2.37)
Now, µ ∈ G(γ) implies µ γ Λ gg = 0, so to prove (2.37) it is enough to prove γ Λ g ≤ g, µa.s.

(2.38) 13 More generally, the proof comes from [START_REF] Dynkin | Sufficient statistics and extreme points[END_REF], but we have rewritten it to avoid the introduction of too many concepts. These ideas are also related to the so-called desintegration of measures, see [START_REF] Meyer | Probabilities and potential. North Holland mathematics studies[END_REF][START_REF] Berti | 0-1 laws for regular conditional distributions[END_REF][START_REF] Berti | A conditional 0-1 law for the symmetric σ-field[END_REF]. 14 They are indeed σ-algebras [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

Writing γ Λ g = (γ Λ g) • 1 f ≥c + (γ Λ g) • 1 f <c = g • γ Λ g + 1 f <c • γ Λ g, one gets that proving (γ Λ g) • 1 f <c = 0, µ -a.s. (2.39)
will be enough to get (2.38) and thus (2.37). To do so, let us prove that

{f <c} (f -c) • γ Λ g dµ ≥ 0 (2.40) i.e. that {f <c} f • γ Λ g dµ ≥ c • {f <c} γ Λ g dµ. (2.41) 
Using ν = f µ, νγ Λ = ν, µ = µγ Λ and the expression for g, one writes

f <c f • γ Λ g dµ = Ω f • γ Λ g dµ - f ≥c f • γ Λ g dµ = Ω f • γ Λ g dµ - Ω f • g • γ Λ g dµ = Ω γ Λ g dν - Ω f • g • γ Λ g dµ = Ω g • dν - Ω f • g • γ Λ g dµ = Ω f • g • dµ - Ω f • g γ Λ g dµ = Ω f • g • (1 -γ Λ g) dµ. But f • g = f • 1 f ≥c ≥ c • 1 f ≥c = c • g, and because 0 ≤ γ Λ g ≤ 1, one gets f <c f • γ Λ g dµ ≥ c • Ω g • (1 -γ Λ g) dµ = c • µ[g] -c • µ[gγ Λ g] = c • f <c γ Λ g dµ
where the last equality has been obtained using the consistency relation µ

[g] = µ[γ Λ g]. So
(2.41) holds, which in turns implies (2.40) and then (2.39) because trivially (fc) is strictly negative on the event {f < c}, implying thus γ Λ g = 0 on the same event, that is exactly (2.38). Thus one has γ Λ g = g µ-a.s., and eventually that the density f ∈ F γ (µ).

Let us now prove the converse statement, i.e. that when µ ∈ G(γ) and f = dν dµ ,

f ∈ F γ (µ) =⇒ ν = f • µ ∈ G(γ).
It is enough to prove it for a step function f = 1 A , with A ∈ F γ (µ), so let us prove that for all Λ ∈ S and A ∈ F γ (µ), the measure ν(

•) := 1 A (•)µ(•) = µ(• ∩ A) satisfies νγ Λ = ν.
By the defining properties of a specification, one can write, for all D ∈ F and Λ ∈ S,

νγ Λ (D) = Ω γ Λ (D|•) dν = ν γ Λ (A ∩ D|•) + ν γ Λ (D \ A|•) ≤ µ γ Λ (A ∩ D|•) + µ 1 A (•)γ Λ (Ω \ A|•) = µ(A ∩ D) + µ 1 A (•)1 Ω\A (•) = ν(D).
Working similarly on D c one also gets the domination of νγ Λ (D c ) by ν(D c ), and together with νγ

Λ (D) + νγ Λ (D c ) = 1 = ν(D) + ν(D c )
this implies νγ Λ (D) = ν(D), ∀D ∈ F and Λ ∈ S, so ν ∈ G(γ) and (2.36) holds.

To conclude, realize first that F ∞ is exactly the γ-invariant σ-algebra F γ : Any A ∈ F ∞ is γ-invariant by properness, and reciprocally, any γ-invariant set A ∈ F ∞ , because it can be written A = γ Λ (A|•) = 1 for any Λ ∈ S. Eventually, tail-triviality is obtained because µ is trivial on F γ (µ) if and only if it is trivial on F γ = F ∞ , the µ-completion of the latter being exactly 15 F γ (µ), see [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

Proof of Theorem 2.29:

1. It is straightforward to check that G(γ) is a convex subset of M + 1 (Ω).
Then exG(γ) is non-empty 16 and suppose µ is one of its extreme elements, and that there exists B ∈ F ∞ with 0 < µ(B) < 1. Then the conditional probabilities w.r.t. B and its complement B c are well-defined as probability measures on (Ω, F) in such a way that

µ(•) = µ(•|B)µ(B) + µ(•|B c )µ(B c ) or equivalently µ(•) = α µ(•|B) + (1 -α) µ(•|B c ) (2.42) with α = µ(B) ∈ ]0, 1[. Denote ν(•) = µ(•|B) and rewrite ν(•) = µ(• ∩ B) µ(B) = 1 B (•) µ(B) • µ(•)
in such a way that ν << µ, with a density

dν dµ = 1 B (•) µ(B) that belongs to F ∞ because B is a tail event. Lemma 2.34 proves thus that ν(•) = µ(•|B) and ν(•) = µ(•|B c ) are distinct elements of G(γ)
, and together with (2.42) and 0 < α < 1, this contradicts the extremality of µ. Thus, such a tail event B ∈ F ∞ cannot exist and one gets the first part of item 1. of this theorem:

µ ∈ exG(γ) =⇒ µ(B) = 0 or 1, ∀B ∈ F ∞ .
To prove the converse statement, consider µ ∈ G(γ), trivial on F ∞ and such that there exists α ∈]0, 1[ and ν, ν ∈ exG(γ) with µ = αν + (1α)ν. Then by Lemma 2.34, ν << µ with a density f := dν dµ ∈ F ∞ . The latter is a density thus µ[f ] = 1 and by tail-triviality of µ one also has µ[f ] = f (µ-a.s.). Hence f = 1 (µ-a.s.) and ν = ν = µ, which is thus an extreme element of G(γ):

µ(B) = 0 or 1, ∀B ∈ F ∞ =⇒ µ ∈ exG(γ).
Let us prove now that any µ ∈ G(γ) is uniquely determined within G(γ) by its restriction to

F ∞ . Consider µ, ν ∈ G(γ) such that µ(B) = ν(B) for all B ∈ F ∞ and the convex combina- tion μ = 1 2 µ + 1 2 ν, which is also in G(γ). By Lemma 2.34 one can write µ = f • μ and ν = g • μ with f, g ∈ F ∞ . If ν = µ on F ∞ , then one also has μ = ν = µ on F ∞ , thus f = g = 1 and ν = µ.
In particular, distinct extreme elements are mutually singular because they are trivial on the tail-σ-algebra: There exists then B ∈ F ∞ such that µ(B) = 1 and ν(B) = 0.

Hence, we have now a characterization of extremality in terms of tail-triviality. To see how this leads to a unique simplicial decompostion, we shall also use the following characterization of extremal DLR measures, which can be derived from (2.30) using standard arguments:

exG(γ) = µ ∈ G(γ) : µ[A|F ∞ ] = µ(A), µ-a.s., ∀A ∈ F . (2.43) 2.
To get the unique extreme decomposition of µ ∈ G(γ), we follow the spirit of the proof of Dynkin [START_REF] Dynkin | Sufficient statistics and extreme points[END_REF] as worked out in detail by Georgii [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] in our particular DLR case. We shall mention at the end of this chapter other frameworks where such a decomposition holds.

We start thus from a specification γ for which there exists µ ∈ G(γ). By consistency, for any n ∈ N, the kernel γ Λn is a regular version of conditional probability of µ given F Λ c n :

γ Λn (A|•) = µ[A|F Λ c n ](•), µ -a.s., ∀A ∈ F.
(2.44)

The existence of such a regular version of conditional probabilities is insured by Theorem 2.13, and we shall sometimes denote formally Ω µ the set of full µ-measure set on which (2.44) holds for all A and for all n. Remark that the uniformity in n implies that Ω µ is a tail event.

The backward martingale theorem [START_REF] Williams | Probability with martingales[END_REF] ensures then that the following almost-sure limit

lim n→∞ µ[C|F Λ c n ](•) = µ[C|F ∞ ](•), ∀C ∈ C (2.45)
exists also on a full measure set (that can be assumed to be the same Ω µ ), defining a regular version of the conditional probability w.r.t. the tail σ-algebra F ∞ . Remark that the regularity of such versions is encoded in the order of the locutions "µ-a.-s." and "∀A ∈ F".

Our strategy is now to combine (2.44) and (2.45) with the core property (Definition 2.27) to introduce appropriate objects for a decomposition on the countable family of cylinders first, to derive some (tail-) measurability properties using countability, and thereafter to extend in a standard way the latter objects onto probability kernels that are in some sense extreme "µ-almost surely". In fact, the starting point of the decomposition is one of the defining properties of versions of conditional probability with respect to the tail σ-algebra:

∀µ ∈ M + 1 (Ω), µ(•) = Ω µ[•|F ∞ ](ω) dµ(ω). (2.46) 
In some informal sense, the regular versions of µ[•|F ∞ ] are the prototypes of extremal measures entering in the decomposition of any µ ∈ G(γ). To formalize this using consistency and the backward martingale theorem, we need to carefully define appropriate asymptotics of the specification γ, that will be probability kernels with an asymptotic properness leading to tail triviality, that eventually leads to a concentration on the extreme elements of G(γ).

Step 1: µ-asymptotics of the specification We use first the core property (2.28) to µ-almost-surely extend our asymptotic kernels from a definition on the cylinders. Indeed, combining (2.44) and (2.45), one gets that

∀ω ∈ Ω µ , lim n→∞ γ Λn (C|ω) = µ[C|F ∞ ](ω), ∀C ∈ C.
By the core property, there exists then, for all ω ∈ Ω µ ,

π ω ∈ M + 1 (Ω) s.t. ∀C ∈ C, π ω (C) = lim n→∞ γ Λn (C|ω) = µ[C|F ∞ ](ω). (2.47)
Extending this construction to any ω ∈ Ω c µ by requiring π ω to be any arbitrary elements of M + 1 (Ω), one gets a probability kernel with some nice specific properties, as seen in the following 

Lemma 2.48 Let µ 0 ∈ M + 1 (Ω), µ ∈ G(γ), Ω µ ∈ F ∞ as
• : F × Ω -→ [0, 1]; (A, ω) -→ π ω (A) as follows: • ∀ω ∈ Ω µ , π ω is the unique element of M + 1 (Ω) such that ∀C ∈ C, π ω (C) = lim n γ Λn (C|ω) = µ[C|F ∞ ](ω).
• ∀ω ∈ Ω c µ , π ω is chosen to be the arbitrary probability measure µ 0 .

Then π • is a probability kernel from (Ω, F ∞ ) to (Ω, F) such that 1. µ-a.s., µ[A|F ∞ ] = π • (A), ∀A ∈ F. 2. π • ∈ G(γ) := ω ∈ Ω : π ω ∈ G(γ) ∈ F ∞ . (2.49)
and π • is µ-a.s. consistent with γ in the sense that:

µ π • ∈ G(γ) = 1. (2.

50)

Proof: To prove that π • is a probability kernel from (Ω, F ∞ ) to (Ω, F), we need to prove (see Definition 2.15) that for all ω ∈ Ω, π ω (•) is a probability measure on (Ω, F), and that for all

A ∈ F, π • (A) is F ∞ -measurable.
The first item is true by construction, thanks to the core property. To prove the second one, denote

D = A ∈ F : π • (A) ∈ F ∞ . By construction, D contains the set C of cylinders.
The latter is a π-system (i.e. a family of sets stable by finite intersections, that generates the σ-algebra F) whereas D is a Dynkin system (a family of subsets of Ω containing Ω, stable by subtractions of subsets and under monotone limit of sets) contained in F. Then we use Lemma 2.51 (Dynkin lemma [START_REF] Williams | Probability with martingales[END_REF]) Any Dynkin system which contains a π-system contains the σ-algebra generated by this π-system.

Thus the property characterizing D extends to the whole σ-algebra F, because the former is generated by the π-system of the cylinder, and thus:

∀A ∈ F, π • (A) ∈ F ∞ . By construction, π ω (C) = µ[C|F ∞ ]
is true for all cylinders C for µ-almost every ω by (2.47). For these ω's, µ[•|F ∞ ](ω) and π ω are two probability measures that coincide on a π-system, which coincide then on the σ-algebra generated by this π-system, which is F itself here. This proves item 1. of the lemma.

Fix now a cylinder C ∈ C and focus first on the (random) measures π • (C). By construction, it inherits first of all of the properness property and in particular for µ-almost every ω ∈ Ω,

∀C ∈ C ∞ , π ω (C) = 1 C (ω).
It also inherits from consistency: For µ-almost every ω,

∀C ∈ C, π ω γ Λ (C) = µ µ[C|F Λ c ]|F ∞ = µ[C|F ∞ ] = π ω (C)
Using Dynkin's lemma and standard extension techniques, this implies that µ-a.s.,

   π ω γ Λ (A) = π ω (A), ∀Λ ∈ S, ∀A ∈ F. π ω (B) = 1 B (ω), ∀B ∈ F ∞ .
(2.52)

In particular, one gets (2.49) and (2.50) and Lemma 2.48 is proved.

Step 2: Concentration on the extremal measures Consider now, for µ ∈ G(γ), π • as a random measure on the probability space (Ω, F, µ), taking values in the set M + 1 (Ω). By the former lemma, it µ-concentrates on G(γ) and has some specific tail-measurable properties that are useful to relate it to extremal measures. One gets then the starting point of the decomposition by rewriting (2.46) for µ ∈ G(γ):

∀A ∈ F, µ(A) = Ω π ω (A) dµ(ω) = µ π • (A) .
(2.53)

Denote formally α µ the law of π • as a random variable on the probability space (Ω, F, µ).

Writing M 0 = π • (Ω), one can rewrite formally (2.53) in the form µ(•) = Ω π • dµ = M 0 ν µ[π • ∈ dν] = M 0 ν α µ [dν]. (2.54) 
Before focusing more properly on a rigorous definition of the weights α µ that leads to the correct decomposition, we first establish an extra important consequence of the previous lemma: The limiting procedure used to define π • on the space Ω µ of full µ-measure allows interesting probabilistic properties of the measure π ω for such typical ω: The measure π ω is an extreme element of G(γ) and the above integral reduces to the set M 0 = exG(γ).

Lemma 2.55

π • ∈ exG(γ) ∈ F ∞ and, ∀µ ∈ G(γ), µ π • ∈ exG(γ) = 1.
Proof: Firstly, recall that the consistency has a consequence on the expected value of π • (A) as a random variable (with values in [0, 1]) on (Ω, F, µ), as seen in (2.53): ∀A ∈ F,

µ π • (A) = Ω π ω (A) dµ(ω) = Ω µ[A|F ∞ ](ω) dµ(ω) = µ µ[A|F ∞ ] = µ(A) so that the expected value of π • (A) is µ(A), while its variance under µ ∈ G(γ) is: E µ π • (A) -µ(A) 2 = µ π • (A) 2 -2µ(A)π • (A) + µ(A) 2 (2.56) = µ π • (A) 2 -2µ(A)µ π • (A) + µ(A) 2
in such a way that, when µ ∈ G(γ), we can define it to be

σ 2 A (µ) := µ π • (A) 2 -µ π • (A) 2 = µ π • (A) 2 -µ(A) 2 (2.57) or σ 2 A (µ) = e π • (A) 2 (µ) -e π • (A) (µ) 2 (2.58)
that could in particular be used to get (tail) measurability. For technical reasons, we extend the definition of this map σ 2 A on the whole space M + 1 (Ω) using 17 the same expression (2.58). By its definition via (2.45)

, π • (A) is a version of µ[A | F ∞ ] for all A ∈ F and by (2.43) µ is extreme if and only if µ[A|F ∞ ] = µ(A), µ-a.s., ∀A ∈ F. This implies that the starting DLR measure µ ∈ G(γ) will be extreme iff ∀A ∈ F, π • (A) = µ(A), µ-a.s. in such a way that exG(γ) = µ ∈ G(γ) : π • (A) = µ(A) µ-a.s., ∀A ∈ F (2.59)
Using now Dynkin's lemma for the

D-system A ∈ F : π • (A) = µ(A) µ-a.s. that contains C, one gets π • ∈ exG(γ) = π • ∈ G(γ) ∩ C∈C π • : π • (C) = µ(C) (2.60)
which in particular insures the F ∞ -measurability of π • ∈ exG(γ) from (2.49), and from this of π • (C) for any C ∈ C. Hence, extremal measures are the µ ∈ G(γ) that satisfy

∀C ∈ C, π • (C) = µ(C), µ -a.s.
i.e. that as a random variable, for all C ∈ C, π • (C) would be a.s. equals to its µ-expectation, and, as in many cases in such situations, it implies that its variance (2.57) should be µ-a.s.

zero µ ∈ exG(γ) ⇐⇒ µ ∈ G(γ) and ∀C ∈ C, µ σ 2 C π • (C) = 0 = 1
This proves that π • is itself extreme µ-almost surely, as a consequence of the tail measurability of π

• : A -→ π • (A). Indeed, one then has µ[(π • (A)) 2 |F ∞ ] = (π • (A)) 2 µ-a.

s., for all

A ∈ F, and in particular, for all C ∈ C,

µ µ (π • (C)) 2 |F ∞ (ω) -π ω (C) 2 = 0 (2.61) which implies µ σ 2 π • (π • C) 2 = µ π ω [(π • (C)) 2 ] -(π ω (C)) 2 = 0.
This proves µ π • ∈ exG(γ) = 1 and the lemma using (2.60).

Step

3: Extreme decomposition and its uniqueness

To properly get the decomposition using the concentration of the asymptotic kernels on the extreme DLR measures, we use the tail-measurability of the previous lemma together with the very definition of the conditional expectation in an extended version of (2.46):

∀A ∈ F, ∀B ∈ F ∞ , B µ[A | F ∞ ](•) dµ(•) = B 1 A (•) dµ(•).
(2.62)

By Lemma 2.55, B = π • ∈ exG(γ) ∈ F ∞ so in particular, one has for all A ∈ F, {π • ∈exG(γ)} µ[A | F ∞ ](•) dµ(•) = {π • ∈exG(γ)} 1 A (•) dµ(•) = µ A ∩ {π • ∈ exG(γ)} (2.63)
and the latter is exactly µ(A) by concentration of π • on exG(γ) for µ ∈ G(γ). Thus one can rewrite (2.53) as

µ(•) = µ • ∩{π • ∈ exG(γ)} = {π • ∈exG(γ)} µ[• | F ∞ ](ω) dµ(ω) = {π • ∈exG(γ)} π ω (•) dµ(ω).
(2.64) Consider α µ as in the definition (2.32) of the theorem and extend it into a probability measure α µ ∈ M + 1 exG(γ), e(exG(γ) defined to be the law of π • as a random extremal DLR measure, i.e. by

α µ (M ) := µ(π • ∈ M ), ∀M ∈ e exG(γ) .
It is indeed a probability measure because for all M ∈ e exG(γ) one has {π

• ∈ M } ∈ F ∞ ⊂ F,
and because α µ (exG(γ) = 1 by step 2. above 18 . Thus we identify M 0 by exG(γ) in (2.54) and rewrite (2.64) under the form

µ = exG(γ) ν α µ (dν). (2.65)
Uniqueness of the representation follows by the uniqueness of the extension in the core property and from the uniqueness of the representation of a probability measure via its action on measurable functions, and Theorem 2.29 is proved.

Selections by boundary conditions

In statistical physics, Gibbs measures are often considered by taking the infinite-volume limit of finite volume specifications with prescribed boundary conditions. It is not rigorously true for general DLR measures, but a corollary of the simplicial decomposition indeed indicates that it is true for extremal measures 19 . The direct description of non-extremal ones is more peculiar, but of course can be done using this decomposition, see [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] for a more general description.

Stronger results are also true in the quasilocal context, but the latter is not necessary for what follows; it is important for us while we shall consider non-quasilocal measures within the still active Dobrushin program of restoration of Gibbsianness. Extreme points have thus the nice general extra property to get identified with some particular sequence of measures with boundary conditions: An infinite-volume extremal measure specified by γ can be selected by a sequences of finite volume measures with boundary conditions that are typical for it:

Theorem 2.66 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] Let γ be a specification such that there exists µ ∈ exG(γ). Then, for any sequence of cubes (Λ n ) ∈ S, for any f ∈ F bounded, the following convergence holds:

γ Λn f (•) -→ n→∞ µ[f ], µ-a.s. (2.67) γ Λn (•|ω) W -→ n→∞ µ(•), for µ-a.e.(ω). (2.68)
In case of phase transitions, it provides a more explicit description of extremal measures:

Theorem 2.69 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] Let γ be a specification such that there exists

µ = ν ∈ exG(γ). Consider f ∈ F bounded such that µ[f ] = ν[f ].
Then the tail-measurable sets

B f µ = ω : γ Λn f (ω) -→ n→∞ µ[f ] B f ν = ω : γ Λn f (ω) -→ n→∞ ν[f ] are such that µ B f µ = ν B f ν = 1 and ν B f µ = µ B f ν = 0.
Basic example: 2d Ising model at low temperature Although the simplicial representation is a very satisfactory result from a theoretical point of view, it is far from being an easy task to characterize and describe the extreme DLR measures for a given specification. We shall mention a few known examples later on in this course, but we also stress here that the description is still mostly incomplete from the mathematical point of view. The most complete results concern the standard Ising model on Z 2 . For this model, we have seen in Theorem 2.26 that the set of DLR measures is the convex set µ - β , µ + β where the extremal measures are characterized by an opposite magnetization ±m β ∈ [0, 1], defined to be

m β = E µ + β [σ 0 ] = -E µ - β [σ 0 ]
, with m β = 0 at low enough temperature. In such a case, one can write for any µ ∈ G(γ), using (2.65) and the definition (2.33) of the weights,

µ = α µ ({µ + β }) • µ + β + α µ ({µ - β }) • µ - β
where the weights can be shown to satisfy

α µ (µ ± β ) = µ ω ∈ Ω : lim n γ Λn (C|±) = µ ± β (C) for any cylinder C = µ(B m ± β ) with the sets B m defined in (2.2) for m ∈ [0, 1].
For the Gibbs measure with free boundary conditions 20 , one e.g. recovers

µ f = 1 2 • µ + β + 1 2 • µ - β .

Ergodic vs. extremal DLR measures

Thus, Theorem 2.29 tells us that for a given specification, any DLR measure is uniquely determined in terms of the extremal ones, those that are trivial on the tail σ-algebra F ∞ , i.e. for which global macroscopic observables do not fluctuate. This is the reason why they are related to macroscopic states of our system, as we shall discuss soon. Nevertheless, one is also often interested by translation-invariant quantities and it appears that replacing the tail events by translation-invariant ones in the previous decomposition leads to the famous ergodic decomposition of translation-invariant probability measures. Let us describe briefly the proof of [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] that gets the ergodic decomposition as a corollary of the previous theorem, using a particular specification related to a spatial average operator. Hence, as usual in ergodic theory, we focus now on the set M + 1,inv (Ω) of translationinvariant probability measures and on the σ-algebra F inv of translation-invariant events. Introducing a particular specification γ defined for all A ∈ F, ω ∈ Ω and Λ ∈ S by γΛ (A|ω) = 1 |Λ| i∈Λ 1 A (τ i ω) 20 I.e. without any boundary condition, see next section.

one easily gets that the γ-invariant sets are exactly the translation-invariant ones, i.e.

F γ = F inv .
By an adaptation of the proof of the extreme decomposition (2.64), in the more general framework of [START_REF] Dynkin | Sufficient statistics and extreme points[END_REF], one gets the following theorem, proved in Chapter 14 of [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]:

Theorem 2.70 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] The set M + 1,inv (Ω) is a convex subset of M + 1 (Ω) such that:

1. Its extreme elements are the probability measures that are trivial on the translationinvariant σ-algebra F inv , i.e. the ergodic probability measures on (Ω, F):

erg(Ω) = µ ∈ M + 1,inv (Ω) : µ(A) = 0 or 1, ∀A ∈ F inv . (2.71)
Distinct ergodic measures µ, ν are mutually singular: ∃A ∈ F inv , µ(A) = 1 and ν(A) = 0, and more generally, each µ ∈ erg(Ω) is uniquely determined within the ergodic measures by its restriction on F inv .

2. M + 1,inv (Ω) is a Choquet simplex: Any µ ∈ M + 1,inv (Ω) can be written in a unique way as

µ = erg(Ω) ν • α µ (dν)
where α µ ∈ M + 1 erg(Ω), e(erg(Ω)) is defined for all M ∈ e(ergM) by

α µ (M ) = µ ω ∈ Ω : ∃ν ∈ M, lim n γΛn (C|ω) = ν(C) for any cylinder C . (2.72) 
In this theorem, translation-invariance and the ergodic theorem play the roles respectively devoted to tail-triviality and the backward martingale limit theorem in Theorem 2.29. Many other similarities exist, described e.g. in Chapter 14 of [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] or in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF].

Remark 2.73 (Physical Phases) Once we agree to describe the true physical phases of the system by some random field of M + 1,inv (Ω), we have now three different mathematical manners to characterize the macroscopic "states" of the systems we want to model. Starting from a specification describing an equilibrium at finite volume 21 , one can consider first the set of DLR measures G(γ) as good candidates to play the same role at infinite volume, leaving moreover the door open to the modelization of phase transitions. Requiring then that macroscopic, i.e. tail-measurable, observables should not fluctuate, one can then restrict the macroscopic description to the DLR measures that are trivial on the tail σ-algebra, i.e. to exG(γ), and use thereafter the extreme decomposition to get a more general description that incorporates uncertainty of the experiment. For other purposes, one can also be interested in translation-invariant objects, in particular when the underlying system is translationinvariant, and chose then to focus either on the set G inv (γ) = M + 1,inv (Ω) ∩ G(γ) and on its extreme elements exG inv (γ), or either on the translation-invariant extremal measures, i.e the translation-invariant elements of exG(γ). These approaches are far from being equivalent: The latter form a rather small and sometimes empty set, whereas the former consists of ergodic measures, that are in particular extreme because F inv ⊂ F ∞ . These ergodic measures are thus often chosen to be the physical phases that represent macroscopically the equilibrium state of the underlying interacting particle system. If one does not focus on translation-invariance, the structure of extremal states could be very rich and far from being equivalent to ergodicity, see various examples of Ising models at higher dimensions [START_REF] Dobrushin | Existence of a phase transition in the two-dimensional and threedimensional Ising models[END_REF], or antiferromagnetic [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF], or on trees [START_REF] Bleher | On pure phases of the Ising model on the Bethe lattice[END_REF][START_REF] Higuchi | Remarks on the limiting Gibbs states on a (d+1)-tree[END_REF][START_REF] Ioffe | Extremality of the disordered state for the Ising model on general trees[END_REF][START_REF] Preston | Gibbs states on Countable sets[END_REF].

Remark 2.74 (de Finetti's theorem and exchangeability) Let us also mention now that within a slightly different framework, a theorem similar to Theorem 2.29 is equivalent to the de Finetti's theorem for exchangeable measures 22 . Instead of working on a lattice, consider S to be the set of non-negative integers N, and focus on permutations and its associate σ-algebra of symmetric events I = ∩ n∈N already introduced in Section 2.2. This symmetric σ-algebra plays the role devoted to F ∞ in the extreme decomposition, and defining a family of proper probability kernels γ = (γ n∈N ) n∈N from (Ω, I) to (Ω, F) by,

∀n ∈ N, ∀A ∈ F, ∀ω ∈ Ω, γ n (A|ω) = 1 n! τ ∈In 1 A (τ ω)
one first gets that the set G(γ) of γ-invariant probability measures is exactly the set of exchangeable measures. Using a corollary of Theorem 2.29, Its extreme points have then to be trivial on the symmetric events I, and it corresponds to the product measures of the form λ ⊗N with λ ∈ M + 1 (E, E). Proceeding in a similar way as in the extreme decomposition of Theorem 2.29, one gets that all permutation-invariant (or exchangeable) measures are uniquely determined as convex combinations of product measures: This is exactly de Finetti's theorem [START_REF] Diaconis | Recent progress on de Finetti's notions of exchangeability[END_REF]. A more refined analysis of this analogy and of the σ-algebras I, F inv and F ∞ also lead to related 0-1 laws, see [START_REF] Berti | 0-1 laws for regular conditional distributions[END_REF][START_REF] Berti | A conditional 0-1 law for the symmetric σ-field[END_REF][START_REF] Dynkin | Sufficient statistics and extreme points[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

Chapter 3

Quasilocal and Gibbs measures 3.1 Quasilocality for measures and specifications

Essential continuity of conditional probabilities

The link between continuity and quasilocality described through the product topology enables to generalize the Markov property to probability measures whose conditional expectations of local functions depend only weakly of spins arbitrarily far away from their support. This leads to the concept of quasilocal measures, which, in addition to provide a good framework to get the existence of specified measures, is also closely related to the notion of Gibbs measures. It corresponds to the concept of Feller kernels in the standard theory of stochastic processes.

Definition 3.1 A specification γ is said to be quasilocal when ∀Λ ∈ S, f ∈ F loc =⇒ γ Λ f ∈ F qloc .
A measure is said to be quasilocal if there exists a quasilocal specification γ such that µ ∈ G(γ).

Recall that for any Λ ∈ S, γ Λ f is defined by:

∀ω ∈ Ω, γ Λ f (ω) = Ω f (σ)γ Λ (dσ | ω).
Thus, γ Λ being properly speaking a kernel from (Ω Λ c , F Λ c ) to (Ω Λ , F Λ ), the function γ Λ f is F Λ c -measurable and continuity as to be understood here as continuity w.r.t. the boundary condition ω (depending only on ω Λ c ): If γ is a quasilocal, then for any f ∈ F loc , for any Λ ∈ S, lim

Λ ′ ↑S sup σ Λ ′c =ω Λ ′c γ Λ f (ω) -γ Λ f (σ) = 0.
An important consequence on the conditional probabilities of local or quasilocal functions w.r.t. a quasilocal measure is the following Proposition 3.2 (Essential continuity of conditional probabilities) Consider γ to be a quasilocal specification on (Ω, F) and µ ∈ G(γ). Then, for all f ∈ F qloc , Λ ∈ S and ω ∈ Ω, there always exists a version of the conditional probability µ

[f | F Λ c ](•) that is continuous at ω. Indeed, µ ∈ G(γ) implies that for all f ∈ F loc , one has µ[f | F Λ c ](•) = γ Λ f (•), µ-a.s.
, that has thus to be µ-a.s. continuous. In particular, for a given quasilocal measure µ, it is not possible to change a version of conditional probabilities to make it discontinuous: Take e.g. f (σ) = σ 0 , one should have for all Λ ∈ S and for all ω ∈ Ω, lim

Λ ′ ↑S sup ω 1 ,ω 2 ∈Ω µ[σ 0 | ω Λ ′ \Λ ω 1 Λ ′c ] -µ[σ 0 | ω Λ ′ \Λ ω 2 Λ ′c ] = 0 (3.3)
because the former conditionings are in open neighborhoods of ω, and open neighborhoods are automatically of positive µ-measures here [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF]. This also express an almost sure asymptotic weak dependence in the conditioning that can be seen as an asymptotic extension of Markov properties, as suggested by the denomination almost Markovian chosen by Sullivan in [START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF].

The failure of this essential continuity (3.3) will be very important in the last chapter when dealing with transformations of Gibbs or quasilocal measures and to detect non-quasilocality via the following sufficient condition, which we call essential discontinuity although it is a bit stronger in the following formulation than the usual general meaning (see [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF]).

Proposition 3.4 (Essential discontinuity) A probability measure µ ∈ M + 1 (Ω) is essen- tially discontinuous at ω if there exists Λ ∈ S, f ∈ F loc , δ > 0 and N 1 Λ (ω), N 2 Λ (ω) in a neighborhood N Λ (ω) such that ∀ω 1 ∈ N 1 Λ (ω), ω 2 ∈ N 2 Λ (ω), µ[f | F Λ c ](ω 1 ) -µ[f | F Λ c ](ω 2 ) > δ or equivalently lim Λ ′ ↑∞ sup ω 1 ,ω 2 ∈Ω µ[f | F Λ c ](ω Λ ′ ω 1 Λ ′c ) -µ[f | F Λ c ](ω Λ ′ ω 2 Λ ′c ) > δ. (3.5) 

Existence results in the quasilocal framework

In our finite spin-state settings, where compactness holds, quasilocality insures thus the existence of a measure in G(γ). The following proposition additionally indicates how one can naturally construct such objects as the limit of large but finite systems with some specified boundary conditions, that have then to be typical for the measure constructed. The set of DLR measures is then a closed convex subset, and this explains the usual introduction of Gibbs measures as weak limits of finite-volume probability measures with boundary conditions. For any specification γ and sequence ν n n∈N ∈ M + 1 (Ω), we recall that ν n γ n denotes the probability measure acting on bounded f ∈ F via:

ν n γ Λn [f ] = Ω γ Λn f (ω)ν n (dω), ∀n ∈ N.
Proposition 3.6 [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] Let Ω be a compact metric space and γ = (γ Λ ) Λ∈S a quasilocal specification on it. Then, for any sequences of cubes (Λ n ) n∈N and any arbitrary sequence (ν n ) n∈N on M + 1 (Ω), the weak limit

µ := lim n→∞ ν n γ n exists in M + 1 (Ω) and µ ∈ G(γ).
In particular, G(γ) is a non empty convex subset of M + 1 (Ω).

We introduce now the main example of quasilocal measures, that are nothing but (infinitevolume) Gibbs measures, and explain why a converse statement telling that most quasilocal measures are Gibbs is also true.

infinite-volume Gibbs measures

Equilibrium states at finite volume

We recall here briefly some elementary physical concepts that led Boltzmann and Gibbs to settle down their prescription for equilibrium states. This is very simplified, and probably too simple in a physical point of view (the notion of entropy being for example far from being so simple, see e.g. [START_REF] Lebowitz | Entropy: a dialogue[END_REF][START_REF] Lanford | Entropy and Equilibrium States in Classical Statistical Mechanics[END_REF]) but we state it in order to formally justify the notion of equilibrium states that we will develop in Chapter 4 within the so-called variational principle. Hence, our aim is to provide a probabilistic translation of the second law of thermodynamics that claims:

Equilibrium at a fixed value of energy maximizes entropy or, in an equivalent statement, Equilibrium minimizes free energy.

For a modelization at finite volume Λ, the microscopic states are the collections σ Λ ∈ Ω Λ of random variables (σ i ) i∈Λ and the macroscopic states are their possible distributions

µ Λ ∈ M + 1 (Ω Λ , F Λ ).
The energy of a configuration is represented by an Hamiltonian at finite volume H Λ (σ Λ ) and thus the energy of a macroscopic "state" µ Λ is represented by the average of the Hamiltonian, i.e.

E µ [H Λ ] := σ Λ ∈Ω Λ H Λ (σ Λ )µ Λ (dσ Λ ). (3.7) 
In one of its original interpretations, the entropy of a system is supposed to evaluate its degree of disorder. Translated into a probabilistic framework and quoting Khinchin in [START_REF] Khinchin | Mathematical foundations of information theory[END_REF], "it seems highly desirable to introduce a quantity which in a reasonable way measures the amount of uncertainty associated with a given probability measure, that would be minimal for complete uncertainty, positive in other cases, maximal for the one with equally likely outcomes (uniform distribution), and that would have some nice monotone properties when the knowledge of the system increases". Following these ideas, one could show that such a function of a measure should involve the function f (x) = x ln(x) and the standard definition of the entropy of a (finite volume) probability measure µ Λ is indeed given by:

H Λ (µ) = - σ Λ ∈Ω Λ µ(σ Λ ) ln µ Λ (σ Λ ). (3.8) 
In classical thermodynamics, the free energy "F " of a system is usually defined through the second law in the form "F = U -T S" where U is the (internal) energy, T = 1 β the temperature and S the entropy. To pursue the analogy, let us define the free energy at inverse temperature β > 0 of a (finite-volume) probability measure µ Λ to be

F β Λ (µ) = E µ [H Λ ] - 1 β H Λ (µ). (3.9)
There exists two simple ways to see which probability measures could reasonably be considered as equilibrium states, following the two different statements of the second law of thermodynamics. In the first formulation in terms of maximization of entropy, it is an elementary exercise using Lagrange's multipliers [START_REF] Jaynes | papers on probability, statistics and statistical physics[END_REF] to show that a probability measure µ Λ having the given energy (3.7) and maximizing its entropy (3.8) should give weights of the form given by the famous Boltzmann-Gibbs weights [START_REF] Boltzmann | Leçons sur la théorie des gaz[END_REF][START_REF] Gibbs | Elementary principles in statistical mechanics[END_REF] to each configuration:

ν β Λ [σ Λ ] = 1 Z β Λ • e -βH Λ (σ Λ ) (3.10)
where the normalization is the partition function Z β Λ = σ Λ ∈Ω Λ e -βH Λ (σ Λ ) , which will be related soon to our free energy.

To establish (3.10) and illustrate the second law of thermodynamics in its second formulation, we introduce another important concept, the relative entropy of two probability measures. For simplicity, we consider the case of µ Λ , ν Λ being two non-null probability measures on the finite volume configuration space (Ω Λ , F Λ ), in the sense that any configuration has a positive probability; the relative entropy of µ Λ with respect to ν Λ is then defined to be

H Λ (µ | ν) = σ Λ ∈Ω Λ µ Λ (σ Λ ) • ln µ Λ (σ Λ ) ν Λ (σ Λ ) .
This function has among others the nice property to be non-negative for any probability measures on Ω Λ and to be zero if and only the two measures coincide:

H Λ (µ | ν) ≥ 0. H Λ (µ | ν) = 0 iff µ Λ = ν Λ . Observing that H Λ (µ | ν β ) = F β Λ (µ) + 1 β ln Z β Λ , one concludes that free energy is indeed minimal when µ Λ = ν β
Λ is given by the Boltzmann-Gibbs weights (3.10). This minimal value of the free energy is then

F β Λ (ν β ) = -1 β ln Z β Λ ,
recovering thus the other form of the second law of thermodynamics. These justify the following introduction of Gibbs specifications. 

Gibbs specifications and infinite-volume Gibbs measures

Φ A : Ω -→ R
indexed by the finite subsets of S, such that ∀A ∈ S, Φ A is F A -measurable.

Our infinite-volume formalism incorporates the finite-volume one by considering free (or empty) boundary conditions, to extend Hamiltonians from Ω Λ to Ω in a well defined way by considering finite sums in the following1 Definition 3.12 (Hamiltonian with free boundary condition) Consider a potential Φ. For all Λ ∈ S, the Hamiltonian at finite volume Λ with free boundary condition associated with Φ is the well defined and F Λ -measurable map

H Φ,f Λ : Ω -→ R ω -→ H Φ,f Λ (ω) := A∈S,A⊂Λ Φ A (ω).
Nevertheless, the sums involved in the Hamiltonians are not finite in general and one should focus first on convergence properties of potentials before introducing infinite-volume Hamiltonians with prescribed boundary conditions. In the following definition, convergence of series will be considered in the sense of the convergence along nets already defined: A series Λ∈S F Λ converges iff the net Λ∈∆ F Λ ∆∈S converges to a finite limit as ∆ ↑ S in the sense of Definition 2.6. We shall illustrate this convergence in some examples soon.

Definition 3.13 (Convergence of potentials) A potential Φ is said to be 1. Nearest neighbor iff for all ω ∈ Ω, Φ A (ω) = 0 unless A = {i} or A is a pair ij of nearest neighbors.

2. Finite-range iff there exists a range R ∈ N * such that, for all ω, Φ A (ω) = 0 and for all A such that |A| > R, where |A| = sup i,j∈A d(i, j) is the diameter of A.

3. (Point-wise) convergent at ω ∈ Ω if, for all Λ ∈ S, the Hamiltonian

H Φ Λ (ω) := A∈S,A∩Λ =∅ Φ A (ω) (3.14)
exists, convergent when the convergence holds for all ω ∈ Ω and almost-surely convergent when there exists µ ∈ M + 1 (Ω) such that Φ is convergent at µ-a.e. ω ∈ Ω. A potential that is UAC satisfies also for any Λ ∈ S, A∈S,A∩Λ =∅ sup ω∈Ω |Φ A (ω)| < +∞ which in particular implies uniform convergence (it corresponds to normal convergence of series).

Remark 3.18 If we do not make precise the way these infinite sums are done, the sum H Φ Λ in (3.14) could be ill-defined. Consider the pair (but not n.n.) potential Φ defined for all

ω ∈ {-1, +1} Z by Φ A (ω) = 1 |i-j| ω i ω j if A = {i, j} and Φ A = 0 when A is not a pair 2 . Let Λ ∈ S, ω ∈ Ω, write S = B + ∪ B -, with B ± = B ± (ω) = {i ∈ Z, ω i = ±1} to get for A ∈ S A∩Λ =∅ Φ A (ω) = A∩Λ =∅,A⊂B + Φ A (ω) + A∩Λ =∅,A⊂B - Φ A (ω) + A∩Λ =∅,A∩B + =∅,A∩B -=∅ Φ A (ω). But, A∩Λ =∅,A⊂B + Φ A (ω) = A∩Λ =∅,A⊂B - Φ A (ω) = i∈Λ,j∈Z 1 | i -j |
are non-convergent series, whereas the series A∩Λ =∅A∩B + =∅,A∩B -=∅ Φ A (ω) can be convergent for some ω's. Thus, the series could be non-convergent whereas H Φ Λ is well-defined if we use nets as above.

Examples of potentials 1. Ising potentials: Recall that the single-spin state-space is E = {-1, +1} with a priori measure

ρ 0 = 1 2 δ -1 + 1 2 δ +1 . The (n.n.) Ising potential is Φ = (Φ A ) A∈S defined by Φ A (ω) =    -J(i, j) • ω i • ω j if A = {i, j} -h(i) • ω i iff A = {i} 0 otherwise
where J : S × S -→ R is called the coupling function and h : S -→ R the external magnetic field. In the standard Ising model, J(i, j) = 0 unless i, j are n.n. and when both J and h are constant, we call it homogeneous Ising model, inhomogeneous otherwise. It is ferromagnetic when J ≥ 0 and anti-ferromagnetic otherwise. Less standard non-n.n. Ising models are also sometimes considered. One studies e.g. long-range Ising models when J(i, j) = 1 |i-j| r , well defined for r ∈]1, 2], see next sections for a few results, but also so-called Kac-Ising potentials which have a long but finite range. Their origin comes from a description of the van der Waals theory of liquid-vapor transitions initiated by [START_REF] Kac | On the van der waals theory of vapor-liquid equilibrium[END_REF] and we follow here the terminology of [START_REF] Masi | Systems with long range interactions[END_REF]. The starting point is a smooth nonnegative function supported by the unit ball J(•) and normalized as a probability kernel (i.e. ||J|| 1 = 1). The Kac interaction allows ranges from 1 to +∞ via a parameter γ > 0 and coupling constants

J γ (i, j) = γ d • J(γ|i -j|), ∀i, j ∈ S.
In the original van der Waals theory, one is particularly interested in small γ for which the model presents a long range interaction (of order γ -1 ), small coupling constants (of order γ d ) and a total strength at each site of constant order 1, and in performing thereafter the limit γ goes to 0 to approach mean-field models. It is the n.n. Ising model when γ = 1, and thus Kac models allow an interplay between n.n. and mean-field models.

A (uniformly) convergent potential that is not UAC:

This example is due to Sullivan [START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF]. Consider Ω = {-1, +1} Z and define a potential Φ that is non-null only for the finite sets of adjacent sequences in Z on which the spins are all +1, more precisely such that for all A ∈ S, for all ω ∈ Ω, Φ

A (ω) = (-1) n n 2 iff ω i = +1, ∀i ∈ A = {k, • • • , k + n -1}, k ∈ Z, n ∈ N * ,
and Φ A = 0 otherwise. To prove that Φ is a convergent potential, we prove that the series H Φ Λ (ω) = A∩Λ =∅,A∈S Φ A (ω) are convergent for Λ = {0}, the extension to all finite subsets Λ being then straightforward. This amounts to prove that, for all ω ∈ Ω, the sequence of general term U n (ω) = A∋0,A∩Λ c n =∅ Φ A (ω) converges to zero when n goes to infinity. Here it becomes

A∋0,A∩Λ c n =∅ Φ A (ω) = k>n A∋0,|A|=k (-1) k k 2 • i∈A 1 {ω i =+1} (ω).
and one has for n large enough, uniformly in ω,

0 ≤ U n (ω) = A∋0,A∩∆ c n =∅ Φ A (ω) ≤ U n (+) = k>n (k + 1) (-1) k k 2
where the term on the right is the tail of a convergent alternating series, which is convergent. This potential is thus uniformly convergent, but it is not uniformly absolutely convergent (UAC):

A∋0,A⊂Λn sup ω∈Ω |Φ A (ω)| = 2k n=0 (k + 1) (-1) k k 2 = 2n k=0 k + 1 k 2
and the latter is a non-convergent series.

3.

A.s. convergent potential: Potentials associated to renormalized measures to define them as weakly Gibbsian measures, see Chapter 5 or [START_REF] Maes | Almost Gibbsian versus Weakly Gibbsian[END_REF].

4.

(Relatively) uniformly convergent potential: Sullivan [START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF] has introduced a notion of convergence slightly weaker than uniform convergence, which can be associated to any quasilocal specification and which is translation-invariant when the specification is. See next section and Remark 3.58.

UAC:

We describe next section how to define a UAC potential from a quasilocal specification, following a general construction of Kozlov [START_REF] Kozlov | Gibbs description of a system of random variables[END_REF].

Before introducing Gibbs measures properly speaking, we give a general definition of particular potentials that will be used to build a convergent potential associated to a quasilocal specification in the forthcoming Theorem 3.40, and later on in Chapter 5 to establish thermodynamic properties in the generalized Gibbsian framework. Definition 3.19 (Vacuum potential) Let Φ be a potential and denote by + a particular3 configuration of Ω. We say that Φ is a vacuum potential with vacuum state + ∈ Ω iff Φ A (ω) = 0 whenever ω i = + for some i ∈ A ∈ S.

For such a potential, also called lattice gas potential, the Hamiltonian with free boundary conditions can be seen as an Hamiltonian with the vacuum state as boundary condition, when Hamiltonians with boundary condition are defined by the following Definition 3.20 (Hamiltonian at volume Λ with boundary condition ω) If Φ is a convergent potential, the Hamiltonian at volume Λ ∈ S with boundary condition ω ∈ Ω is defined for all σ ∈ Ω by

H Φ,ω Λ (σ) = H Φ Λ (σ | ω) := H Φ Λ (σ Λ ω Λ c ) = A∈S,A∩Λ =∅ φ A (σ Λ ω Λ c ). ( 3 

.21)

A convergent potential is regular enough to define this Hamiltonian with boundary conditions, but it will not be enough to define Gibbs measures with the right expected properties, for which UAC is usually required. At finite volume Λ, the Hamiltonian with free boundary conditions of a configuration σ is seen as the energy of the system contained in Λ when it is in the configuration σ, and a UAC convergence means that a change of a configuration in a finite part of the infinite system produces always a finite change of the total energy. Requiring for a potential to be UAC will be enough to define a Gibbsian specification associated with this potential, and then to provide a "reasonable" modelling of the physical properties of the system 4 . This requirement actually seems to be too strong, and this possibly too strong requirement causes troubles in the analysis of some renormalization group transformations, leading to generalized Gibbs measures described in Chapter 5.

We are now ready to introduce Gibbs specifications and Gibbs measures, defined from a UAC potential. First we introduce the following normalization, central in statistical physics and related to the free energy of the system as we shall see in Chapter 4.

Definition 3.22 (Partition function)

Let Φ be a convergent potential, ω ∈ Ω, β > 0 and Λ ∈ S. We call partition function at temperature β -1 , at volume Λ, with potential Φ and boundary condition ω, the F Λ c -measurable function

Z βΦ Λ (ω) = Ω e -βH Φ Λ (σ) ρ Λ ⊗ δ ⊗Λ c ω Λ c (dσ) = Ω e -βH Φ Λ (σ) κ Λ (dσ) = Ω Λ e -βH Φ Λ (σ|ω) ρ Λ (dσ Λ )
where andδ x is the Dirac measure on x ∈ E Λ .

κ Λ = ρ Λ ⊗ δ ⊗Λ c ω Λ c ∈ M + 1 (Ω),
When free boundary conditions are considered, the partition function is denoted Z βΦ,f Λ .

Definition 3.23 (Gibbs distribution at finite volume Λ)

Let Φ be a UAC potential. For Λ ∈ S, we call the Gibbs distribution at finite volume Λ, with potential Φ, at temperature β -1 and with boundary condition ω ∈ Ω, the probability measure γ βΦ Λ (•|ω) on (Ω, F) defined by:

∀A ∈ F, γ βΦ Λ (A|ω) = 1 Z βΦ Λ (ω) Ω 1 A (σ)e -βH Φ Λ (σ) κ Λ (dσ)
where κ Λ = κ ω Λ still denotes the product measure ρ Λ ⊗ δ ⊗Λ c ω Λ c on (Ω, F).

In order to underline the role of the boundary condition ω, one also writes

γ βΦ Λ (A|ω) = 1 Z βΦ Λ (ω) Ω Λ 1 A (σ Λ ω Λ c )e -βH Φ Λ (σ|ω) ρ Λ (dσ Λ )
Theorem 3.24 (Gibbs specification) Let Φ be a UAC potential and β > 0. The family of kernels γ βΦ = (γ βΦ Λ ) Λ∈S is a specification, called Gibbs specification with (UAC) potential Φ, at inverse temperature β > 0.

Proof: It is straightforward to prove that for a UAC potential, the Hamiltonian with boundary condition is bounded, and thus the partition function exists as a function of the boundary condition. Define now for all A ∈ F, Λ ∈ S and σ ∈ Ω, the density-type function

f Λ (σ) = 1 Z βΦ Λ (σ) • e -βH Φ Λ (σ) . (3.25)
There is no boundary condition ω involved in this function, although it incorporates the partition function. This being F Λ c -measurable, one nevertheless recovers

∀σ, ω ∈ Ω, f Λ (σ Λ ω Λ c ) = 1 Z βΦ Λ (ω)
• e -βH Φ Λ (σ|ω) .

We have also 0 < |f Λ | ≤ 1 and for all A ∈ F and ω ∈ Ω,

γ βΦ Λ (A|ω) = A f Λ (σ) κ ω Λ (dσ) = Ω Λ 1 A (σ Λ ω Λ c ) • f Λ (σ Λ ω Λ c ) ρ Λ (dσ Λ ). (3.26)
and it is straightforward to check that γ βΦ Λ is a probability kernel satisfying properties 1. in Definition 2.21 of a specification. Properness is also directly verified:

Let B ∈ F Λ c . ∀σ, ω ∈ Ω, 1 B (σ Λ ω Λ c ) is independent of σ and 1 B (σ Λ ω Λ c ) = 1 B (ω Λ ω Λ c ) = 1 B (ω). Therefore, for all ω ∈ Ω and B ∈ F Λ c , γ βΦ Λ (B|ω) = 1 Z βΦ Λ (ω) Ω Λ 1 B (σ Λ ω Λ c )e -βH Φ Λ (σ|ω) ρ Λ (dσ Λ ) = 1 Z βΦ Λ (ω) Ω Λ 1 B (ω Λ ω Λ c )e -βH Φ Λ (σ|ω) ρ Λ (dσ Λ ) = 1 B (ω) Z βΦ Λ (ω) Ω Λ e -βH Φ Λ (σ|ω) ρ Λ (dσ Λ ) = 1 B (ω).
To prove consistency (2.22), we assume without any loss of generality that β = 1 and consider Λ ⊂ Λ ′ ∈ S, A ∈ F and ω ∈ Ω. To prove that γ Λ ′ (A|ω) = γ Λ ′ γ Λ (A|ω), we write

γ Λ ′ (A|ω) = Ω Λ ′ 1 A (τ Λ ′ ω Λ ′c )f Λ ′ (τ Λ ′ ω Λ ′c )ρ Λ ′ (dτ Λ ′ ) and γ Λ ′ γ Λ (A|ω) = Ω γ Λ (A|τ ) γ Λ ′ (dτ |ω) = Ω Λ ′ Ω Λ 1 A (σ Λ τ Λ ′ \Λ ω Λ ′c )f Λ (σ Λ τ Λ ′ \Λ ω Λ ′c )dσ Λ • f Λ ′ (τ Λ ′ ω Λ ′c ) dτ Λ ′
where we have written dσ Λ instead of ρ Λ (dσ Λ ). To prove that the family is invariant under expectations w.r.t. the conditioning in intermediate regions, we modify the latter expression in order to extract what is really needed in terms of the functions f Λ . Write

γ Λ ′ γ Λ (A|ω) = Ω Λ ′ \Λ g Λ,Λ ′ (τ Λ ′ \Λ )dτ Λ ′ \Λ (3.27)
where, using Fubini's theorem and trivial changes of variables, one has

g Λ,Λ ′ (τ Λ ′ \Λ ) = Ω Λ f Λ ′ (τ Λ τ Λ ′ \Λ ω Λ ′c ) • Ω Λ 1 A (σ Λ τ Λ ′ \Λ ω Λ ′c )f Λ (σ Λ τ Λ ′ \Λ ω Λ ′c )dσ Λ dτ Λ = Ω Λ 1 A (τ Λ τ Λ ′ \Λ ω Λ ′c ) • f Λ (τ Λ ′ ω Λ ′c ) • Ω Λ f Λ ′ (σ Λ τ Λ ′ \Λ ω Λ ′c )dσ Λ dτ Λ
To get consistency at the level of the density functions (f Λ ) Λ∈S , one would like to get rid of the last integral in this expression. This is provided by the following lemma, which indicates under which conditions on the family f Λ Λ∈S of densities one recovers consistency at the level of specifications. It is in fact crucial to check one of its items to get consistency for the Gibbs kernels 5 . Lemma 3.28 (Consistency for densities) Let (f Λ ) Λ∈S be a family of (strictly) positive measurable functions f Λ such that ∀Λ ∈ S, ∀ω ∈ Ω,

Ω Λ f Λ (σ Λ ω Λ c )ρ Λ (dσ Λ ) = 1.
The following statements are equivalent:

1. ∀Λ ⊂ Λ ′ ∈ S, ∀ω, ω ′ ∈ Ω s.t. ω Λ c = ω ′ Λ c , f Λ ′ (ω ′ ) f Λ ′ (ω) = f Λ (ω ′ ) f Λ (ω) . (3.29) 2. ∀Λ ⊂ Λ ′ ∈ S, ∀ω ∈ Ω, f Λ ′ (ω) = f Λ (ω) • Ω Λ f Λ ′ (σ Λ ω Λ c )ρ Λ (dσ Λ ). ( 3 

.30)

Proof : Let us prove that 1. =⇒ 2., writing dσ Λ instead of ρ Λ (dσ Λ ). Assume (3.29) holds for Λ ⊂ Λ ′ ∈ S and let ω ∈ Ω. Then

f Λ (ω) Ω Λ f Λ ′ (σ Λ ω Λ c )dσ Λ = Ω Λ f Λ (ω)f Λ ′ (σ Λ ω Λ c )dσ Λ = Ω Λ f Λ ′ (ω)f Λ (σ Λ ω Λ c )dσ Λ = f Λ ′ (ω) Ω Λ f Λ (σ Λ ω Λ c )dσ Λ = f Λ ′ (ω) because Ω Λ f Λ (σ Λ ξ Λ c )dσ Λ = 1. Thus 1. =⇒ 2. Consider now ω, ω ′ , Λ, Λ ′ as above, with ω Λ c = ω ′ Λ c . Using f Λ ′ (ω) = f Λ (ω) • Ω Λ f Λ ′ (σ Λ ω Λ c ) dσ Λ , f Λ ′ (ω ′ ) = f Λ (ω ′ ) • Ω Λ f Λ ′ (σ Λ ω ′ Λ c ) dσ Λ with ω Λ c = ω ′ Λ c , we get Ω Λ f Λ ′ (σ Λ ω Λ c ) dσ Λ = Ω Λ f Λ ′ (σ Λ ω ′ Λ c ) dσ Λ
and then

f Λ ′ (ω ′ ) • f Λ (ω) • Ω Λ f Λ ′ (σ Λ ω Λ c ) dσ Λ = f Λ (ω ′ ) • Ω Λ f Λ ′ (σ Λ ω Λ c ) dσ Λ • f Λ ′ (ω)
and we conclude the proof of the lemma by non-nullness of our Gibbs weights.

To prove Theorem 3.24, we check now that item 1. is true when f Λ is given by (3.25).

Consider Λ ⊂ Λ ′ ∈ S, ω and ω ′ s.t. ω Λ c = ω ′ Λ c . By definition f Λ ′ (ω ′ ) f Λ ′ (ω) = Z Λ ′ (ω ′ ) Z Λ ′ (ω) -1 • exp(-A∩Λ ′ =∅ Φ A (ω ′ )) exp(-A∩Λ ′ =∅ Φ A (ω)) . But, by F A -measurability of Φ A , for A ⊂ Λ, ω ′ Λ c = ω Λ c implies Φ A (ω) = Φ A (ω ′ ), and thus exp(-A∩Λ ′ =∅ Φ A (ω ′ )) exp(-A∩Λ ′ =∅ Φ A (ω)) = e -A∩Λ ′ =∅ (Φ A (ω ′ )-Φ A (ω)) = e -A∩Λ =∅ (Φ A (ω ′ )-Φ A (ω)) .
The ratio of the partition functions is also the same for such ω 's and ω ′ 's and eventually (3.29) holds. This implies Item 2. of the lemma: For all Λ ⊂ Λ ′ ∈ S, for all τ, ω ∈ Ω,

f Λ (τ Λ ′ ω Λ ′c ) • Ω Λ f Λ ′ (σ Λ τ Λ ′ \Λ ω Λ ′c )dσ Λ = f Λ ′ (τ Λ ′ ω Λ ′c )
and thus (3.27) holds with

g Λ,Λ ′ (τ Λ ′ \Λ ) = Ω Λ 1 A (τ Λ ′ ω Λ ′c ) • f Λ ′ (τ Λ ′ ω Λ ′c )dτ Λ yielding consistency γ Λ ′ γ Λ (A|ω) = Ω Λ ′ \Λ Ω Λ 1 A (τ Λ ′ ω Λ ′c • f Λ ′ (τ Λ ′ ω Λ ′c )dτ Λ )dτ Λ ′ \Λ = Ω Λ ′ 1 A (τ Λ ′ ω Λ ′c )f Λ ′ (τ Λ ′ ω Λ ′c )dτ Λ ′ = γ Λ ′ (A|ω).
The relationships between potentials and Gibbs specifications is not one-to-one: local changes in the potentials can be made without affecting the kernels γ βΦ , yielding equivalent descriptions of measures. This leads to the concept of physical equivalence6 . Definition 3.31 (Physical equivalence) Two potentials Φ and Φ ′ are physically equivalent if the Gibbs kernels γ βΦ Λ and γ βΦ ′ Λ are the same for all Λ ∈ S.

Definition 3.32 (Gibbs measures) A probability measure µ ∈ M + 1 (Ω) is said to be a Gibbs measure if there exists a UAC potential Φ and β > 0 such that µ ∈ G(γ βΦ ). We often say that µ is a Gibbs measure for the UAC potential Φ.

Examples of Gibbs measures and phase transitions:

1. One-dimensional homogeneous Ising models (a) Ferromagnetic n.n.: We have already described in the previous chapter how ergodic Markov chains could be described as Gibbs measures for the homogeneous Ising model. The converse is also possible, and is indeed achieved in a general framework via the introduction of stochastic matrices defined in terms of the n.n. potential. The one-dimensional n.n. Ising model with coupling J > 0 and external magnetic field h is described and analyzed in this way in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] using a matricial formalism that leads in particular to the well known absence of phase transitions in one dimension. When h > 0, uniqueness is proved with a Gibbs measures µ + β of positive magnetization, that converges weakly to the Dirac measure at the all + configuration (δ + ) when the temperature goes to zero, while opposite measures µ - β and δ -are reached when h < 0. In absence of magnetic field h = 0, the unique Gibbs measure is the neutral convex combination µ β = 1 2 µ + β + 1 2 µ - β , which weakly converges to the convex combination 1 2 δ + + 1 2 δ -, exhibiting a so called asymptotic loss of tail-triviality responsible of the phase transition observed in dimension 2.

(b) Anti-ferromagnetic n.n.: The same matricial formalism is also used to deal with the anti-ferromagnetic case J < 0. At high magnetic field |h| > 2, the +-phase is the unique one and weakly converges, when the temperature goes to zero, to δ + and the opposite situation occurs when |h| < 2. The boundary case |h| = 2 also leads to uniqueness, leading to a unique phase µ F described in terms of Fibonacci's numbers reflecting an highly non-trivial phenomenon: As claimed in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF], in spite of the existence of infinitely many ground states7 there is no asymptotic loss of tail triviality. This loss occurs when the magnetic field is lower, |h| < 2, where one gets as a unique Gibbs measure a convex combination µ = 1 2 µ ± β + 1 2 µ ∓ of two symmetric measures whose typical configurations have either mostly pluses on a the (say) odd sublattice and mostly minuses on the even one. When the temperature goes to zero, µ weakly converges to a similar Dirac measures 1 2 δ ± + 1 2 δ ∓ , see again a detailed analysis in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. (c) Long-range one dimensional Ising models: The potential has already been introduced in the beginning of this section. When the polynomial decay r = 1, it is not UAC, but a formalism that corresponds to so-called Coulomb interactions can be developed within the weaker notion of uniform convergence, see [START_REF] Simon | The statistical mechanics of lattice gases[END_REF] and also the previous chapter. For r > 1, this has been studied by e.g. [START_REF] Dyson | An Ising ferromagnet with discontinuous long-range order[END_REF][START_REF] Spitzer | Phase transition in one-dimensional nearest-neighbors systems[END_REF] and it leads in particular to phase transitions in one dimension when 1 < r < 2. Phase transition also occurs in the case r = 2, yielding a particular decay of correlations known as a Thouless effect, see [START_REF] Fröhlich | The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy[END_REF].

3d Ising models:

We shall be laconic to describe this very important example of mathematical statistical mechanics: Theorem 2.26 is not valid in dimension d ≥ 3 and they do exist non-translation-invariant extreme Gibbs measures. This has been achieved by Dobrushin in [START_REF] Dobrushin | Gibbs states describing coexistence of phases for a three-dimensional Ising model[END_REF], with a shorter proof in [START_REF] Van Beijeren | Interface sharpness in the Ising model[END_REF], and these non-translation-invariant socalled Dobrushin states are related to the stability of an interface between a +-like phase and a --like one, and to each interface corresponds an extremal Gibbs measure, in addition to the usual +-and --phases. This example is very relevant for comparing the notions of ergodic and extremal Gibbs measures discussed at the end of the previous chapter.

3. Ising models on Cayley trees: This example is also very interesting from the ergodic vs. extreme point of view and there also exists an (uncountable) infinite number of extremal Gibbs measures at low temperature, and depending on the temperature there could exist two or three translation-invariant ones, see all the work done in [START_REF] Bleher | On pure phases of the Ising model on the Bethe lattice[END_REF][START_REF] Higuchi | Remarks on the limiting Gibbs states on a (d+1)-tree[END_REF][START_REF] Ioffe | Extremality of the disordered state for the Ising model on general trees[END_REF][START_REF] Preston | Gibbs states on Countable sets[END_REF] and a whole chapter in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

4. Kac-models: A careful adaptation of the Peierls argument allows to establish the occurrence of a phase transition for this model at low temperature and long enough range, see [START_REF] Bovier | The low temperature phase of Kac-Ising models[END_REF][START_REF] Cassandro | Phase transitions in Ising systems with long but finite range interactions[END_REF] in dimension d ≥ 2.

Theorem 3.33 For d ≥ 2, for any β > 1, there exists γ = γ(β) such that for all γ < γ(β), there exists at least two distinct DLR measures µ - γ = µ + γ .

Now that our central objects are properly defined, we can prove a previous claim providing Gibbs measures as the main example of quasilocal measures. It is the easiest part of the link between these two notions, a partial converse statement will be established next Section.

Theorem 3.34 Let β > 0 and Φ be a UAC potential. Then the Gibbs specification γ βΦ is quasilocal. Thus, any Gibbs measure is also quasilocal.

Proof: If Φ be UAC potential it implies in particular that:

A∈S,A∩Λ =∅ sup ω∈Ω |Φ A (ω)| < +∞ (3.35)
which in turns implies that for all Λ ∈ S, H Φ Λ is a quasilocal function. Indeed, if S ∋ Λ ′ ⊃ Λ and consider two configurations σ and ω such that σ Λ ′ = ω Λ ′ , we have

H Φ Λ (ω) -H Φ Λ (σ) ≤ 2 A∈S,A∩Λ =∅,A∩Λ ′c =∅ sup ω∈Ω |Φ A (ω)|
and the latter converges to zero as a consequence of (3.35). Thus, one gets the quasilocality of the Hamiltonians: lim

Λ ′ ↑S sup σ,ω∈Ω,σ Λ ′ =ω Λ ′ | H Φ Λ (ω) -H Φ Λ (σ) | = 0.
Quasilocality of Gibbs specifications follows.

Remark 3.36 (Uniform convergence and quasilocality) Requiring for a potential to be uniformly absolutely convergent is actually too strong a requirement for merely proving the quasilocality of the Gibbs specification. Uniform convergence is actually enough to prove the quasilocality of the Hamiltonian. In such case, one has

sup σ,ω∈Ω,σ Λ ′ =ω Λ ′ H Φ Λ (ω) -H Φ Λ (σ) ≤ 2 sup ω∈Ω A∈S,A∩Λ =∅,A∩Λ ′c =∅ Φ A (ω)
and lim

Λ ′ ↑S sup σ,ω∈Ω A∈S,A∩Λ =∅,A∩Λ ′c =∅ Φ A (ω) = 0
means the uniform convergence of this potential. Thus, when the potential is uniformly convergent, the Hamiltonian is a well-defined quasilocal function and so is the specification.

Remark 3.37 (Non-Gibbsianness and essential discontinuity) Let µ be a Gibbs measure: By theorem 3.34, there exists a quasilocal specification γ s.t. µ ∈ G(γ) and

∀A ∈ F, µ[A | F Λ c ](•) = E µ [1 A | F Λ c ](•) = γ Λ (A | •) µ-a.s.
so that there exists always one continuous version, as a function of the boundary condition ω, of the conditional probabilities of µ with respect to the σ-algebra generated by the outside of finite sets. This will be used in Chapter 5 to detect non-Gibbsianness by proving the existence of special configurations that are point of essential discontinuities, for which there exists conditional expectations of local functions that have no continuous version.

A Gibbs specification is quasilocal but the converse is not true in general. However, most of the quasilocal specifications are Gibbsian, and we make this now.

Gibbs representation theorem

In this section, we want to characterize a Gibbs measure at the level of specifications: Let µ be a DLR measure, i.e. such that there is a specification γ with µ ∈ G(γ). To characterize µ as a Gibbs measure, one should manage to express the weights of configurations in an exponential form and in some sense every configuration should receive a non-zero weight. One says that the specification has to be non-null in the following sense: Definition 3.38 (Uniform non-nullness) A specification γ is said to be uniformly non-null

iff ∀Λ ∈ S, ∃ α Λ , β Λ with 0 < α Λ ≤ β Λ < ∞ s.t. 0 < α Λ • ρ(A) ≤ γ Λ (A | ω) ≤ β Λ ρ(A), ∀ω ∈ Ω, ∀A ∈ F. (3.39)
If γ is quasilocal, non-nullness, in the sense that ρ(A) > 0 =⇒ γ Λ (A | ω) > 0, for all ω ∈ Ω, is equivalent to uniform non-nullness [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. It is also-called the finite energy condition in percolation circles. A measure µ is then said to be (uniformly) non-null if there exists a (uniformly) non-null specification γ such that µ ∈ G(γ).

We are now ready to give a partial converse statement of Theorem 3.34. For the purpose of this theorem, the inverse temperature β has been incorporated in the potential. Theorem 3.40 (Gibbs representation theorem [START_REF] Kozlov | Gibbs description of a system of random variables[END_REF][START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF]) Let µ be a quasilocal and uniformly non-null probability measure on (Ω, F). Then µ is a Gibbs measure, i.e. there exists a UAC potential Ψ such that µ ∈ G(γ Ψ ).

Proof : Let µ non-null and quasilocal: There exists a quasilocal specification γ such that µ ∈ G(γ) and (3.39) holds, and let us try to guess which necessary property a potential should have such for γ = γ βΦ to hold, by considering such a Gibbs specification γ first. Among all the physically equivalent potentials that define this specification, let us also assume for the moment that a vacuum potential Φ + exists, with a vacuum state denoted by +. The vacuum property and its link with free boundary conditions will be very useful to relate the specification and the potential. Indeed, considering Λ ∈ S, then one obviously has H Φ + Λ (+|+) = 0 by the vacuum property and thus

γ Λ (+|+) = 1 Z Λ (+) so for any other configuration σ ∈ Ω γ Λ (σ|+) = γ Λ (+|+) e -H Φ + Λ (σ|+)
To exploit consistency via Lemma (3.28), we introduce the density f Λ (σ) := γ Λ (σ|σ). Consistency implies that it satisfies the conditions of Lemma 3.28, and we shall use indifferently both expressions, in terms of f or in terms8 of γ. Then, by non-nullness and the defining equation (3.25),

H Φ + Λ (σ|+) = -ln γ Λ (σ|+) γ Λ (+|+) = ln f Λ (+) f Λ (σ Λ + Λ c ) .
It then possible to derive a vacuum potential from this Hamiltonian, mainly because conditioning prescribing a vacuum boundary condition is equivalent to consider the Hamiltonian with free boundary condition, for which the use of an inversion formula from Moebius is direct. Indeed, the vacuum condition yields

H Φ + Λ (σ|+) = A∩Λ =∅ Φ + A (σ Λ + Λ c ) = A⊂Λ Φ + A (σ) + A∩Λ =∅,A∩Λ c =∅ Φ + A (+ Λ + Λ c ) (3.41)
where the last sum is null by the vacuum property. Thus

∀Λ ∈ S, ∀σ ∈ Ω, H Φ + Λ (σ | +) = H Φ + ,f Λ (σ) := A⊂Λ Φ + A (σ)).
In particular one gets directly the single-site potentials:

∀i ∈ S, ∀σ ∈ Ω, Φ + {i} (σ) = H Φ + ,f {i} (σ) = -ln γ {i} (σ|+) γ {i} (+|+) . (3.42)
To get an insight of the mechanism of the Moebius inversion formula, which will enables us to rewrite Φ + from γ, let us use (3.41) to derive the potential for finite regions consisting of two and three sites, for a fixed σ that we forget in the notation. For Λ = {i, j}, write

H Φ + ,f {i,j} = Φ + {i} + Φ + {j} + Φ + {i,j}
so, using the single-site expression (3.42), one gets for all σ ∈ Ω

Φ + {i,j} = H Φ + ,f {i,j} -H Φ + ,f {i} -H Φ + ,f {j} = -ln γ {i,j} (σ|+) γ {i,j} (+|+) + ln γ {i} (σ|+) γ {i} (+|+) + ln γ {j} (σ|+) γ {j} (+|+) .
For Λ = {i, j, k}, write similarly, thanks to the vacuum condition,

H Φ + ,f {i,j,k} = Φ + {i} + Φ + {j} + Φ + {k} + Φ + {i,j} + Φ + {i,k} + Φ + {j,k} + Φ + {i,j,k} = Φ + {i} + Φ + {j} + Φ + {k} + H Φ + ,f {i,j} -H Φ + ,f {i} -H Φ + ,f {j} + H Φ + ,f {i,k} -H Φ + ,f {i} -H Φ + ,f {k} + H Φ + ,f {j,k} -H Φ + ,f {j} -H Φ + ,f {k} + Φ + {i,j,k} = -H Φ + ,f {i} -H Φ + ,f {j} -H Φ + ,f {k} + H Φ + ,f {i,j} + H Φ + ,f {i,k} + H Φ + ,f {j,k} + Φ + {i,j,k}
and thus

Φ + {i,j,k} = H Φ + ,f {i,j,k} -H Φ + ,f {i,j} -H Φ + ,f {i,k} -H Φ + ,f {j,k} + H Φ + ,f {i} + H Φ + ,f {j} + H Φ + ,f {k} .
Proceeding by induction, one could reconstruct the potential in this way. It is actually formally proved using the following formula, proved in this way e.g. in [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF].

Proposition 3.43 (Moebius "inclusion-exclusion" inversion formula) Let S be a countable set of finite sets and H = (H Λ ) Λ∈S and Φ = (Φ A ) A∈S be set functions from S to R. Then

∀Λ ∈ S, H Λ = A⊂Λ Φ A ⇐⇒ ∀A ∈ S, Φ A = B⊂A (-1) |A\B| H B . (3.44) 
We use it and propose then the Definition 3.45 A vacuum potential for a given specification γ is the potential defined for all σ ∈ Ω by Φ + ∅ = 0 and It is obviously a potential. We consider any reference configuration + ∈ Ω and prove first that Φ + satisfies the vacuum condition. It will be crucial to get consistency. Consider A ∈ F and σ ∈ Ω such that there exists i ∈ A where σ i = + i . One has

∀A ∈ S, Φ + A (σ) = - B⊂A (-1) |A\B| ln γ B (σ|+) γ B (+|+) = B⊂A (-1) |A\B| ln f B (+) f B (σ B + B c ) . ( 3 
Φ + A (σ) = - B⊂A (-1) |A\B| ln γ B (σ|+) γ B (+|+) = B⊂A (-1) |A\B| H Φ + ,f B (σ).
where by the Moebius formula, one has for all B ∈ S,

H Φ + ,f B (σ) = A⊂B Φ + A (σ) = -ln γ B (σ|+) γ B (+|+) = ln f B (+) f Λ (B Λ + Λ c ) . (3.48) 
Using Equation (3.29), one first gets

∀i ∈ B ⊂ A, H Φ + ,f B (σ) = H Φ + ,f B\i (σ). (3.49) 
Indeed, by consistency property of the specification, one can rewrites

f B (+) f B (σ B + B c ) = f B (+ B\i + i ) f B (σ B\i + i ) = f B\i (+) f B\i (σ B\i + i ))
to eventually get (3.49). Now define for any site i ∈ S a partition of S by S = S A,i ∪ S c A,i with S A,i = {V ∈ S, V ⊂ A, V ∋ i}. An obvious bijection from S A,i to S c A,i links B ∈ S A,i to B\i ∈ S c A,i , so one gets

Φ + A (ω) = B∈S A,i (-1) |A\B| H Φ + B (ω) + B∈S c A,i (-1) |A\B| H B Φ + (ω) = B∈S A,i (-1) |A\B| H B Φ + (ω) + (-1) |A\{B\i}| H B\i Φ + (ω) = B∈S A,i (-1) |A\B| H B Φ + (ω) -H B\i Φ + (ω) = 0
and Φ + is indeed a vacuum potential associated to the specification γ. This potential need not be convergent or consistent with γ in general, and we verify it now in this non-null quasilocal case, that is we first need to prove that we can always define 

∀σ, ω ∈ Ω, H Φ + Λ (σ|ω) = A∩Λ =∅,A∈S Φ + A (σ Λ ω Λ c ) i.e.
H Φ + ,f Λ (σ) = A⊂Λ Φ + A (σ) = ln f Λ (+) f (σ Λ + Λ c ) .
To prove now that it is a convergent potential using the quasilocality of the function

ω -→ f Λ (σ Λ ω Λ c ), we re-write A∩Λ =∅,A⊂∆ Φ A (σ) = A⊂∆ Φ A (σ) - A⊂∆∩Λ c Φ A (σ).

Using twice Moebius inversion formula (3.44), one obtains

A⊂∆ Φ A (σ) = ln f ∆ (+) f ∆ (σ ∆ + ∆ c )
and

A⊂∆∩Λ c Φ A (σ) = ln f ∆∩Λ c (+) f ∆∩Λ c (σ ∆∩Λ c + ∆ c ∪Λ )
.

By consistency (Lemma 3.28), we get ln

f ∆ (+) f ∆ (σ ∆∩Λ c + ∆ c ∪Λ )
for the second term, because, on ∆ ∩ Λ c , the two involved configurations coincide and eventually

A∩Λ =∅,A⊂∆ Φ A (σ) = ln f ∆ (σ ∆∩Λ c + ∆ c ∪Λ ) f ∆ (σ ∆ + ∆ c )
and using again Lemma (3.28), with the sets (∆∩Λ, ∆), and the configurations (σ ∆∩Λ c + ∆ c ∪Λ , σ ∆ + ∆ c ) which agree outside ∆ ∩ Λ, we get

A∩Λ =∅,A⊂∆ Φ A (σ) = ln f Λ∩∆ (σ ∆∩Λ c + ∆ c ∪Λ ) f Λ∩∆ (σ ∆ + ∆ c ) .
Let ∆ ↑ S in the sense defined. For ∆ ⊃ Λ, one gets

A∩Λ =∅,A⊂∆ Φ A (σ) = ln f Λ (+ Λ σ ∆\Λ + ∆ c ) f Λ (σ ∆ + ∆ c ) .
Thus quasilocality implies that the potential Φ is convergent and that

∀σ ∈ Ω, H Φ + Λ (σ) = A∩Λ =∅,A∈S Φ A (σ) = -ln γ Λ (σ|σ) γ Λ (+|σ) = ln f Λ (+ Λ σ Λ c ) f Λ (σ) < +∞.
Hence, every quasilocal and non-null specification γ is consistent with the convergent vacuum potential Φ + whose the Hamiltonian with boundary condition ω ∈ Ω is defined for all σ ∈ Ω ∀ω ∈ Ω,

H Φ + Λ (σ|ω) = -ln γ Λ (σ|ω) γ Λ (+|ω) = ln f Λ (+ Λ ω Λ c ) f Λ (σ Λ ω Λ c ) < +∞. (3.50)
This proves Lemma 3.47: Any quasilocal and non-null specification is consistent with a convergent potential.

Unfortunately, this vacuum potential is not UAC in the sense of (3.16). To gain summability and absoluteness, Kozlov [START_REF] Kozlov | Gibbs description of a system of random variables[END_REF] introduced a particular re-summation procedure by telescoping the terms of the Hamiltonian with free boundary conditions in large enough annuli to recover absoluteness, but carefully keeping consistency, to eventually get a potential Ψ such that, for all σ ∈ Ω A⊂Λ

Ψ A (σ) = H Φ + ,f Λ (σ) = A⊂Λ Φ + A (σ) = ln f Λ (+) f (σ Λ + Λ c ) (3.51)
with the extra summability property ∀i ∈ S,

A∈S,A∋i sup ω Ψ A (ω) < +∞. (3.52)
We shall describe it formally following the pedagogical exposition of Fernández [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF], and describe a bit more explicitly the telescoping at the end of this proof.

In our settings with a finite single-spin state space, non-nullness and quasilocality can be reduced to site-characterizations that are very useful to get the stronger summability around sites (3.52). Introduce, for any site i ∈ S and any cube Λ n , the quantities

m i := inf ω f {i} (ω) = inf ω∈Ω γ {i} (ω|ω) and g i (n) = sup ω f {i} (ω Λn + Λ c n ) -f {i} (ω)
By non-nullness, one has m i > 0 for all i ∈ S and quasilocality reads ∀i ∈ S, g i (n) -→ n→∞ 0.

Starting from the expression of the Hamiltonians in terms of the vacuum potential, which itself is expressed as the logarithm of ratios of densities, Kozlov used the inequality

ln a b ≤ |a -b| min(a, b) , ∀a, b > 0 to get that for all i ∈ S sup ω A⊂Λn,A∋i Φ + (σ) ≤ g i (n) m i (3.53)
and in particular that sup ω A⊂Λn,A∋i

Φ + (σ) - A⊂Λ n-1 ,A∋i Φ + (σ) ≤ g i (n) + g i (n -1) m i . (3.54)
Kozlov used then these bounds to reduce the lack of absolute convergence by grouping terms of the vacuum potential within intermediate annuli chosen large enough to exploit quasilocality. To do so, the telescoping has to integrate larger boxes, i.e. along subsequences of cubes Λ n i k , k ≥ 1 in (3.54) chosen such that for any i ∈ S,

k≥1 g i (n i k ) < ∞
which is always possible because for any i ∈ S, the sequence g i (n) n∈N converges to zero.

For any i ∈ S, we consider then the subsequence of cubes

Λ n i k , centered in i, of radius n i k such that the annuli Λ n i k \ Λ n i k-1
is thus large enough, as we shall see. This size will allow the use of the bounds (3.53) for any i ∈ S and to get the right summability properties, the telescoping is done by following the bonds along these cubes, adding at each steps the terms of the vacuum potential that correspond to bonds of the annulus, and that were not in the previous cubes. Define then, for any i ∈ S, any k ≥ 1

S i k = B ⊂ Λ i n k : B ∋ i \ S i k-1
with S i 0 = {i}, and introduce the potential9 Ψ defined by 

ΨA (σ) =    ΨA (σ) = B∈S k Φ + B (σ) if A = Λ i n k for some k ≥ 1, some i ∈ S.
Φ+ B (σ) - B∋i,B⊂Λ n i k-1 Φ+ B (σ) ≤ g i (n i k ) + g i (n i k-1 ) m i .
in such a way that one has the right summability property at the site i:

A∋i sup ω | Ψi A (σ)| ≤ 2 m i • k≥1 g i (n i k ) < +∞.
Nevertheless, we need to do the telescoping more carefully to keep the consistency, in general lost in the procedure above: For a given B ∈ S, the same vacuum interaction Φ B could have been used more than once. To avoid it, one has to find a way of grouping terms of the vacuum interaction without using the terms already used, i.e. one has to run the sequence of cubes by using any finite set B of bonds only once. To do so, Fernández [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF] proposed the following presentation of Kozlov's potential, now denoted by Ψ. The sites of the lattice will be now lexicographically ordered and still generically denoted by i. For any site, one replaces the previous subsequence of cubes Λ n i k by rectangles around it that do not incorporate B's (or i's) already considered. Hence, one defines for each i = 1, 2, . . . , a sequence (L i k ) k≥1 defined for all i, k ≥ 1 by

L i k = j ∈ S : i ≤ j ≤ r i k
where the diameters r i k are chosen such that n i k = diam(L i k ) = r i ki in order to keep the same large enough sequence of annuli. These groups of bonds will be the only one involved in the potential and to perform a correct re-summation procedure, one defines for any site i ∈ S, a family of disjoints subsets of S containing i by S i 0 = {i} and

S i k = B ⊂ L i k : B ∋ i \ S i k-1
in such a way that B ∈ ∪ i j=1 ∪ k≥1 S i j and any B containing i is uniquely contained in one of them. By this procedure, any set of bonds B is considered only once and we get the Kozlov potential Ψ defined by Consistency holds because the careful procedure yields the same Hamiltonian with free boundary conditions for the vacuum and Kozlov potentials, and convergence is due to the choice of the subsequences n i k :

Ψ A (σ) =    Ψ A (σ) = B∈S i k Φ + B (σ) if A = L i k for some (i, k), i ∈ S, k ≥ 1 0 otherwise. ( 3 
∀i ∈ S,

A∈S,A∋i sup ω Ψ A (ω) ≤ i j=1 k≥1 sup ω Ψ L i k (ω) ≤ i j=1 2 m i k≥1 g i (n i k ) < ∞.
This proves the lemma and the Gibbs representation theorem 3.40.

Remark 3.57 (Telescoping procedure)

To get an idea of the type of telescoping that has to be done, we informally detail it starting from the expression (3.48) of the Hamiltonian with free boundary condition, in order to see how consistency is important to get it. It is also the way the procedure is done in an adaptation to generalized Gibbs measures in Chapter 5 to get weakly Gibbsian measures, see [START_REF] Maes | Relative energies for non-Gibbsian states[END_REF][START_REF] Maes | Almost Gibbsian versus Weakly Gibbsian[END_REF][START_REF] Maes | The restriction of the Ising model to a Layer[END_REF][START_REF] Depoorter | Stavskaya's measure is weakly Gibbsian[END_REF], and we also use a similar procedure in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] to get a variational principle for translation-invariant quasilocal measures. Let us start from the Hamiltonian with free boundary condition for some Λ containing the origin and assume Λ to be a cube Λ n l of the subsequence already taken, and write L n l for the annulus Λ n l \ Λ n l-1 . One has by consistency and (3.48)

H Φ + ,f Λn l (σ) = ln f Λn l (+) f (σ Λn l + Λ c n l
) .

The idea now is to telescope this term by incorporating terms corresponding to so-called relative energies by flipping the spin in the annulus only

H Φ + ,f Λn l (σ) = ln f Λn l (+) f Λn l (+ Λn l-1 σ L n l -1 + Λ c n l ) • f Λn l (+ Λn l-1 σ Ln l-1 + Λ c n l ) f Λn l (+ Λn l-2 σ Ln l-2 + Λ c n l-1
) .

Doing it for any k = 1 . . . l, one gets

H Φ + ,f Λn l (σ) = l k=1 ln f Λn l (+ Λn k σ L n k +1 + Λ c n k+1 ) f Λn l (+ Λn k-1 σ Ln k + Λ c n k ) • f Λn l (+ Λn k-1 σ Ln k + Λ c n k ) f Λn l (+ Λn k-2 σ Ln k-1 + Λ c n k-1
) .

Now using consistency via our key lemma 3.28, one can replace the densities f Λ by densities corresponding to the proper annulus in order to get proper measurability conditions for the potential; To see this, one rewrites thus

H Φ + ,f Λn l (σ) = l k=1 ln f Λn k (+ Λn k σ L n k +1 + Λ c n k+1 ) f Λn k (+ Λn k-1 σ Ln k + Λ c n k ) • f Λn k-1 (+ Λn k-1 σ Ln k + Λ c n k ) f Λn k-1 (+ Λn k-2 σ Ln k-1 + Λ c n k-1
) to eventually get a potential of the form Ψ Ln k = Φ Λn k -Φ Λn k-1 for which consistency holds together with the required convergence property. We shall use such a procedure, using the expression of (3.28) in terms of γ instead of f in Chapter 4.

Remark 3.58 (Translation-invariance and Kozlov vs. Sullivans results)

The procedure due to Kozlov to introduce its UAC potential does not yield a translation-invariant one, as explicitly seen in the site-dependent way of re-ordering terms of the Hamiltonian with free boundary condition. It is nevertheless possible to consider larger rectangles partitioning Λ similarly for all site considered but they have to be larger and require a condition a bit stronger than quasilocality.

It is an open question whether this condition is technical or not, but Sullivan [START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF] has observed that the vacuum potential, in addition to be convergent and translation-invariant, is relatively uniformly convergent in the sense that the series

A∩Λ =∅,A∈S Φ + A (ω) -Φ + A (ω ′ Λ ω Λ + ) < +∞ (3.59)
are uniformly convergent in (ω, ω ′ ), and also that this was enough to get quasilocality of the Gibbs specification. For the vacuum potential itself and ω ′ = +, this implies the usual uniform convergence of the vacuum potential. Reciprocally, any quasilocal specification has a relatively uniformly convergent potential and we shall see that it is also interesting to derive thermodynamical properties for these measures, although this convergence is too weak to get all the flavor of the Gibbsian theory (see again the discussion in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]).

Chapter 4

Equilibrium approach

We present now an alternative approach to describe equilibrium states at infinite-volume that has a more physical flavor and which will eventually appear to be partially equivalent to the DLR construction presented above. Inspired by the second law of thermodynamics described at finite volume in the introduction of Chapter 3, this so-called equilibrium approach to Gibbs measures provides thermodynamic functions at infinite-volume and yields afterwards infinitevolume counterparts of the second law of thermodynamics in terms of zero relative entropy or in terms of minimization of free energy. This approach is restricted to a translation-invariant framework, mostly because it is mainly untractable otherwise1 , and we shall characterize the translation-invariant equilibrium states of a given system in terms of variational principles, either specification-dependent or specification-independent depending on the choice made to characterize of the second law, as we shall see. We thus describe, in a rather general framework that will be useful for generalized Gibbs measures next chapter, how this approach is in some sense equivalent to the DLR approach restricted to translation-invariant measures, and describe the general proof given in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] of the recent result that a (specification-dependent) variational principle holds for translation-invariant quasilocal specifications in general.

In all this chapter, we also restrict the infinite-volume limit procedure by mostly considering the limit Λ ↑ S along sequences of cubes (Λ n ) n∈N , or at least sequences s.t. the ratio (surface boundary)/(volume) |∂Λ| |Λ| → 0, within the so-called thermodynamic limit, although the latter is a bit more general [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF][START_REF] Israel | Convexity in the theory of lattice gases[END_REF]. For this reason, we focus on the d-dimensional regular lattice S = Z d , because this thermodynamic limit does not hold for cubes on trees2 , which are the other lattices sometimes considered in these notes. We also incorporate the temperature in the potential when dealing with Gibbs specifications and measures, or equivalently here we assume β = 1. At the end of the chapter, we briefly mention related large deviation properties for the considered measures and introduce thereafter another way to consider Gibbs measures as equilibrium states of the system, defining them as invariant measures of Markov processes on the configuration space, and illustrate this notion by the so-called stochastic Ising models, that will also be discussed in the generalized Gibbs framework in Chapter 5.

Thermodynamic properties 4.1.1 Thermodynamic functions

We have already introduced in Chapter 3 the relative entropy at finite volume Λ ∈ S of µ relative to ν for two translation-invariant measures µ, ν ∈ M + 1,inv (Ω), defined to be

H Λ (µ|ν) = Ω dµ Λ dν Λ • log dµ Λ dν Λ dν (4.1)
when the projection µ Λ of µ on (Ω Λ , F Λ ) is absolutely continuous w.r.t. the projection ν Λ of ν, and to be H Λ (µ|ν) = +∞ otherwise. To avoid trivial divergences at infinite-volume, one considers quantities per unit of volume, writes for any n ∈ N

h n (µ|ν) := 1 |Λ n | σ Λn ∈Ω Λn µ(σ Λn ) • log µ(σ Λn ) ν(σ Λn ) . (4.2)
and introduces the relative entropy density of µ relative to ν to be the limit

h(µ|ν) = lim n→∞ h n (µ|ν) (4.3)
provided it exists. The limit is known to exist for any arbitrary µ ∈ M + 1,inv (Ω) when ν ∈ M + 1,inv (Ω) is a Gibbs measure (for a UAC potential) and, more generally, if ν is asymptotically decoupled 3 . We extend this result next section for general translation-invariant quasilocal measures in Theorem 4.33, whose proof follows [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF]. We also recall (see e.g. [START_REF] Billingsley | Ergodic theory and information[END_REF]) that for µ ∈ M + 1,inv (Ω), the entropy per unit of volume

h n (µ) = - 1 |Λ n | σ Λn µ(σ Λn ) log µ(σ Λn ) (4.4)
has a well-defined limit

h(µ) := -lim n→∞ 1 |Λ n | σ Λn µ(σ Λn ) log µ(σ Λn ) (4.5)
called the Kolmogorov-Sinai entropy of µ.

For ν ∈ M + 1,inv (Ω) and f ∈ F bounded, the pressure for f relative to ν is defined as

p(f |ν) = lim n→∞ 1 |Λ n | d log exp x∈Λn τ x f dν (4.6)
whenever this limit exists. This limit exists, for every quasilocal function f , if ν is Gibbsian [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] or asymptotically decoupled [START_REF] Pfister | Thermodynamical aspects of classical lattice systems[END_REF].

When dealing with a translation-invariant potential Φ, the particular choice and with the a priori product measure ρ as reference measure, it connects with the usual pressure in the case of a lattice gas and is more generally related with the free energy of a system obtained from a partition function with boundary condition ω or with free boundary condition. At finite volume Λ n they are respectively defined to be

f = f Φ := A∋0 1 |A| • Φ A 3 These
P f Λn (Φ) = 1 |Λ n | ln Z Φ,f Λn and P ω Λn (Φ) = 1 |Λ n | ln Z Φ Λn (ω).
When the limit exists, it captures many information of the particle system 4 and for UAC potentials it turns out to be independent of the boundary condition:

Theorem 4.7 (Pressure of a UAC potential [START_REF] Israel | Convexity in the theory of lattice gases[END_REF]) Let Φ be a U.A.C. translation-invariant potential. Then, the limits

lim n→∞ 1 |Λ n | ln Z Φ,f Λn and lim n→∞ 1 |Λ n | ln Z Φ Λn (ω) (4.8)
exist, coincide for all ω ∈ Ω and define the pressure of the potential Φ:

P (Φ) := lim n→∞ P f Λn (Φ) = lim n→∞ P ω Λn (Φ) (4.9)
exists and is thus independent of the boundary condition ω ∈ Ω.

We recall briefly the philosophy of the proof of Israel [START_REF] Israel | Convexity in the theory of lattice gases[END_REF], because we extend it in this chapter to deal with the vacuum potential of a translation-invariant quasilocal measure, which is translation-invariant but not UAC, using its relative uniform convergence, introduced in Remark 3.58, following Sullivan [START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF]. The proof focuses first on finite-range potentials and using the finiteness of the range, and thus the independence of spins from sites far enough, one introduces a partition of the volume Λ into cubes and corridors, the width of the latter being at least the range of the potential, to eventually get a factorization of the partition function up to some boundary terms that are negligible in the thermodynamic limit 5 . This factorization leads to sub-additivity of the logarithm of the partition function, which in turns implies the existence of the pressure. This result is then extended to general UAC potentials using the density of the finite-range potential in the Banach space of translation-invariant UAC potentials [START_REF] Israel | Convexity in the theory of lattice gases[END_REF], and thereafter the strong UAC convergence to get the independence with the boundary condition.

We also introduce the ν-specific energy of a reference configuration + ∈ Ω:

e + ν := -lim Λ↑Z d 1 |Λ| log ν(+ Λ ) (4.10)
whenever it exists. We prove its existence for translation-invariant quasilocal measures in this chapter in order to get a general variational principle for translation-invariant quasilocal measures. We emphasize the fact that it is not properly speaking 6 the infinite-volume counterpart of the energies of Chapter 3.

Variational principles

To translate into a proper mathematical framework the second law of thermodynamics in the vein of the finite-volume description given in Chapter 3, we distinguish between thermodynamical (specification-independent) and statistical mechanical (specification-dependent) variational principles.

Definition 4.11 (Thermodynamic variational principle) ν ∈ M + 1,inv (Ω) is said to satisfy a (thermodynamical) variational principle if the relative entropy h(µ|ν) and the pressure p(f |ν) exist for all µ ∈ M + 1,inv (Ω) and all f ∈ F qloc , and are conjugate convex functions in the sense that ∀f ∈ F qloc , p(f |ν) = sup

µ∈M + 1,inv (Ω) µ(f ) -h(µ|ν) . (4.12) ∀µ ∈ M + 1,inv (Ω), h(µ|ν) = sup f ∈F qloc µ(f ) -p(f |ν) . (4.13)
This is the infinite-volume counterpart of the formulation of the second law of thermodynamics in terms of the minimization of free energy, which coincides with the pressure here. Gibbs measures satisfy this specification-independent principle and Pfister [START_REF] Pfister | Thermodynamical aspects of classical lattice systems[END_REF] has extended its validity to the larger class of asymptotically decoupled measures, described next chapter within the generalized Gibbsian framework. These conjugate convex functions are also very important to study large deviation properties of DLR measures. We do not focus much on this type of variational principle in these lectures, and prefer focusing on the other formulation of the second law of thermodynamics, in terms of zero relative entropy. Hence, this property has to be related to the formulation of the second law of thermodynamics in terms of zero relative entropy, which at finite volume implies equality of measures, as explained in the beginning of Chapter 3. At infinite-volume nevertheless, two different measures could have zero relative entropy, but when the reference measure has some nice locality properties 7 , the other measure, although possibly different, should share the same system of conditional probabilities, identifying the corresponding measures as equilibrium states of the system. This result is well known for Gibbs measures consistent with a translation-invariant UAC potential [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] and has thus been extended recently to translation-invariant quasilocal DLR measures [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF]. We describe now this result under a more general form that will be useful for its extension to non-Gibbsian and non-quasilocal measures in Chapter 5.

Topological criterion for variational principles

In this section, we consider specifications in the general framework of Chapter 2, non necessarily Gibbsian or quasilocal, and use some specific concentration properties on some points of (sometimes partial) continuity of the specification. We introduce different sets of points of continuity. First, the set Ω γ of good configurations of γ is the set of points of continuity, i.e.

Ω γ = ω ∈ Ω : ∀Λ ∈ S, ∀f ∈ F loc , lim n→∞ sup σ∈Ω γ Λ f (ω Λn σ Λ c n ) -γ Λ f (ω) = 0 . (4.16)
We also consider points of continuity in some specific direction, say + ∈ Ω. Introduce, for all n ∈ N, the truncated kernels γ n,+ Λ defined for all f ∈ F loc and all Λ ∈ F by

∀ω ∈ Ω, γ n,+ Λ f (ω) = γ Λ f (ω Λn + Λ c n ). (4.17)
The set of points8 that are continuous in the +-direction is then defined to be

Ω + γ = ω ∈ Ω : ∀Λ ∈ S, ∀f ∈ F loc , lim n→∞ γ n,+ Λ f (ω) = γ Λ f (ω) . (4.18)
For presumably 9 technical reasons due to some telescoping procedure, we introduce also the set of configurations σ for which there is continuity at some particular concatenated configuration σ + ∈ Ω defined for all σ ∈ Ω by

σ + i = σ i if i ≥ 0, and σ i = + i otherwise. (4.19)
We denote this set by

Ω <0 γ = σ ∈ Ω : σ + ∈ Ω γ . (4.20)
Due to the definition of these sets by a limiting procedure, involved in any continuity-type property, one can prove that these sets are tail-measurable and such that

Ω γ ⊂ Ω + γ ⊂ Ω <0 γ ∈ F ∞ .

Second part of the variational principle: General criterion

Getting consistency from zero relative entropy is seen as the "easiest part", usually called the second part. The result and its proof are standard, but we give a slightly more general version of both, that will be useful also for non-quasilocal measures in Chapter 5. What is actually really needed is some weaker continuity in the +-direction for some reference configuration + ∈ Ω, as we see now.

Theorem 4.21 [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF][START_REF] Fernández | Restoration of Gibbsianness for projected and FKG renormalized measures[END_REF] Let γ be a specification that is quasilocal in the direction + ∈ Ω, and

ν ∈ G inv (γ). If µ ∈ M + 1 (Ω) is such that h(µ|ν) = 0, then µ ∈ G(γ) ⇐⇒ ν g Λn\Λ • γ n,+ Λ f -γ Λ f -→ n→∞ 0 (4.22)
for all Λ ∈ S and f ∈ F loc , where g Λn\Λ :=

dµ Λn \Λ dν Λn\Λ provided it exists.

Thus, to get information about consistency from zero relative entropy requires that the concentration properties of the density of µ Λn\Λ w.r.t ν Λn\Λ to beat asymptotic divergence due to the lack of continuity of γ. When γ is quasilocal, this lack of continuity never exists (Ω γ = Ω) and is thus always beaten, yielding the standard proof of the second part of the variational principle for translation-invariant quasilocal specifications.

Proof of Theorem 4.21:

It comes from [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF][START_REF] Fernández | Restoration of Gibbsianness for projected and FKG renormalized measures[END_REF] and is an adaptation of the standard proof [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF][START_REF] Pfister | Thermodynamical aspects of classical lattice systems[END_REF] in the quasilocal case, where the criterion (4.22) is trivially valid.

When h(µ|ν) = 0 holds, the latter relative entropy is in particular well-defined and as a consequence, for n sufficiently large, the F Λn -measurable density g Λn := dµ Λn /dν Λn exists. Fix f ∈ F loc , Λ ∈ S and pick n big enough to get both Λ n ⊃ Λ and the existence of g Λn . To prove that µ ∈ G(γ), we prove that µγ Λ [f ] = µ[f ], and approximate first γ by the truncated kernel (4.17), writing

µγ Λ [f ] = µγ n,+ Λ [f ] + A n where A n = µ γ Λ f -γ n,+
Λ f goes to zero when n goes to infinity by continuity in the +direction. Now we can use consistency, the F Λn\Λ -measurability of the truncated kernel γ n,+ Λ [f ] and the F ∆ -measurability of any density g ∆ to rewrite

µγ n,+ Λ [f ] = µ γ n,+ Λ f = ν g Λn\Λ • γ n,+ Λ f = ν g Λn\Λ • γ Λ f + B n where B n = ν g Λn\Λ • (γ n,+ Λ f -γ Λ f )
is controlled by the criterion (4.22). Now, by F Λ c -measurability of g Λn\Λ and consistency of ν, one rewrites

ν g Λn\Λ • γ Λ f = ν γ Λ (g Λn\Λ • f ) = ν g Λn\Λ • f
which has to be compared with

µ[f ] = ν g Λn • f = ν g Λn\Λ • f + C n with C n = ν (g Λn\Λ -g Λn ) • f .
We can evaluate C n using the following in equality due to Csiszár [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF] |C

n | = ν (g Λn -g Λn\Λ ) f ≤ 2 • sup ω∈Ω |f (ω)| • H Λn (µ|ν) -H Λn\Λ (µ|ν) 1/2
and use that the hypothesis of zero relative entropy implies that finite-volume relative entropy cannot grow faster that the volume, and thus that the same is true for densities. Thus one has µγ

Λ [f ] = µ[f ] if and only if B n -→ n→∞ 0, which proves the lemma.
This criterion is a way to express that getting zero relative entropy is meaningful only when the measures share some locality properties. Without properties of that type, things could be different, as shown by an example of [START_REF] Xu | An ergodic process of zero divergence distance from the class of all stationary processes[END_REF]. This criterion has been upgraded in [START_REF] Van Enter | On the variational principle for generalized Gibbs measures[END_REF] via the following theorem, that will is also useful for the generalized Gibbs measures. Theorem 4.23 [START_REF] Van Enter | On the variational principle for generalized Gibbs measures[END_REF] Let µ ∈ G(γ) and ν ∈ M + 1 (Ω) such that h(µ|ν) = 0. If, for all σ ∈ Ω, for ν-a.e. ω, µ(σ

Λ |ω Λn\Λ ) -→ n→∞ γ Λ (σ|ω)
then ν ∈ G(γ).

First part of the variational principle: General criterion

In the usual theory of Gibbs measures, this part of the variational principle, i.e getting zero relative entropy from consistency, is known when the latter holds with a translation-invariant specification defined via a translation-invariant UAC potential, and goes via existence and boundary condition independence of pressure (see [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]). Since for a general translationinvariant quasilocal specification γ we cannot rely on the existence of such a translationinvariant potential, we shall use the weaker property of relative uniform convergence of the (translation-invariant) vacuum potential which can be associated to the quasilocal γ, as discussed in Remark 3.58, is enough to obtain zero relative entropy. This result is a consequence of more general results on generalized Gibbs measures developed in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] that will be useful in the next chapter.

We consider a translation-invariant specification γ and a probability measure ν ∈ G inv (γ).

Theorem 4.24 [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] If µ ∈ M + 1,inv (Ω) is such that µ(Ω <0 γ ) = 1 and e + ν exists, then 1. h(µ|ν) exists and is given by

h(µ|ν) = -h(µ) + e + ν - Ω log γ 0 (σ + |σ + ) γ 0 (+|σ + ) µ(dσ). (4.25) 
2. If moreover µ ∈ G inv (γ) exists, then

h(µ|ν) = lim Λ↑Z d 1 |Λ| log µ(+ Λ ) ν(+ Λ ) . (4.26) 
To prove this theorem, we establish a more general lemma that will help to restore the thermodynamic properties of generalized Gibbs in Chapter 5. It topologically captures what is needed for a specification to get zero relative entropy of its DLR measures. The full proof is given in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF].

Lemma 4.27 [77] If µ(Ω <0 γ ) = 1, then 1. Uniformly in ω ∈ Ω, lim n→∞ 1 |Λ n | Ω log γ Λn (σ|ω) γ Λn (+|ω) µ(dσ) = Ω log γ 0 (σ + |σ + ) γ 0 (+|σ + ) µ(dσ). 2. For ν ∈ G(γ), lim n→∞ 1 |Λ n | Ω log ν(σ Λn ) ν(+ Λn ) µ(dσ) = Ω log γ 0 (σ + |σ + ) γ 0 (+|σ + ) µ(dσ).
In particular, the limit depends only on the pair (γ, µ).

Proof :

1. The proof relies on the uniform convergence of the translation-invariant vacuum potential with vacuum state + established by Sullivan and described in Remark 3.58, using a particular case of the telescoping procedure described in Remark 3.57. We assumed there quasilocality of the specification but it is not difficult to extend its validity when only almost-sure continuity in the + direction holds, which is in particular implied by the condition µ(Ω <0 γ ) = 1. This latter condition is not optimal10 , and comes from the telescoping procedure used here, but we do not know if it is technical or not, and in particular if it can be relaxed to a general almost-sure quasilocality property, a very important property in the context of generalized Gibbs measures. Following Sullivan [START_REF] Sullivan | Finite range random fields and energy fields[END_REF], we define, for all σ ∈ Ω

D(σ) = E + {0} (σ|σ) = log γ 0 (σ|σ) γ 0 (+|σ) . (4.28) 
and consider an approximation of σ + at finite volume Λ ∈ S with boundary condition ω by defining the telescoping configuration at i ∈ S T ω Λ [i, σ, +], defined for all j ∈ S by:

T ω Λ [x, σ, +] j =    ω j if j ∈ Λ c σ j if j ≤ i, j ∈ Λ +1 if j > i, j ∈ Λ.
To perform the telescoping, denote Λ ≤i = {j ∈ Λ : j ≤ i}, Λ <i = Λ ≤i \ {i}, Λ >i = Λ \ Λ ≤i and let Λ = {i 1 , . . . i N } denote an enumeration of Λ in lexicographic order. By consistency and Lemma 3.28:

γ Λ (σ|ω) γ Λ (+|ω) = N k=1 γ Λ (σ Λ ≤i k + Λ >i k |ω) γ Λ (σ Λ ≤i k-1 + Λ >i k-1 |ω) = N k=1 γ i k (σ i k |σ Λ <i k + Λ >i k ω Λ c ) γ i k (+ i k |σ Λ <i k + Λ >i k ω Λ c ) . (4.29) 
Taking the logarithm yields for Λ = Λ n

Ω log γ Λn (σ|ω) γ Λn (+|ω) µ(dσ) = i∈Λn Ω D(τ -i T ω Λn [i, τ i σ, +]) µ(dσ).
in such a way that proving Item 1. amounts to prove that, uniformly in ω, the r.h.s divided by the volume converges to Ω D(σ + ) µ(dσ). This is obtained in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] by carefully counting the points of the set A n where this telescoping configuration and σ + differ, see that

|A n | = •(|Λ n |)
, to get, due to the continuity of D at the configuration σ + , that for all ǫ > 0,

1 |Λ n | i∈Λn D(τ -i T ω Λn [i, τ x σ, +]) -D(σ + ≤ ǫ + 2 sup ω |D(ω)| • |A n | |Λ n |
which is less than 2ǫ for n big enough. So we obtain that

1 |Λ n | i∈Λn D(τ -i T ω Λn [i, τ x σ, +]) -D(σ + )
converges to zero on the set of Ω <0 γ of full µ-measure, uniformly in ω, which implies statement 1 of the lemma by dominated convergence.

By consistency ν ∈ G(γ), one rewrites for all

σ ∈ Ω ν(σ Λn ) = Ω γ Λn (σ|ω)ν(dω) so that F Λn (µ, ν) := 1 |Λ n | Ω log ν(σ Λn ) ν(+ Λn ) µ(dσ) = 1 |Λ n | Ω log Ω γ Λn (σ|ω)ν(dω) Ω γ Λn (+|ω)ν(dω) µ(dσ).
We use now the obvious bound

inf ω∈Ω γ Λn (σ|ω) γ Λn (+|ω) ≤ Ω γ Λn (σ|ω)ν(dω) Ω γ Λn (+|ω)ν(dω) ≤ sup ω∈Ω γ Λn (σ|ω) γ Λn (+|ω) .
to get for ǫ > 0 given that there exists

ω = ω(n, σ, ǫ), ω ′ = ω ′ (n, σ, ǫ) such that Ω inf ω∈Ω log γ Λn (σ|ω) γ Λn (+|ω) µ(dσ) ≥ Ω log γ Λn (σ|ω(n, σ, ǫ)) γ Λn (+|ω(n, σ, ǫ)) -ǫ
and

Ω sup ω∈Ω log γ Λn (σ|ω) γ Λn (+|ω) µ(dσ) ≤ Ω log γ Λn (σ|ω ′ (n, σ, ǫ)) γ Λn (+|ω ′ (n, σ, ǫ)) + ǫ.
Now use the first item of the lemma and choose N such that for all n ≥ N ,

sup ω 1 |Λ n | Ω log γ Λn (σ|ω) γ Λn (+|ω) µ(dσ) - Ω D(σ + )µ(dσ) ≤ ǫ to get, for n ≥ N , Ω D(σ + )µ(dσ) -2ǫ ≤ F Λn (µ|ν) ≤ Ω D(σ + )µ(dσ) + 2ǫ
and eventually prove the lemma.

Proof of Theorem 4.24:

1. By a short computation at finite volume, rewrite

h n (µ|ν) = -h n (µ) - 1 |Λ n | σ Λn ∈Ω Λn µ(σ Λn ) log ν(σ Λn ) ν(+ Λn ) - 1 |Λ n | log ν(+ Λn ). (4.30) 
When µ(Ω <0 γ ) = 1 holds, the asymptotic behavior of the second term of the r.h.s. is given by Lemma 4.27 and under the existence of e + ν one gets (4.25). 2. For µ ∈ G inv (γ) such that µ(Ω <0 γ ) = 1, rewrite now :

h n (µ|ν) = 1 |Λ n | σ Λn ∈Ω Λn µ(σ Λn ) log µ(σ Λn ) µ(+ Λn ) - σ Λn ∈Ω Λn µ(σ Λn ) log ν(σ Λn ) ν(+ Λn ) +log µ(+ Λn ) ν(+ Λn ) .
By Lemma 4.27, in the limit n → ∞, the first two terms of the r.h.s. are functions of (γ, µ) rather than functions of ν, µ ∈ G inv (γ) and cancel out. Hence, the relative entropy exists if and only if the fourth term converges. Using Item 1 (existence of relative entropy), we obtain the existence of the limit in (4.26) and the equality

h(µ|ν) = lim n→∞ 1 | Λ n | log µ(+ Λn ) ν(+ Λn )
and in particular the r.h.s is a well-defined limit.

Application: VP for translation-invariant quasilocal measures

Theorem 4.31 [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] Any µ ∈ M + 1,inv (Ω) quasilocal satisfies the variational principle (4.15).

Proof: When γ is quasilocal, one has Ω γ = Ω and the second part is a direct consequence of Theorem 4.21, because the convergence required is true by any convergence theorem (uniform or dominated). We recover thus the usual standard proof of Theorem 4.32 (2nd part of the VP for quasilocal measures) Let γ be a translationinvariant quasilocal specification and ν ∈ G inv (γ). Then for any µ ∈ M + 1,inv (Ω),

h(µ|ν) = 0 =⇒ µ ∈ G inv (γ).
Thus, the result of [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF], that extends the variational principle from translation-invariant Gibbs measures with a translation-invariant UAC potential to translation-invariant quasilocal measures, for which the UAC potential derived from Kozlov (and described in the previous chapter) is not necessarily UAC, relies on the following Theorem 4.33 (1st part of the VP for quasilocal measures) Let γ be a translationinvariant quasilocal specification, ν ∈ G inv (γ) and µ ∈ M + 1,inv (Ω). Then h(µ|ν) exists for all µ ∈ M + 1,inv (Ω) and µ ∈ G inv (γ) =⇒ h(µ|ν) = 0.

Proof: We need the following lemma to use Theorem 4.24:

Lemma 4.34 For µ, ν ∈ G inv (γ) with γ t.i. and quasilocal, e + ν , e + µ exist and

lim n→∞ 1 |Λ n | log µ(+ Λn ) ν(+ Λn ) = 0.
Proof: It is a direct consequence of the uniform convergence of the vacuum potential Φ + that we now associate with γ for the reference configuration +, keeping the notation of Chapter 3. It is a consequence of another lemma from [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF], which is an adaptation of the argument used by Israel [START_REF] Israel | Convexity in the theory of lattice gases[END_REF] to prove existence and boundary condition independence of the pressure for a UAC potential. Lemma 4. [START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF] The vacuum potential with vacuum state + associated with the quasilocal specification γ is such that: 

1. lim n→∞ sup ω,η,σ 1 |Λ n | H Φ + Λn (σ|η) -H Φ + Λn (σ|ω) = 0. (4.36) 2. lim n→∞ sup ω,η 1 |Λ n | log Z Φ + Λn (ω) Z Φ + Λn (η) = 0. ( 4 
H Φ + Λn (σ|η) -H Φ + Λn (σ|ω) ≤ sup ω,η Z Φ + Λn (ω) Z Φ + Λn (η) ≤ exp sup ω,η,σ H Φ + Λn (σ|η) -H Φ + Λn (σ|ω) .
Now one proves (4.36) by rewriting

H Φ + Λn (σ|η) -H Φ + Λn (σ|ω) = A∩Λn =∅,A∩Λ c n =∅ Φ + A (σ Λn η Λ c n ) -Φ + A (σ Λn ω Λ c n ) .
which goes uniformly to zero by relative uniform convergence, see [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF] for details.

To derive Lemma 4.34 from Lemma 4.35, we only have to prove that for all ν ∈ G inv (γ), e + ν exists and is independent of γ. For such a measure ν, write, using Lemma 4.35

ν(+ Λ ) = Ω e -H η Λn (+) Z Λn (η) ν(dη) ∼ = Ω e -H + Λ (+) Z + Λ ν(dη)
where

a Λ ∼ = b Λ means lim Λ 1 |Λ| | log a Λ b Λ | = 0. Since Φ + is the vacuum potential with vacuum state +, H + Λ (+ Λ ) = 0 and ν(+ Λ ) = 1 Z Φ + Λ (+) = 1 Z Φ + ,f Λ = σ∈Ω Λ exp(- A⊂Λ Φ + A (σ)) -1
Fix R > 0 and define a finite-range potential Φ R by putting Φ (R)

A (σ) := Φ + A (σ) if |A| ≤ R and Φ (R)
A (σ) := 0 otherwise. To use the existence of pressure P (Φ (R) ) from [START_REF] Israel | Convexity in the theory of lattice gases[END_REF] for finite-range (translation-invariant) potentials sketched in the beginning of this chapter, we write

log σ exp (-A⊂Λ Φ + A (σ)) σ exp (-A⊂Λ Φ (R) A (σ)) ≤ sup σ A⊂Λ,|A|>R Φ + A (σ) ≤ sup σ i∈Λ A∋i,|A|>R Φ + A (σ) ≤ i∈Λ sup σ A∋i,|A|>R Φ + A (σ) = |Λ| • sup σ A∋0,|A|>R Φ + A (σ) .
This is the tail of a uniformly convergent series (see Remark 3.58) from which we conclude by that {P (Φ (R) ), R > 0} is a Cauchy net with limit

lim R→∞ P Φ (R) = lim Λ↑Z d 1 |Λ| log Z Φ + ,f Λ = lim Λ↑Z d 1 |Λ| log Z Φ + Λ (+) = -e + ν
which depends only on the vacuum potential (hence on the specification γ). This proves that e + ν and e + µ exist for all µ, ν ∈ G inv (γ), and depends of γ only. Therefore, lim

Λ↑Z d 1 |Λ| log µ(+ Λ ) ν(+ Λ ) = e + ν -e + µ = 0. Remark 4.38
In the standard theory of Gibbs measures, the existence of h(µ|ν) and the identity 4.25 are obtained by proving existence and boundary condition independence of the pressure, see e.g. [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] p 322 for a similar expression. This requires the existence of a UAC potential, which in our case is replaced by regularity properties of the specification and existence of the limit defining e + ν . The existence is guaranteed e.g. for renormalization group transformations of Gibbs measures, and for ν with positive correlations (by subadditivity). Moreover, in the case of transformations of Gibbs measures, convergence to zero of (4.26) is also easy to verify [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF].

More on equilibrium: LDP and Stochastic Ising models 4.3.1 Large deviation properties

The thermodynamical variational principle (4.11), which holds for translation-invariant Gibbs measures consistent with a translation-invariant potential, as proved e.g. in [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF], or in [START_REF] Pfister | Thermodynamical aspects of classical lattice systems[END_REF] for the more general class of asymptotic decoupled measures, and in particular the convex conjugation of the relative entropy and the pressure, is a first step for the statement of a large deviation principle for such measures. Indeed, when relative entropy is defined, it is often the so-called rate function for such an LDP at the level of measures. We do not enter into the general details of this important subject of probability theory in these lectures, see e.g. [START_REF] Comets | Large Deviation Estimates for a Conditional Probability Distribution. Applications to Random Interaction Gibbs Measures[END_REF][START_REF] Lewis | Thermodynamic probability theory: some aspects of large deviations[END_REF][START_REF] Lewis | Entropy, concentration of probability and conditional limit theorems[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] for a precise formulation of large deviation principles and their relationships with the notion of entropy in thermodynamics.

Roughly speaking, large deviations consist in an estimation of the probability of rare events by estimating the usually very small probabilities of large simultaneous fluctuations in a system consisting of a large number of random variables, and claiming that such a principle holds at the level of measures is a way of expressing the fact that the probability that a typical configuration for a measure µ ∈ M + 1,inv looks typical in Λ for the measure ν ∈ M + 1,inv decays exponentially fast with the volume with a rate equals to the relative entropy h(µ|ν):

Prob ν ω Λ typical for µ Λ ≈ e -|Λ| h(µ|ν) .
Thus, when such a principle holds for our Gibbs measures, the rate function gets its minimum at zero when µ and ν are Gibbs for the same specification, and thus the probability of getting from µ a typical configuration for ν decays exponentially with the order of the surface only, or at least at a sub-volumic rate. This fact can be used to prove that a measures is not Gibbs for the same potential as a reference measure and has indeed been used to detect non-Gibbsianness in the projection of the Ising model [START_REF] Schonmann | Projection of Gibbs measures may be non-Gibbsian[END_REF].

Stochastic Ising models

Stochastic Ising models are particular types of Markov Processes on the configuration space (Ω, F) when the single-site state space is E = {-1, +1}. They are widely described in [START_REF] Liggett | Interacting particle systems. Grundlehren der Mathematischen Wissenschaften[END_REF] and allow, under mild conditions, to get Gibbs measures as invariant reversible measures for these stochastic processes. Let us focus on the most standard local stochastic dynamics, the so-called Glauber or spin-flip dynamics, which corresponds to usual birth and death processes in standard probability theory. Starting from an a priori configuration, one would like to change, or flip, the configuration at a given site randomly depending on its neighbors in order to get a suitable convergence to a typical configuration of a given Gibbs measure.

To formalize this a bit, one denotes for any i ∈ S and σ ∈ Ω the flipped configuration σ i to be defined by σ i i = -σ i and σ i j = σ j for all i = j, and consider a collection of spin-flip rates c i (σ), i ∈ S, σ ∈ Ω}, assumed to be of finite-range, strictly positive and translation-invariant, in order to uniquely define a Feller process (η t ) t≥0 on Ω, F with generator 11 L defined on local functions f ∈ F loc by

Lf (σ) = i∈S c i (σ) f (σ i ) -f (σ) .
11 For a rigorous description, consult [START_REF] Liggett | Interacting particle systems. Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF], one can consider the closure of the generator.

Denoting by S(t) the corresponding semi-group (see [START_REF] Liggett | Interacting particle systems. Grundlehren der Mathematischen Wissenschaften[END_REF]) and by E σ the expectation under the corresponding path-space measure P σ given the initial configuration η 0 = σ, one gets an action on functions f ∈ F loc with for all t > 0,

S(t)f (σ) = E σ [f (η t )]
and on measures ν to get a measure νS(t) defined by its expectations on local functions

f d(νS(t)) = S(t)f dν.
The corresponding measure νS(t) being thus the distribution of the configuration at time t if the initial distribution at time zero is ν. A probability measure µ ∈ M 1,inv (Ω) is then called invariant for the process (or for the dynamics) with generator L iff Lf dµ = 0, ∀f ∈ F loc or equivalently iff µS(t) = µ for all time t; an invariant measure µ is reversible when

(Lf )gdµ = 0, ∀f, g ∈ F loc .
In words, a probability measure is invariant when the process (η t ) t obtained by using µ as initial distribution is stationary in time, so that its definition can be extended to negative times, and is thereafter reversible when the process (η t ) t and (η -t ) t have the same distribution.

In our case, reversibility is equivalent to a standard detailed balance condition on the rates

dµ i dµ = c i (σ i ) c i (σ) (4.39)
where µ i is the image law of µ by the spin-flip at site i, σ -→ σ i . Thus, to get a dynamics evolving towards a given measure µ, it is enough to choose the rates according to (4.39). This is the way Gibbs measures are obtained as reversible invariant measures in the so-called Glauber dynamics at inverse temperature β: Given a UAC potential Φ, one introduces the rates

c i (σ) = exp β 2 A∋i Φ A (σ) -Φ A (σ i )
in order that (4.39) holds for the Gibbs measures corresponding to the potential Φ. In such a case, the rates generates jump-processes on the configuration space with independent Poisson clocks attached at each site that randomly produce spin-flips according to the considered Gibbs measures, which are eventually the invariant reversible measures reached at equilibrium.

Similar stochastic Ising models can be introduced by changing the spin-flip rules (in the socalled Metropolis-Hastings dynamics) or by exchanging the spins between two sites (Kawasaki dynamics, equivalent to an exclusion-process in the lattice gas settings with single site statespace E = {0, 1}), leading at equilibrium to the same reversible Gibbs measures.

Chapter 5

Generalized Gibbs measures

Heuristics

Let us consider physical systems with a large number of particles in thermal equilibrium modelled by the Gibbsian formalism described in Chapter 3 and consider more precisely the example of particles of water. Although water is too complicated a system to be described precisely by the Gibbsian formalism1 , it allows to give a qualitative picture of the phase transition phenomenon, in accordance with the precise description of the phase diagram that can be achieved within the Gibbsian formalism by the Pirogov-Sinai theory [START_REF] Pirogov | Phase Diagram of Classical Lattice Systems[END_REF]. The system could be in different states depending on the temperature, and assume that these states are described by extremal Gibbs measures µ S , µ L , µ V at low temperature or µ at high temperature. One observes the existence of a critical temperature T c that distinguishes a region of temperature where the physical system can only be in a unique phase and a lower dimensional manifold2 corresponds in the (P, T )-plane where the system can coexist in two or three different states, depending on the pressure for a given temperature, yielding the following (qualitative) phase diagram.

T > T c : Uniqueness regime: G(γ) = {µ}.

T < T c : There exist 2d-manifolds where the system is in a unique phase, solid, liquid or gaseous, depending on the pressure P . These unicity manifolds have as boundaries 1dmanifolds where two different phases coexists. These coexistence lines have as boundary a 0d-manifold where all three phases coexist.

¿From a physical point of view, a phase transition is the transformation of (P, T )-variables that allows the passage from one of the regions of uniqueness to another one, through a region of non-uniqueness. Two kind of phase transitions can be distinguished here: When this (P, T )transformation crosses a coexistence line, one says that a first order phase transition occurs, whereas when one crosses the critical point C from T > T c , one says that it is second order3 . Let us focus on the latter, for which a quantity called correlation length is introduced. Let µ be a Gibbs measure, σ ∈ Ω. For T = T c , and i = j ∈ S, the covariance between the random variables σ i and σ j is expected 4 to decay exponentially in such a way that one could define and define a quantity ξ(T ) such that:

µ(σ i σ j ) -µ(σ i )µ(σ j ) ∼ = e -|i-j| ξ(T )
where ∼ = means logarithmic equivalence for large | i-j |. The quantity ξ(T ) has the dimension of a distance and is interpreted as the correlation length of the system, beyond which two spins are physically considered to be independent. It is then considered as a natural scale of the system which enables us to measure the length with the unit 1 ξ instead of 1 meter. We cannot do it at the critical temperature because the decay of correlation is not expected to be exponential and in some sense one has presumably lim

T →Tc ξ(T ) = +∞.
This is interpreted as the absence of proper scale for the system at the critical temperature. Physically, for the system of water, we observe a "milky" water or critical opalescence, showing a strong interaction between all the particles of the system that creates a highly chaotic behavior. As a consequence of this absence of proper scale, the behavior of the system at the critical point should be the same at any scale, providing a tool to study these critical behaviors, which are ill-known and difficult to observe: Natural transformations of the observation scale seem to be an appropriate tool to understand it better, the critical point being considered in some sense as a fixed point of these transformations. This has motivated the introduction of the renormalization group, a semi-group of transformations directly related to a change of scale of the system, as a tool in theoretical physics to study critical phenomena using change of scales in particles systems, which appeared to be rather powerful in these fields, see e.g. [START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF][START_REF]Phase transitions and Critical Phenomena[END_REF][START_REF] Fisher | Scaling, universality and renormalization group theory, in Critical phenomena[END_REF][START_REF] Gawedski | Rigorous renormalization group at work[END_REF][START_REF] Griffiths | Mathematical properties of position-space renormalizationgroup transformations[END_REF][START_REF] Wilson | The renormalization group: Critical phenomena and the Kondo problem[END_REF].

We shall describe it more precisely next section, but let us first consider a scaling transformation T : Ω -→ Ω ′ , where Ω and Ω ′ are the configuration spaces at two different scales. Let µ be a measure describing an equilibrium state of the system at the first scale, i.e. a Gibbs measure on Ω, and denote formally H its Hamiltonian. The transformation T acts naturally on measures and we denote µ ′ = T µ ∈ M + 1 (Ω ′ , F ′ ). The natural aim in our theory would be to obtain µ ′ as a Gibbs measure and to define an Hamiltonian H ′ , image of the Hamiltonian H by a renormalization transformation on spaces of Hamiltonians for it, in order to get the following diagram defined and commutative. In the late seventies and early eighties, Griffiths and Pearce/Israel [START_REF] Griffiths | Mathematical properties of position-space renormalizationgroup transformations[END_REF][START_REF] Israel | Banach algebras and Kadanoff transformations[END_REF] discovered some pathologies of the behavior of these image measures: It turned out that they often are not Gibbsian and it came out as a surprise that one could break the equilibrium properties of a state by only looking at it at a different scale, and according to the ideology of the renormalization-group theory, this should not be so. These pathologies have been rigorously proven to exist and mostly identified as the manifestation of non-Gibbsianness due to a failure of the quasilocality property, mostly at low temperature, in 1993 by van Enter, Fernández and Sokal [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] in a rather general and rigorous mathematical framework. Let us recall that the Hamiltonian can be recovered from the Gibbs measure µ with the help of the Moebius inversion formula. When the correlation do not decrease sufficiently fast, and in particular at the critical point or in some phase transitions region, a divergence might appear in this inversion, preventing a definition of H ′ from µ ′ , and leading to non-Gibbsianness of the image-measure. Nevertheless, we shall see that this phenomenon also hold in other parts of the phase diagram, sometimes far from the critical point, and that it is already present after one single change of for very simple scaling transformations. We formalize all these heuristics more precisely now.

RG pathologies and non-Gibbsianness

In this section, we formalize mathematically the scaling transformations, introduce the renormalization group transformations and describe how these transformations could lead to non-Gibbsianness. As we shall see, this phenomenon is often related to the occurrence of phase transitions in some hidden or constrained system, and to get the main features of the phenomenon we describe precisely how this happens for the simplest RG transformation, the so-called decimation of the 2d Ising model at low temperature, the latter being low enough to get a phase transition that creates long-range dependencies leading to non-quasilocality in the mentioned hidden system. Thereafter, we shall give a (non-exhaustive) catalogue of other RG transformations of Gibbs measures that also lead to non-Gibsianness for similar reasons, but for which the proof is much more complicated, when it exists ! 5.2.1 Decimation of the 2d ferromagnetic Ising model [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] The basic example we describe here, which already captures the main non-trivial features of the pathologies, concerns the decimation with spacing 2, which corresponds to the projection of the 2d-Ising model on the sublattice of even sites, while we shall give similar results for decimations at other dimensions and for other spacings later on. More generally, the decimation transformation on Z 2 with spacing b is defined to be the transformation

T b : (Ω, F) -→ (Ω ′ , F ′ ) = (Ω, F) ω -→ ω ′ = (ω ′ i ) i∈Z 2
defined by ∀i ∈ Z 2 by ω ′ i = ω bi , and denote simply T = T 2 the case of a spacing b = 2 described here. The following result is crucial to understand renormalization group pathologies and the arising of non-Gibbsianness in equilibrium mathematical statistical mechanics. This example, already described by Israel in [START_REF] Israel | Banach algebras and Kadanoff transformations[END_REF] to detect renormalization group pathologies, has been fully analyzed in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF], in the seminal description of RG pathologies in the realm of Gibbsianness vs. non-Gibbsianness framework.

Theorem 5.1 [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] Let β > βc = 1 2 cosh -1 e 2βc and denote by ν β = T µ β the decimation of any Gibbs measure µ for the homogeneous ferromagnetic n.n Ising model on Z 2 with zero magnetic field. Then ν β is not quasilocal, hence non-Gibbs.

To prove non-quasilocality of the renormalized measure, one exhibits a so-called bad configuration where the conditional expectation, w.r.t. the outside of a finite set, of a local function, is essentially discontinuous, or equivalently is discontinuous on a (non-negligible) neighborhood, as described in Chapter 3. The role of a bad configuration is played by a so-called alternating configuration ω ′alt defined for all i = (i 1 , i 2 ) ∈ Z 2 by ω ′alt i = (-1) i 1 +i 2 . Computing the magnetization under the image measure ν β , conditioned on the boundary condition ω ′alt outside the origin, will give different limits when one approaches this configuration with all + (resp. all -) arbitrarily far away, as soon as phase transition is possible for the Ising model on the so-called decorated lattice, a version of Z 2 where even sites have been removed. The latter phase transition is shown to be possible as soon as the inverse temperature is larger than the above value βc . The global neutrality of this bad configuration leaves the door open to such a phase transition to occur at low enough temperature, and is crucial in its badness. Let us formalize this a bit more, following the full proof given in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF].

Proof of theorem 5.1:

We denote by ν = T µ this decimated measure:

∀A ′ ∈ F ′ , ν(A ′ ) = µ(T -1 (A ′ )) = µ(A)
with the notation A = T -1 (A ′ ) ∈ F. In order to describe how a phase transition in some hidden system gives rise to non-Gibbsianness, we also extend this decimation on the "even" sites of Z 2 , i.e. 2Z 2 , by:

T : i = 2i ′ -→ i ′
and on subsets:

∀Λ ⊂ 2Z 2 , T (Λ) := Λ ′ = {i ∈ Z 2 , 2i ∈ Λ} ⊂ Z 2 .
We underline that T maps the finite subsets of 2Z 2 on the finite subsets of Z 2 , but the converse is not true: If one defines a cofinite subset of S to be the complement of any finite set, then the inverse transformation T -1 does not map the cofinite subsets of Z 2 on the cofinite subsets of 2Z 2 . For example, when Λ ′ = {0} consists of the origin 0 of Z 2 . Then Λ ′c = Z 2 \{0}

and

T -1 (Λ ′c ) = {i = 2i ′ s.t. i ′ ∈ Λ ′c } = {x = 2x ′ , x ′ ∈ Z 2 , x ′ = 0} = 2Z 2 \{0} = (Z 2 \2Z 2 ) ∪ {0} c =: λ c
where λ = (Z 2 \2Z 2 ) ∪ {0} is not a finite subset of Z 2 , and this is actually the reason why non-Gibbsianness could occur: Getting still an infinite-volume framework after this conditioning, this leaves the possibility of phase transitions for the measure conditioned on λ, giving rise to the essential discontinuity: In order to prove that ν is not Gibbsian, we prove that there exists Λ ′ ∈ S ′ and a function f local on Ω ′ such that no version of ν[f |F Λ ′c ](•) is quasilocal, that is we want to find ω ′ in Ω ′ for which there exists f local on Ω ′ with ν[f |F Λ ′c ](ω ′ ) essentially discontinuous. Now, using the action of the measurable map T on subsets and configurations, one easily gets, for any

Λ ′ ∈ S ′ ν[A ′ |F ′ Λ ′ c ](ω ′ ) = µ[A|F λ c ](T -1 ω ′ ), ν-a.e.(ω ′ ), ∀A ′ ∈ F ′ .
So we have to compute the conditional probabilities µ[A|F λ c ] for λ non-finite, and this is not given by the specification γ, which only provides versions of conditional probabilities for the outside of finite sets only 5 . Thus λ = T -1 (Λ ′c ) is not a cofinite set, as we show for Λ ′ = {0} and illustrated on the figures 2 below. A short computation leads indeed to

λ c = Z 2 \(2Λ ′ ) = T -1 (Λ ′ ) ∪ (Z 2 \2Z 2 )
and thus λ c consists of all the spins of 2Z 2 except the origin: If we "knew" everything except the origin on the decimated system Ω, we should "know" the spins on 2Z 2 except at the origin. Then λ is the origin plus the sites which are not in 2Z 2 , as shown in figures 2 below To prove the failure of quasilocality, we thus have to compute µ[•|F λ c ](ω) when ω ∈ T -1 (ω ′ ), with ω ′ in the neighborhood of a particular configuration in Ω ′ . Of course, we know that µ is a Gibbs measure for the 2d-Ising model, so there exists Ω µ with µ(Ω µ ) = 1 s.t. for all ω ∈ Ω µ , for all σ ∈ ω and Λ ∈ S,

µ σ|F Λ c (ω) := µ[σ|σ Λ c = ω Λ c ] = 1 Z Λ (ω) exp ij ⊂Λ βσ i σ j + ij ,i∈Λ,j∈Λ c βσ i ω j (5.2)
but we want to study µ[•|F λ c ] with λ non-finite, which is not a finite-volume probability, but on the contrary appears to be an infinite-volume Gibbs measure, as generally proved in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]:

Lemma 5.3 [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] Let ω ′ ∈ Ω ′ and let λ a infinite subset of Z 2 . Then the restriction of µ[•|F λ c ](ω ′ ) to (Ω λ , F λ ) is a Gibbs measure for a UAC potential Φ = Φ(λ, ω ′ ).

We shall not prove this lemma in the general case, but rather directly establish the result for a particularly well-chosen configuration, for which a phase transition is possible for the resulting Gibbs measure on the smaller infinite-volume configuration space (Ω λ , F λ ). This particular configuration will now be in some neighborhood N Λ of the (neutral) alternating configuration ω ′alt defined by

∀i = (i 1 , i 2 ) ∈ Z 2 , ω ′alt i , = (-1) i 1 +i 2 .
Denote µ ω ′ ,λ the restriction of µ[•|F λ c ](ω ′ ) to (Ω λ , F λ ), well-defined as a probability measure by the existence of regular versions of conditional probabilities as described in Chapter 3. As λ is fixed (we always take now Λ ′ = {0}), we forget it and write µ ω ′ ,λ = µ ω ′ . To prove that it is a Gibbs measure on (Ω λ , F λ ), we consider ∆ ⊂ λ finite and a boundary condition τ ∈ Ω λ , which yields the following picture: To check the D.L.R. equations for a suitable interaction, we have to compute, for ω ′ in the neighborhood N Λ of ω ′alt , for µ ω ′ -a.e. τ and for all σ λ ∈ Ω λ ,

τ ∆ O + -σ -1,0 σ 1,0 - + . . σ -1,1 σ 0,1 σ 1,
µ ω ′ [σ|F λ\∆ ](τ ) = µ ω ′ [σ λ |σ λ\∆ = τ λ\∆ ] = σ λ c ∈Ω λ c µ[σ|σ λ\∆ = τ λ\∆ , σ λ c = ω λ c ]
with ω ∈ T -1 (ω ′ ). We first assume that Λ is big enough to contain the ∆ considered, in order to describe the resulting interaction. Later on, we shall take the infinite-volume for ∆ and eventually encounter a volume where ω ′ is different to the alternating configuration, to eventually select different phases when possible, but for the moment the large Λ allows us to work with the single ω ′alt only but avoiding preventing possible conditioning with sets of measure zero. In the previous sum, only one term is not zero, when σ λ c = ω λ c , which is the alternating configuration on λ c . Hence,

µ ω ′ [σ λ |σ λ\∆ = τ λ\∆ ] = µ[σ|F ∆ c ∪λ c ](τ λ ω λ c ).
But ∆ c ∪ λ c = (∆ ∩ λ) c , and ∆ ∩ λ = ∆ is a finite subset of Z 2 , so we now use the D.L.R. equations for µ to get, for µ -a.e. τ λ ω λ c ∈ Ω:

µ[σ λ |σ ∆ c = τ ∆c ] = 1 Z ω ′ ∆ (τ ) exp β( ij ⊂∆ σ i σ j + ij ,i∈∆,j∈λ c σ i ω j + ij ,i∈∆,j∈λ∩∆ c σ i τ j )
where the normalization is the standard partition function. A remarkable fact now, that will eventually lead us to consider the Ising model on the decorated lattice, is that in the sum ij ,i∈∆,j∈λ c Jσ i ω j , the j's are "even", i.e. j = 2k with k ∈ Z 2 such that ω j = ω ′ k is fixed in the alternating configuration. Then, we obtain the validity of the DLR equation for µ ω ′ -almost τ ∈ Ω λ , i.e we have proved the : Lemma 5.4 Let ω ′ be the alternating configuration defined above and assume that there exists ω ∈ T -1 (ω ′ ) for which the D.L.R. equations for µ are valid with a n.n. potential appearing. Then µ ω ′ , the restriction of µ[•|F λ c ](ω) on (Ω λ , F λ ) is a Gibbs measure for some UAC potential.

We do not need to give explicitly the potential but it will appear to be equivalent to an Ising potential on the decorated lattice in the the computation of the magnetization that we perform now. We shall then observe (Figure 4) that the coupling due to "even" sites cancels and we obtain a Gibbs measure for an Ising model on (Ω λ , F λ ), with the same definition of the nearest-neighbors as in Z 2 . To achieve this, we just need to know that there is some Gibbs measure for the interaction of the previous equation. In case of phase transition, we do not know which it could be, and we shall prove that local variations in ω ′ could change drastically the selected phase. This will yield a non-Gibbsianness of the decimated measure.

Computation of the magnetization

To prove a non quasilocality of ν at sufficiently low temperature, consider then the action of the conditional probabilities on a local function chosen to be characteristic of the phase transition mentioned above. Namely, it should be an order parameter of the phase transition 7and consider here the so-called magnetization. Denote again its origin by 0 or (0, 0) and consider the local function

f : Ω ′ -→ R; σ ′ -→ f (σ ′ ) = σ ′ 0 and to study ν[σ ′ 0 |F Λ ′c ](ω ′
) for ω ′ in the neighborhood of the alternating configuration, considering first that Λ is big enough to feel ω ′ as the alternating configuration itself . Then, ν-a.s.

ν[σ ′ 0 |F Λ ′c ](ω ′ ) = µ ω ′ [σ 0 ]
as described in the previous section. We know that it is a Gibbs measure for some interaction, then by Lemma 2.66 there exists a sequence (ν R γ Λ R ) R∈N whose weak limit is µ ω ′ . For R ∈ N, write, by a slight abuse of notation, Λ R be the intersection between λ and the usual cube of length 2R s.t. their exists a sequence ν R with

σ 0 ω ′ := µ ω ′ [σ 0 ] = lim R→∞ σ 0 ω ′ ,ν R , where σ 0 ω ′ ,ν R := Ω µ ω ′ [σ 0 |F Λ c R ](τ R )dν R [τ R ]
is the expectation of the spin at the origin when the boundary condition which selects µ ω ′ has the law ν R . Let us first fix one boundary condition τ R and note • ω ′ ,τ R the expectation under the measure

µ ω ′ [•|F Λ c R ](τ R ).
We know that µ ω ′ is a Gibbs measure on (Ω λ , F λ ), whose lattice consists of all the non-even spins plus the origin.

In order to study this measure on a more conventional lattice, let us try to fix the spin at the origin. Define L R = {i ∈ Λ R s.t. i 1 and i 2 are both odd } and H R = Λ R \L R . We have, using the notation

κ λ R (dσ λ ) = ρ Λ R ⊗ δ ⊗λ\Λ R τ λ\Λ R (dσ λ ), σ 0 ω ′ ,τR = 1 Z ω ′ ,τR Ω λ σ 0 e β(σ0-1)( i0 σi) e ij ,i∈Λ R ,j∈λ\Λ R βσiτj a∈LR (e ia ⊂Λ R βσaσi )κ λ R (dσ λ ) (5.5)
where i0 means that the sum is taken over all the spins attached to the origin and Z ω ′ ,τ R is a standard normalization. Using Fubini's theorem for positive functions, we integrate out w.r.t. the origin first to get (with λ ⋆ = λ and Λ

⋆ R = Λ R \{0}) σ 0 ω ′ ,τR = 1 Z ω ′ ,τR 1 - Ω λ ⋆ e -2β( i0 σi) e ij ,i∈Λ R ,j∈λ ⋆ \Λ R βσiτj a∈LR (e ia ⊂Λ R βσaσi )κ λ ⋆ R (dσ λ ⋆ )
with the partition function

Z ω ′ ,τ R = 1 + Ω λ ⋆ e -2β( i0 σ i ) e ij ,i∈Λ R ,j∈λ\Λ R βσ i τ j a∈L R e ia ⊂Λ R βσaσ i κ λ ⋆ R (dσ λ ⋆ )
Hence, we only have to compute the expectation of e -2β( i0 σ i ) w.r.t. the Gibbs distribution with boundary condition τ R for an Ising model on (Ω λ ⋆ , F λ ⋆ ) when the spin is fixed to be "+" at the origin. We obtain this model because of the very particular interaction we get with the alternating configuration: The contributions of the "even sites", which are fixed in the alternating configuration, cancel each other. We have then the alternating configuration everywhere on 2Z 2 and an Ising distribution on the so-called decorated lattice λ ⋆ , without external magnetic field as soon as ∆ ⊂ Λ. Denote µ +,ω ′ ,τ R this measure and • +,ω ′ ,τ R the expectation with respect to it, to get

σ 0 ω ′ ,τ R = 1 -e -2β(σ 0,1 +σ 1,0 +σ -1,0 +σ 0,-1 ) +,ω ′ ,τ R 1 + e -2β(σ 0,1 +σ 1,0 +σ -1,0 +σ 0,-1 ) +,ω ′ ,τ R . ( 5.6) 
To get a more standard expression in terms of standard Ising models, we now use the following trick, standard in statistical mechanics with ±1 Ising spins, to reduce σ 0,1 +,ω ′ ,τ R , the expectation of one spin attached to the origin:

Lemma 5.7 σ 0,1 +,ω ′ ,τ R = tanh(J(σ 1,1 + σ -1,1 )) +,ω ′ ,τ R = ( 1 2 tanh(2J))(σ 1,1 + σ -1,1 ) +,ω ′ ,τ R
where σ 1,1 and σ -1,1 are the spins attached to σ 0,1 .

This reduces our study to the distribution of the spins in L R , that is in fact the decorated lattice, the lattice of spins whose coordinates are both odd. We then have to compute σ 1,1 +,ω ′ τ R . As claimed before, we can start integration with respect to the spins in H R , the sites of the decorated lattice which have exactly two neighbors. We call

H 0 R = H R \Γ R where Γ R = Λ R \Λ R-1 is the boundary of Λ R .
The sites in H 0 R are those which have two neighbors in Λ R . We also call H 1 R = H R ∩ Γ R the set of the sites which have two neighbors in the lattice λ ⋆ , one in Λ R and the other, fixed by the boundary condition τ , outside Λ R . Compute:

σ 1,1 +,ω ′ τ R = 1 Z +,ω ′ ,τ R Ω λ ⋆ σ 1,1 • A 0 R (σ, dσ H 0 R ) • A 1 R (σ, dσ H 1 R ) • A R (σ, dσ L R ) (5.8) 
where

A 0 R (σ, dσ H 0 R ) = b∈H o R e βσ b (σ b ′ +σ b ′′ ) ρ 0 (dσ b ) A 1 R (σ, dσ H 1 R ) = b∈H 1 R e βσ b (σ b ′ +τ b ′′ ) ρ 0 (dσ b ) A R (σ, dσ L R ) = a∈L R ρ 0 [dσ a ] ⊗ δ λ\Λ R τ λ\Λ R (dσ λ\Λ R )
where for each b ∈ H R , we have called b ′ and b ′′ its neighbors in L R or filled by the boundary condition τ in Λ R+1 , to get for the integral (5.8)

Ω L R σ 1,1 b∈H R E e βσ b (σ b ′ +σ b ′′ ) ρ 0 [dσ b ] a∈L R ρ 0 [dσ a ] ⊗ δ ⊗λ\Λ R τ λ\Λ R [dτ λ\Λ R ].
Now, using another standard trick on Ising spins, we calculate

E e βσ b (σ b ′ +σ b ′′ ) ρ 0 (dσ b ) = e β(σ b ′ +σ b ′′ ) + e -β(σ b ′ +σ b ′′ ) 2
in such a way that the contribution of the spins in H R does not appear in the integral anymore, because the set

{(b ′ , b ′′ ), b ∈ H R } is L R .
To get a more standard Ising representation, we would like to obtain now a coupling interaction between the spins in L R . To do so, write

e β(σ b ′ +σ b ′′ ) + e -β(σ b ′ +σ b ′′ ) 2 = Ke β ′ σ b ′ σ b ′′ (5.9)
where K cancels by normalization. On the event {σ

b ′ = +1, σ b ′′ = +1}, we should have cosh[2β] = Ke β ′
and on the events

{σ b ′ = -1, σ b ′′ = +1} and {σ b ′ = +1, σ b ′′ = -1} 1 = Ke -β ′
then, one could take K = e β ′ and e 2β ′ = cosh[2β] i.e. β ′ = 1 2 cosh -1 e 2β in (5.9) so It is exactly the magnetization of a ferromagnetic Ising model at inverse temperature β ′ on 2Z 2 , with the boundary condition τ on (λ\Λ R ) ∩ 2Z 2 and without external field. When the temperature is low enough, we know by Theorem 2.26 that a phase transition holds and that the above magnetization is an order parameter, and this will eventually lead to essential discontinuity as soon as β ′ > β c , which yields β > βc = 1 2 cosh -1 e 2β .

σ 1,1 +,ω ′ τ R = 1 Z +,ω ′ ,τ R Ω L R σ 1,1 e β ′ aa ′ ⊂L R σaσ a ′ +β ′ aa ′ ,a∈L R ,a ′ ∈λ\Λ R σaτ a ′ ρ L R [(dσ L R ). Λ R + + - - + * * * * - + - + - - + - + - * * * * + - + - + + - + - + * * * * * * * * * b ′ b ′′ τ a a ′ β ′ - 6 ? β ′
To rigorously get the essential discontinuity, one should now do the same computation when Λ n is bigger than Λ, i.e for distinct neighborhoods of the alternating configuration, where all pluses or all minuses far away will create a external field that eventually selects the different phases. The procedure is the same but one has to be careful in some computations, to eventually give rise to the essential discontinuity we seek for. Thus, this failure of quasilocality comes directly from the presence of a phase transition in some "hidden system", that of the internal spins. This is carefully proved in detail in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] in the Lemma 5.10 (essential discontinuity) Let β > 1 2 cosh -1 e 2βc and let ω ′alt be the alternating configuration. ∀ǫ > 0, ∀N neighborhood of

ω ′alt , ∃R o > 0 such that ∀R > R o , we can find N R,+ , N R,-⊂ N with ν[A R,+ ] = ν[A R,-] > 0 and for ν-a.e. ω ′ 1 ∈ N R,+ , for ν-a.e. ω ′ 2 ∈ N R,-, ν[σ ′ 0 |F ′ {0} c ](ω ′ 1 ) -ν[σ ′ 0 |F ′ {0} c ](ω ′ 2 ) > ǫ.
Thus, no version of the conditional probabilities of ν given F ′ {0} c can be continuous.

This proves Theorem 5.1. This basic example expresses the link between the pathology and the existence of a phase transition in some "hidden" system. The same procedure has to be used for more general RG transformations, but it is sometimes difficult or even unknown to detect a bad configuration: Indeed, getting a bad configuration amounts to prove phase transitions, and this is sometimes, not to say often, difficult or unknown, involving e.g. very sophisticated versions of the theory of Pirogov-Sinai. We give now a non-exhaustive small catalogue of results that have been proved during the last decades, many other examples are rigorously described in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF][START_REF] Van Enter | On the possible failure of the Gibbs property for measures on lattice systems[END_REF].

General RG transformations, main examples and results

In the general framework, we deal with two configuration spaces, a so-called original one (Ω, F, ρ) and a so-called image one (Ω ′ , F ′ , ρ ′ ). Most of the time, the lattice S ′ of the image system is smaller, and of the same kind (e.g. S = Z d , S ′ = Z d ′ , d ≥ d ′ ); the above decimation transformation is e.g. sometimes described with 2Z d as image lattice, and the projection on an hyperplane or "restriction to a layer" is studied in this context of the renormalization group whereas it does not satisfy all the properties of our following formal definition. The extension of the definition to spaces of measures is standard.

Definition 5.11 (R.G. kernels) A renormalization group transformation (R.G.T.) is a a probability kernel T from (Ω, F) to (Ω ′ , F ′ ) such that 1. T carries M + 1,inv (Ω) onto M + 1,inv ( 

Ω).

2. There exists sequences of cubes (Λ n ) n∈N and (Λ ′ n ) n∈N , respectively finite subsets of S and S ′ , such that:

(a) ∀A ′ ∈ F ′ Λ ′ n , the function T (•, A ′ ) is F Λn -measurable: The behavior of the image spins in Λ ′ n depends only on the original spins in Λ n . (b) lim sup n→∞ |Λn| |Λ ′ n | ≤ K < ∞.
We give now a few examples where non-Gibbsianness has been proved to arise. As already claimed, it is more illustrative than exhaustive, a general method applying to many examples is available in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] and in related papers from our bibliography. We distinguish two types of examples, those where the transformation is deterministic, like the above decimation, and the more general stochastic ones. We first extend the previous results to more general decimations.

Deterministic transformations

A RGT is said to be deterministic when the probability kernel induced by T is deterministic in the sense that

∀A ′ ∈ F ′ , ∀ω ∈ Ω, T (ω, A ′ ) = δ ω ′ (A ′ )
where the image ω ′ = t(ω) is a function of the original configuration ω.

Decimation transformations in higher dimensions:

It is thus a deterministic probability kernel from Ω = E Z d onto itself, with t(ω) = ω ′ and ω ′ i = ω bi . In the same spirit of the phenomenon observed for the 2d Ising model with the alternating configuration, but with much more difficult proofs in general, usually involving an heavy machinery and tricks to find a special configuration and to prove it is a point of essential discontinuity. Among others, one gets This result is also extended in some open region (β, h) of the phase diagram, e.g. to small magnetic field at dimension d ≥ 3, for an adapted special configuration, see Section 4.3.6. in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]. It is also interesting in view of the historical aim of renormalization group, that iterates the transformations to reach the presumably fixed critical point, that the quasilocality property could be recovered after iterating this decimation transformation [START_REF] Van Enter | Robustness of the non-Gibbsian property: some examples[END_REF], and that other positive results on conservation on Gibbisanness in other parts of the phase diagram exist [START_REF] Haller | Absence of renormalization group pathologies near the critical temperature. Two examples[END_REF]. 

(ω) = ω ′ defined by ∀i ∈ Z d , ω ′ i = j∈B i ω j | j∈B i ω j | .
For these transformations, getting some bad configurations leading to non-quasilocality is sometimes difficult, due to the constraint it gives on the block, see [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]. One nevertheless proves the Theorem 5.13 [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] Let J large enough, µ any Gibbs measure for the 2d Ising model with n.n. coupling J and zero magnetic field. Let T be the majority with blocks of size |B 0 | = 7. Then ν = µT is not quasilocal.

The result has been extended for smaller blocks using a computer-assisted proof in [START_REF] Kennedy | Majority rule at low temperatures on the square and triangular lattices[END_REF]. Such transformations belong to a more general family of block-spins transformations, very useful in renormalization procedures or multi-scale analysis, see e.g [START_REF] Bertini | Renormalization group in the uniqueness region: weak Gibbsianity and convergence[END_REF][START_REF] Camia | A particular bit of universality: scaling limits of some dependent percolation models[END_REF].

Modified majority-rule on a Cayley tree with overlapping blocks:

The Ising model on a Cayley tree has been introduced in the previous chapter. We shall restrict ourself to the simplest rooted-Cayley tree T 2 0 [START_REF] Bleher | On pure phases of the Ising model on the Bethe lattice[END_REF] and let µ be any Gibbs measure for this model (we have seen in the previous chapter that there always exists at least one Gibbs measure for this model). We choose the root as the origin and we denote it r.

Define Ω = {-1, +1} T 2 0 and Ω ′ = {-1, 0, +1} T 2 0 , and let R be any non negative integer to define the closed ball of S of radius R to be

V R = {i ∈ T 2 0 | d(r, i) ≤ R}. Denote also its boundary by W R = {i ∈ T 2 0 | d(r, i) = R}
where d is the canonical metric on T 2 0 . We shall represent the vertices of T 2 0 by sequences of bits, defined by recurrence: The representation of the origin r is the void binary sequence, and that of its neighbors are chosen to be 0 and 1. Now let R > 0 and let i ∈ W R with representation i * . There are only two sites k and l in W R+1 at distance 1 from i. We define then their representation to be k * = i * 0 and l * = i * 1. We obtain a representation of all the vertices of T 2 0 . We shall now write the same symbol i for the vertex or the binary representation i * . Define C r = {r, 0, 1}and ∀j ∈ T 2 0 , j = r, the cell

C j = {j, j0, j1}
where j0 and j1 are the two neighbors of j from the "following" level. For example, C 0 = {0, 00, 01}. Define as well c j = Card(C j ), with here c j = c = 3, and consider now the deterministic transformation t : ω -→ t(ω) = ω ′ where ω ′ is defined by

ω ′ j =      +1 iff 1 c i∈C j ω i = +1 0 iff 1 c | i∈C j ω i |< 1 -1 iff 1 c i∈C j ω i = -1.
This could be seen as a static version of the voter model, where a child votes like its parents when they agree. In this case, due to the overlapping of the blocks, the failure of quasilocality occurs at all temperatures, for the very particular null everywhere configuration. An interesting fact is that the set of bad configurations is topologically rather big but suspected to be of zero DLR-measure [START_REF] Ny | Fractal failure of quasilocality for a majority rule transformation on a tree[END_REF].

Theorem 5.14 [START_REF] Ny | Fractal failure of quasilocality for a majority rule transformation on a tree[END_REF] Let µ be any Gibbs measure for the Ising model on T 2 0 and let ν be the image of µ by T . Then ν is non quasilocal at any temperature and cannot be a Gibbs measure.

It could be generalized to non-rooted Cayley trees, and with other sizes of blocks, also as a stochastic transformation, modelling the fact that a child does not always vote like its parents, as follows: Let ǫ ∈ [0, 1] and ξ be a Bernoulli random variable with parameter ǫ. Define the deterministic map t ǫ : ω -→ t(ω) = ω ′ where ω ′ is defined for all j ∈ T 2 0 by ω

′ j =      +1 iff 1 c i∈C j ω i = +1 and ξ = 1 -1 iff 1 c i∈C j ω i = -1 and ξ = 1 0 if ξ = 0.
Its action is described by a probabilistic kernel T ǫ defined by:

∀A ′ ∈ F ′ , ∀ω ∈ Ω, T ǫ (ω, A ′ ) = (1 -ξ)δ tǫ(ω) (A ′ ) + ξδ 0 (A ′ ).
It could be interesting to study the difference between the deterministic transformation and the stochastic ones because this could play a role on the degree of non-Gibbsianness of the image measure.

4. Restriction of Ising model to a layer [START_REF] Maes | The restriction of the Ising model to a Layer[END_REF][START_REF] Schonmann | Projection of Gibbs measures may be non-Gibbsian[END_REF]:

This transformation is not properly speaking a R.G.T. in the sense of our definition, because of the lack of strict locality. Nevertheless, it is known to lead to non-Gibbsianness (see [START_REF] Schonmann | Projection of Gibbs measures may be non-Gibbsian[END_REF]) and is a good example of a new kind of random fields, the weakly Gibbsian measures, which will be introduced soon [START_REF] Maes | The restriction of the Ising model to a Layer[END_REF]. The configuration spaces are Ω = {-1, +1} Z 2 and Ω ′ = {-1, +1} Z . The transformation is deterministic and defined by t(ω) = ω ′ where ω ′ is defined by ∀i ∈ Z d-1 , ω ′ i = ω (i,0) where 0 denotes here the origin in Z. The interesting fact in this example, together with the fact that it could seem very natural at a first sight to consider the projected measure to be Gibbs, is that the original proof relies on wrong large deviation properties of the projected measure.

Stochastic transformations

In contrast to the deterministic case, a stochastic transformation could lead to different image configuration, with a certain probability for each. We have already seen an example of stochastic R.G.T. on the tree. 

′ i =        +1 if j∈B i ω j > 0 -1 if j∈B i ω j < 0 +1 if j∈B i ω j = 0 and ξ = +1 -1 if
j∈B i ω j = 0 and ξ = 0.

Kadanoff transformations for the Ising model:

These transformations model a lot of interesting and historical R.G.T. We shall not deal with them, but some are widely studied in [START_REF] Griffiths | Mathematical properties of position-space renormalizationgroup transformations[END_REF][START_REF] Israel | Banach algebras and Kadanoff transformations[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF]. Here again the blocks B i are defined in the same way for i ∈ Z d , the configuration spaces are Ω = Ω ′ = {-1, +1} Z d and p is a strictly positive real. The R.G.T. map is defined atom per atom by

T (ω, ω ′ ) = i∈Z d exp(pω ′ i j∈B i ω j ) 2 cosh(p j∈B i σ j )
This transformation is also associated with stochastic evolutions of Gibbs measures, as we shall see. They have been proved to lead to non-Gibbsianness for d ≥ 2, b ≥ 1 and p finite. It also includes majority rules or decimations in the limit p → ∞ for suitable blocks.

Many other examples are available in the literature, and as claimed in [START_REF] Van Enter | On the possible failure of the Gibbs property for measures on lattice systems[END_REF], the surprise is eventually not that they are non-Gibbsian, but that it took so long to realize it, the set of Gibbs measures being topologically very small [START_REF] Israel | Some generic results in Mathematical Physics[END_REF]. In the same seminal paper [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF], positive general results are given about the action of these transformations on Hamiltonians and potentials, excluding various scenarii related to figure 1. We only quote them, see the discussions in [START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF] and [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF].

Renormalization transformation on potentials

As explained in the beginning of this chapter, the extension of the renormalization transformations to potentials is not always well-defined, whereas the extension of the R.G.T. to an action on measures is standard and always possible. Nevertheless, two positive results have been proved by van Enter et al., and we introduce them before describing the pathologies of the renormalization group. We restrict ourselves to a space B 1 consisting of the translationinvariant, continuous and uniformly absolutely convergent potentials. We introduce first a relation instead of a function: The next theorem tells us that R is single-valued and is proved in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF].

Theorem 5.16 (first fundamental theorem of the renormalization group) Let µ and ν be translation-invariant Gibbs measures with respect to the same interaction Φ ∈ B 1 and let T be an R.G-Transformation. The following results are true:

1. Either µT and νT are both non-quasilocal, or else there exists a quasilocal specification γ ′ with which both µT and νT are consistent.

2. Either µT and νT are both non-Gibbsian, or else there exists a uniformly absolutely convergent potential Φ ′ for which both µT and νT are Gibbs measures.

Stochastic evolution of Gibbs measures [35]

Once these RG pathologies have been identified as the manifestation of non-Gibbsianness, a natural source of examples to be investigated to detect similar phenomena concern stochastic Ising models, introduced in the previous chapter. Of course, here it could not come out as a surprise due to the equilibrium considerations that led to the introduction of the Gibbs property: It should be natural to encounter such a phenomenon in the course of stochastic evolutions of Gibbs measures, and it is indeed the case during the heating of a low temperature Ising model, i.e. the stochastic evolution of a low temperature Gibbs measure for the ferromagnetic n.n. Ising model during a high temperature Glauber dynamics. It is not so simple to establish, and not always true; physical interpretations can be found in [START_REF] Petri | Temperature of non-equilibrium lattice systems[END_REF]. Nevertheless, not much is known in non-equilibrium statistical mechanics, so any information about Gibbsianness in transient regimes is welcome. The first systematical study of such phenomena has been made in [START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF], although similar investigations had been made earlier in [START_REF] Maes | Relative energies for non-Gibbsian states[END_REF][START_REF] Lebowitz | Pseudo-free energies and Large deviations for Non Gibbsian FKG measures[END_REF]. Before describing a bit more the relationships with (stochastic) RG-transformations through the description of the an infinite-temperature Glauber dynamics, let us quote their general result.

Theorem 5.17 [START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF] Let Φ be a translation-invariant potential, µ a corresponding translationinvariant Gibbs measure at inverse temperature β and S(t) the semi-group corresponding to the dynamics having µ has reversible measure. Denote by ν an initial translation-invariant distribution of the a priori configuration. Then 1. For all ν, µ, the time-evolved measure νS(t) is Gibbs for small times t ≤ t 0 (β).

2. If µ, ν corresponds to high or infinite temperature Gibbs measures, then the time evolved measure is Gibbs for all times t.

3. If ν is a low temperature Gibbs measure for some t.i. potential whereas µ is a high temperature Gibbs measure, then the time evolved measure is Gibbs for large t. When ν is not a zero temperature Gibbs measure and µ corresponds to a high temperature with a small magnetic filed, Gibbsianness is recovered for larger times.

For the sake of simplicity, we describe the results for infinite temperature Glauber dynamics of low temperature phases of the Ising model at dimension d ≥ 2. Starting from the +-phase µ + β of the Ising model at low enough temperature β -1 > 0, we apply a stochastic spin-flip dynamics at rate 1, independently over the sites. The time evolved measure is then µ β,t (η) := σ∈Ω µ + β (σ)

i∈Z d e η i σ i ht 2 cosh h t , with h t = 1 2 log 1 + e -2t

1e -2t .

(5.18)

The product kernel in (5.18) is a special case of a Glauber dynamics for infinite temperature [START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF][START_REF] Le Ny | Short times conservation of Gibbsianness under local stochastic evolutions[END_REF], its particular form in terms of a dynamical magnetic field h t being obtained by a tricky use of the small size of E = {-1, +1}. This last particular form allows to interpret these dynamics as a Kadanoff-like transformation. It is known that the time-evolved measure µ β,t tends to a spin-flip invariant product measure on {-1, +1} Z d , with t ↑ ∞, which is trivially quasilocal and Gibbs. Nevertheless, the Gibbs property is lost during this evolution and recovered only at equilibrium: Theorem 5.19 [START_REF] Van Enter | Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures[END_REF] Assume that the initial temperature β -1 is smaller than the critical temperature of the n.n. Ising model for d ≥ 2. Then there exists t 0 (β) ≤ t 1 (β) such that:

1. µ β,t is a Gibbs measure for all 0 ≤ t < t 0 (β).

2. µ β,t is not a Gibbs measure for all 0 < t 1 (β) ≤ t < +∞.

Non-Gibbsianness is here related to the possibility of a phase transition in some constrained model 8 . There remains a large interval of time where the validity of the Gibbs property of the time-evolved measure remains unknown for this lattice model [START_REF] Hollander | Gibbs under stochastic dynamics ? Mark[END_REF]. This has motivated the study of similar phenomena for mean-field models in [START_REF] Külske | Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry[END_REF], where the sharpness of the Gibbs/non-Gibbs transition has been proved. This study has required the introduction of the new notion of Gibbsianness for mean-field models, see e.g. [START_REF] Häggström | Gibbs property of the fuzzy Potts model on trees and in meanfield[END_REF][START_REF] Külske | Analogues of non-Gibbsianness in joint-measures of disordered mean-field models[END_REF], and the relationships between lattice and mean-field results encourages us to investigate it further on. Moreover, Gibbianness for short times has been established for more general local stochastic evolutions in [START_REF] Le Ny | Short times conservation of Gibbsianness under local stochastic evolutions[END_REF] and the large deviation properties has even been proved to be conserved during the evolution for the special case of the Glauber dynamics in [START_REF] Le Ny | Large deviation principle at fixed time in Glauber evolutions[END_REF]. Other sources of non-Gibbsianness during stochastic evolutions, but concerning the stationary and not the transient regime, have been investigated in [START_REF] Lebowitz | Pseudo-free energies and Large deviations for Non Gibbsian FKG measures[END_REF][START_REF] Depoorter | Stavskaya's measure is weakly Gibbsian[END_REF][START_REF] Fernández | Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise[END_REF] for e.g. discrete dynamics or probabilistic cellular automata. Similar considerations have led to a short review about the relationships between non-gibbsianness and disordered systems in [START_REF] Van Enter | Two connections between random systems and non-Gibbsian measures[END_REF].

5.2.4 Joint measure of short range disordered systems [START_REF] Külske | Non-) Gibbsianness and phase transition in random lattice spin models[END_REF] This example has allowed substantial progress in the Dobrushin program of restoration of Gibbsianness, and reinforces our philosophy of focusing on continuity properties of conditional probabilities rather than on convergence properties of a potential, as we shall see next section.

Non-Gibbsianness has here also been very useful to explain pathologies in the so-called Morita approach to disordered systems, see [START_REF] Kühn | Gibbs vs Non-Gibbs in the Equilibrium Ensemble approach to disordered systems[END_REF][START_REF] Külske | How non-Gibbsianness helps a metastable Morita minimizer to provide a stable free energy[END_REF] in the proceedings volume [START_REF]Proceedings of the workshop "Gibbs vs. non-Gibbs in statistical mechanics and related fields" (Eurandom 2003)[END_REF]. The Random Field Ising Model (RFIM) is an Ising model where the magnetic field h is replaced by (say i.i.d. ±1) random variable η i of common law P at each site of the lattice. For a given η = (η i ) i∈S , whose law is also denoted by P, the corresponding ("quenched") Gibbs measures depend on this disorder and are denoted by µ[η]. The Morita approach [START_REF] Kühn | Gibbs vs Non-Gibbs in the Equilibrium Ensemble approach to disordered systems[END_REF] considers the joint measure "configuration-disorder", formally defined by K(dη, dσ) = µ[η](dσ)P(dη), to be Gibbs for a potential of the joint variables, but it has been proved in [START_REF] Külske | Non-) Gibbsianness and phase transition in random lattice spin models[END_REF] that this measure can be non-Gibbs for d ≥ 2 and for a small disorder. The mechanism, although more complicated, is similar to the previous examples, and the arising of non-quasilocality is made possible when a ferromagnetic ordering is itself possible in the quenched system, and thus the conditions on d and on the disorder are those required for such a phase transition to hold in [START_REF] Bricmont | Phase transition in the 3d Random Field Ising Model[END_REF]. A diluted and simpler version of this phenomenon concerns the GriSing random filed, whose link with Griffiths's singularities is also very relevant for its similarities with RG pathologies [START_REF] Van Enter | The Griffiths singularity random field. in On Dobrushin's way. From probability theory to statistical physics[END_REF].

Other sources of Non-Gibbsianness

Soon after the detection of the renormalization group pathologies as the manifestation of the occurrence of non-Gibbsianness, the latter phenomenon has been detected in many other areas of probability theory and statistical mechanics, like Hidden Markov models, Random-cluster model, convex combinations of product measures, etc. see [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] or references in [START_REF]Proceedings of the workshop "Gibbs vs. non-Gibbs in statistical mechanics and related fields" (Eurandom 2003)[END_REF].

Before using these examples to emphasize how important are continuity properties of conditional probabilities in the Gibbs formalism, we describe recent extensions of the Gibbs property within the so-called Dobrushin program of restoration of Gibbsianness.

Generalized Gibbs measures

In 1995, in view of the RG pathologies described in [START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF] and in the physics literature, Dobrushin launched a program of restoration of Gibbsianness consisting in two parts [START_REF] Dobrushin | Gibbsian description of "non Gibbsian" field[END_REF]:

1. To give an alternative (weaker) definition of Gibbsianness that would be stable under scaling transformations.

2. To restore the thermodynamic properties of these measures in order to get a proper definition of equilibrium states.

Dobrushin Program of restoration of Gibbsianness, Part I

The first part of this program mainly yields two different restoration notions, focusing either on a relaxation of the convergence properties of the potential, leading to weak Gibbsianness, or on a relaxation on the topological properties of conditional probabilities, leading to almost Gibbsianness or almost quasilocality. The first one appeared to be weaker than the latter and to be reminiscent to the notion chosen to describe systems with hard-core exclusion, or unbounded spins [START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF]. It express consistency w.r.t. an almost surely convergent potential:

Definition 5.20 (Weakly Gibbs) A probability measure µ ∈ M 1 (Ω) is said to be weakly Gibbs if there exists a potential Φ and a tail-measurable set Ω Φ on which Φ is convergent with µ(Ω Φ ) = 1 such that µ ∈ G(γ Φ ).

Tail-measurability is required to insure that the partition function is well-defined. Weak Gibbsianness has been proved for most of the renormalized measures of the previous section [START_REF] Bricmont | Renormalization group pathologies and the definition of Gibbs states[END_REF][START_REF] Lörinczi | Weakly Gibbsian measures for lattice spin systems[END_REF][START_REF] Maes | Almost Gibbsian versus Weakly Gibbsian[END_REF][START_REF] Maes | The restriction of the Ising model to a Layer[END_REF] and relies on the existence of the already mentioned relative energies [START_REF] Maes | Relative energies for non-Gibbsian states[END_REF], that usually enables to prove the almost sure convergence of a telescoping potential of Kozlov type. A non-Gibbsian measure arising in stochastic evolutions has also been proved to be weakly Gibbsian [START_REF] Depoorter | Stavskaya's measure is weakly Gibbsian[END_REF] and joint measures of disordered systems too [START_REF] Külske | Weakly Gibbsian representation for joint measures of quenched lattice spin models[END_REF], and it is actually not common in our context to find a transformation of a Gibbs measure that is not weakly Gibbs, although examples such as convex combinations of product measures exist [START_REF] Maes | Almost Gibbsian versus Weakly Gibbsian[END_REF][START_REF] Lörinczi | Transformations of Gibbs measures[END_REF]. Moreover, in such a case, the almost sure convergence of the potential does not tell much about the crucial continuity properties of conditional probabilities. This has motivated the second main restoration notion: Definition 5.21 (Almost Gibbs) A probability measures µ is almost Gibbs if its finitevolume conditional probabilities are continuous functions of the boundary conditions, except on a set of µ-measure zero, i.e. if there exists a specification γ such that µ ∈ G(γ) and µ(Ω γ ) = 1.

An almost-sure version of Kozlov-Sullivan's use of the inclusion-exclusion principle in the Gibbs representation theorem proves that almost Gibbs implies weak Gibbs [START_REF] Kozlov | Gibbs description of a system of random variables[END_REF][START_REF] Sullivan | Potentials for almost Markovian random fields[END_REF][START_REF] Maes | Almost Gibbsian versus Weakly Gibbsian[END_REF], but the converse is not true (see e.g. [START_REF] Lefevere | Weakly Gibbsian measures and quasilocality: a long range pair-interaction example[END_REF]). The decimated measure has been proved to be almost Gibbsian in [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF], and the method applies to other renormalized measures [START_REF] Fernández | Restoration of Gibbsianness for projected and FKG renormalized measures[END_REF], but not for the projection to a layer for which the problem is open. More interestingly, the contrary has been proved [START_REF] Külske | Weakly Gibbsian representation for joint measures of quenched lattice spin models[END_REF] for the joint measure of the RFIM, which even has a set of bad configurations with full measure. The peculiarity of this example appeared to be a good advert for the importance of quasilocality in the characterization of equilibrium states for lattice spin systems, and to discriminate the weak Gibbs restoration from almost Gibbs one, due to the consequences it has on the thermodynamic properties of the corresponding measures, in the second part of the Dobrushin program.

Other restoration notions (robust Gibbsianness [START_REF] Van Enter | Robustness of the non-Gibbsian property: some examples[END_REF], fractal quasilocality [START_REF] Ny | Fractal failure of quasilocality for a majority rule transformation on a tree[END_REF]) exist and an intermediate between the almost Gibbs and weak Gibbs has been introduced recently and seem to be a very relevant starting definition of generalized Gibbs measure, called Intuitively weak Gibbsianness in [START_REF] Van Enter | On the variational principle for generalized Gibbs measures[END_REF]: The notion is intermediate between weak and almost Gibbsianness, the difference between all these notions being that the convergence (5.23) holds [START_REF] Van Enter | On the variational principle for generalized Gibbs measures[END_REF]:

• For all ω and all η when µ is Gibbs (quasilocal).

• For µ-a.e ω and all η when µ is almost Gibbs.

• For µ-a.e ω and µ-a.e η when µ is intuitively weak Gibbs.

The thermodynamics properties of Gibbs measures have been partially restored for almost Gibbsian measures, whereas weak Gibbsianness seems to be indeed too weak to be a satisfactory notion from this point of view.

Dobrushin program of restoration, part II

This second part aims at the restoration of the thermodynamic properties of Gibbs measures, mostly in terms of a variational principle that allows to identify them as the description of the states which minimize the free energy of the system, thus equilibrium states in virtue of the second law of thermodynamics. First, one would also like to recover well-defined thermodynamic functions at infinite-volume. In the weakly Gibbsian context, this can be done directly but their existence has to be restricted to typical boundary conditions, see [START_REF] Lefevere | Variational principle for some renormalized measures[END_REF][START_REF] Maes | The restriction of the Ising model to a Layer[END_REF][START_REF] Maes | Relative energies for non-Gibbsian states[END_REF], whereas in the case of renormalized measures, the useful notion of asymptotically decoupled measures introduced by Pfister [START_REF] Pfister | Thermodynamical aspects of classical lattice systems[END_REF] insures their existence and the validity of a large deviation principle: This class strictly contains the set of all Gibbs measures and with our definition, this property is conserved under the local RG transformations introduced in these lectures. Thus thermodynamic functions exist for our RGT, but we emphasize the fact that the existence of relative entropy is still an open problem for the projection of the Ising model to a layer [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF][START_REF] Fernández | Restoration of Gibbsianness for projected and FKG renormalized measures[END_REF][START_REF] Maes | The restriction of the Ising model to a Layer[END_REF].

Thus, our renormalized measures satisfy the thermodynamical variational principle whereas the specification independent one has been fully restored for the decimated measure in [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF], using ideas taken from the concept of global specification [START_REF] Fernández | Global specifications and non-quasilocality of projections of Gibbs measures[END_REF], and as a corollary this has established the almost Gibbsianness of this measure. Keeping the same notation and writing ν + and ν -the decimation of the + andphases of the 2d Ising model, one has: Theorem 5.25 [START_REF] Fernández | Variational principle and almost quasilocality for renormalized measures[END_REF] Consider the decimation of the Ising model at β > β c . Then 1. For every µ ∈ M + 1,inv (Ω), h(µ|ν + ) exists and h(ν -|ν + ) = 0.

2. ν -∈ G inv (γ + ), where γ + specifies ν + , and they are almost Gibbs.

3. If h(µ|ν + ) = 0 and µ(Ω γ + ) = 1 then µ ∈ M + 1,inv (Ω).

The proof relies on the general criterion given in Chapter 4, and a partial converse statement, to restore the second part of the variational principle, has been established in [START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF], using again the general criterion of Chapter 4.

It is moreover established there that the joint measure of the RFIM, one of the physically relevant known examples of weakly Gibbsian measure that is not almost Gibbs, also provides an example of two (not almost Gibbs) measures described by a different system of conditional probabilities that are equilibrium states w.r.t each other. In this situation, we have two candidates to represent equilibrium states, corresponding to different interactions, that saturate the variational principle of each other, which can be easily seen to be physically irrelevant. The fact that this happens for a weakly and non almost Gibbsian measure clearly indicates that one has to insist on continuity properties of the conditional probabilities in order to restore the Gibbs property in the framework of the Dobrushin program. Together with the Gibbs representation theorem, this also emphasizes the relevance of the description of Gibbs measures in the quasilocal framework, i.e. in terms of topological properties of conditional probabilities rather than in terms of potentials. These observations have motivated a new "DLR-like" approach to mean-field models, initiated recently in [START_REF] Häggström | Gibbs property of the fuzzy Potts model on trees and in meanfield[END_REF][START_REF] Külske | Analogues of non-Gibbsianness in joint-measures of disordered mean-field models[END_REF][START_REF] Külske | Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry[END_REF].
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 26 Convergence along a net directed by inclusion) lim Λ↑S F (Λ) = a means convergence of a set-function F : S -→ R along a set S directed by inclusion:
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 3 11 (Potential) A potential is a family Φ = (Φ A ) A∈S of functions
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 45 Uniformly convergent when the series defining (3.14) are uniformly convergent in ω ∈ Ω, or equivalently when lim ∆↑S sup ω∈Ω A∈S,A∩Λ =∅,A∩∆ c =∅ Φ A (ω) = 0. (3.15) Uniformly absolutely convergent (UAC) when ∀i ∈ S, A∈S,A∋i sup ω∈Ω |Φ A (ω)| < +∞. (3.16)Nearest neighbor and finite-range potentials are UAC and obviously Lemma 3.17 Φ UAC =⇒ Φ uniformly convergent =⇒ Φ convergent.
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 46347 Lemma Convergence and consistency of the vacuum potential) Let γ be any quasilocal and non-null specification. Then Φ + = (Φ + A ) A∈S defined by(3.46) is a vacuum potential with vacuum state + ∈ Ω, for any reference configuration + ∈ Ω. It is moreover convergent and its corresponding Gibbs specification γ Φ coincides with γ.
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 414 Variational principle relative to a specification) Consider a specification γ and ν ∈ G inv (γ). A variational principle occurs for (ν, γ) iff ∀µ ∈ M + 1,inv (Ω), h(µ|ν) = 0 ⇐⇒ µ ∈ G inv (γ) . (4.15)
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 1 Figure 1: A renormalization group transformation acting on measures.
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 22b Figure 2: The configuration space after decimation, Ω ′ .
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 3 Figure 3: Configuration space Ω λ with the alternating configuration in λ c .
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 4 Figure 4 : Ising model on the decorated lattice λ *
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 5 Figure 5 : Ising model on 2Z 2 with coupling β ′ .
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 5 12 [36] Let d ≥ 2 and b ≥ 2. Then for all β > β(d, b) sufficiently large, for any Gibbs measure µ for the standard n.n. homogeneous Ising model on Z d with coupling J > 0 and magnetic field h = 0, the decimated measure ν = T b µ is not quasilocal.

2 .

 2 Deterministic majority-rule transformation for the Ising model: The configuration spaces are still identical and are those of the d-dimensional Ising model Ω ′ = Ω = {-1, +1} Z d , d ≥ 1. Let b ≥ 1 be an integer and let B 0 ∈ S with |B 0 | odd. Define, ∀i ∈ Z d , B i to be B 0 translated by b • i: B i = B 0 + b • i. We call this subsets of Z d blocks. The deterministic kernel is the transformation t

1 .

 1 Stochastic majority-rule for Ising model: The definition is very similar to the deterministic one, except that we deal with blocks B 0 with |B 0 | even. The configuration spaces are still Ω ′ = Ω = {-1, +1} Z d , d ≥ 1. Let b ≥ 1 be an integer and let B 0 ∈ S with |B 0 | even. Define, ∀i ∈ Z d , B i to be B 0 translated by b • i: B i = B 0 + b • i. Let ξ be a Bernoulli random variable on (Ω, F) with parameter p. Most of the time, p is considered to be 1 2 . The stochastic majority-rule is the transformation T which transforms ω in t(ω) = ω ′ with ω
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 5 [START_REF] Burton | The Variational Principle for Gibbs States Fails on Trees[END_REF] (R.G.T. on interactions) Let T be a R.G.T. We define a renormalization group relation R = R T on interactions by the relationR = {(Φ, Φ ′ ) ∈ B 1 × B 1 : ∃µ translation-invariant in G(γ Φ ) s.t. µT ∈ G(γ Φ ′ )}Where µT is the image measure of µ by T .
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 522 Intuitively weak Gibbs) A weakly Gibbsian measure µ ∈ M + 1 (Ω) is said to be intuitively weak Gibbs if there exists a set Ω 1 ⊂ Ω Φ with µ(Ω 1 ) = 1 and s.t. for all σ ∈ Ω,γ Φ Λ (σ Λ |ω Λn\Λ η Λ c )for all ω, η ∈ Ω 1 .
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 5 24 A measure µ ∈ M + 1,inv (Ω) is asymptotically decoupled if there exists functions g : N -→ N and c : N -→ [0, ∞) s.t. n ∈ N, A ∈ F Λn , B ∈ F Λ c n+g(n) e -c(n) µ(A)µ(B) ≤ µ(A ∩ B) ≤ e c(n) µ(A)µ(B).

  above for which (2.44) and (2.45) hold, and define π

  to extend the definition of the Hamiltonian with free b.c.(3.48) to an Hamiltonian with any ω ∈ Ω as a boundary condition. It amounts to proving the convergence of the potential, i.e. that for all σ ∈ Ω,

	H Φ + Λ (σ) :=	Φ + A (σ) < +∞
	A∩Λ =∅,A∈S	
	in the sense that the limit as ∆ ↑ S of the net that we have already been able to define the Hamiltonian with free b.c. as A∩Λ =∅,A⊂∆ Φ + A (σ) ∆∈S	is finite. Recall

  .37) Proof: Clearly, (4.36) implies (4.37): For all n ∈ N,

	exp -sup
	ω,η,σ

This theory also holds, modulo a few adaptations, for more general measurable spaces, compact[START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] or even non-compact[START_REF] Dobrushin | Existence of a phase transition in the two-dimensional and threedimensional Ising models[END_REF][START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF], but the simpler finite case already gets the main features of the theory.

This topological framework is standard also when one consider Cantor sets and dyadic expansions of reals.

To see how to construct counter-examples, consult e.g.[START_REF] Stoyanov | Counterexamples in probability[END_REF].

We shall see later that under extra topological properties, one can construct measures in G(γ) by considering weak limits of sequences of finite volume probability measures, with random boundary conditions.

Our standard reference for Markov Chains is[START_REF] Chung | Markov chains with stationary transition probabilities[END_REF].

Remark that the terms involving the measure ν cancel out in the specification. Nevertheless, its invariant character is encoded in the conditioning yielding a DLR measure that depends on ν.

Ising analyzed this model in one dimension in its thesis supervised by Lenz in 1922[70]. His only higher dimensional contribution was the wrong interpretation that just as in d = 1, in higher dimension there is no phase transition.

It is a finite sum here but this is not the case in general. One has usually to check summability conditions on the potential to define Gibbs measures, as we shall see next section.

The magnetization has been conjectured but unpublished by Onsager in 1949. He also rigorously derived the free energy in in 1944[START_REF] Onsager | Crystal statistics. I. A two-dimensional model with an order-disorder transition[END_REF].

In a more general set-up, (E, F) has to be a standard Borel space, see[START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

This property corresponds to a π-system, see next section.

Conditions insuring existence are described in Chapter 3.

It is not the case for general kernels, properness of the specification is crucial[START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

Rigorously speaking, one should use the expression (2.58) in terms of the evaluation maps to prove the measurability on exG(γ), e exG(γ) , but this is standard, see e.g.[START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

The converse statement is not true. There exists non extremal measures that are such weak limits, see e.g. the 3-states Potts models with well-chosen external field.

It corresponds to the finite volume Boltzmann-Gibbs weights, see next chapter.

This is true only when ΦA is bounded for all A ∈ S. In a more general framework involving "hard-core exclusion", Φ is allowed to be ∞ and the formalism has been adapted, see e.g.[START_REF] Dobrushin | A criterion for the uniqueness of Gibbsian fields in the non-compact case[END_REF][START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF].

This potential corresponds to the so-called Coulomb interactions, see e.g.[START_REF] Simon | The statistical mechanics of lattice gases[END_REF].

This could be any configuration, we denote it by "+" only by analogy with the Ising model.

This property of specifications will be very useful to play on the conditioning for boundary conditions that coincide outside some finite sets, in particular to get the Kozlov's potential next section. It corresponds to the key bar-displacement property of[START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF], where densities of specifications are explicitly introduced.

Other equivalence classes and spaces of potentials exist, see[START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF][START_REF] Israel | Convexity in the theory of lattice gases[END_REF]. In particular, to get the following equivalence it is crucial to focus on UAC potentials.

These are minimizers of the Hamiltonian, useful to describe the phases at zero temperature and by extension to low temperatures within the Pirogov-Sinai theory, see[START_REF] Pirogov | Phase Diagram of Classical Lattice Systems[END_REF].

The formulation in terms of the density fΛ is handy to use consistency via Lemma 3.28, while the expression in terms of γ is more familiar. Fernández[START_REF] Fernández | Gibbsianness and non-Gibbsianness in Lattice random fields[END_REF] has introduced densities for specifications and has expressed Lemma 3.28 in terms of γ directly.

This potential is not yet the Kozlov potential, so we write it Ψ, because the resummation uses several times terms involving sites i.

Except in a few situations when e.g. periodic boundary conditions are considered[START_REF] Lewis | Entropy, concentration of probability and conditional limit theorems[END_REF][START_REF] Ruelle | Equilibrium states of infinite systems in statistical mechanics[END_REF].

The ratio (surface boundary)/(volume) do not vanish in the limit, see also[START_REF] Burton | The Variational Principle for Gibbs States Fails on Trees[END_REF].

This is probably the most important part of mathematical statistical mechanics that we do not develop in this course, see again[36, 63, 

52].[START_REF] Bertini | Renormalization group in the uniqueness region: weak Gibbsianity and convergence[END_REF] This is the reason why this restriction on the ratio (surface boundary)/(volume) is made in this approach.[START_REF] Billingsley | Ergodic theory and information[END_REF] For a vacuum potential with vacuum state +, and a quasilocal specification, it even coincides with the pressure, see the proof of of Lemma 4.34.

Like e.g. being Gibbs. To get a counterexample, i.e. two measures having zero relative entropy without having much in common, consider the voter model in dimension d = 3, with its Dirac invariant measure as a reference measure.

Remark that a function can be continuous in any direction + without being continuous, see[START_REF] Fernández | Restoration of Gibbsianness for projected and FKG renormalized measures[END_REF].

See the telescoping procedure next section and a discussion in Chapter 5.

It is indeed extended in[START_REF] Külske | Relative entropy and variational properties of generalized Gibbsian measures[END_REF].

In particular, the solid phase has to be more carefully described as we do now, due to the particular nature of crystals. One expects that a crystal breaks the translation symmetry, so that translation-invariant Gibbs measures can be ergodic but not extremal in the set of Gibbs measures. Moreover, although there is a gasliquid point, there is not a second-order transition from solid to liquid or gas in great generality. Our present heuristics have thus to be taken very carefully while dealing with this solid phase.

[START_REF] Van Beijeren | Interface sharpness in the Ising model[END_REF] The existence of these manifolds comes from the Gibbs phase rule, see the introduction of Wightman in[START_REF] Israel | Convexity in the theory of lattice gases[END_REF].

This distinction between first or second order phase transitions is also mathematically characterized in terms of differentiable properties of the pressure introduced in Chapter

[START_REF] Berti | A conditional 0-1 law for the symmetric σ-field[END_REF], see[START_REF] Israel | Convexity in the theory of lattice gases[END_REF][START_REF] Simon | The statistical mechanics of lattice gases[END_REF][START_REF] Van Enter | Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory[END_REF].[START_REF] Berti | A conditional 0-1 law for the symmetric σ-field[END_REF] and sometimes proved[START_REF] Lebowitz | On the exponential decay of correlations[END_REF] using among others correlation inequalities.

To describe such conditional probabilities, on should use global specifications developed in[START_REF] Fernández | Global specifications and non-quasilocality of projections of Gibbs measures[END_REF].

The letters denote the value of spins on the underlying sites, when fixed, and the ? indicate that the spin over the underlying site is unknown.

In statistical mechanics, an order parameter of a UAC potential which admit a family {µj , j ∈ J} of distinct Gibbs measures is a finite system {f1, . . . , fn} of local functions which discriminate these Gibbs measures by means of the associated expectations {µj [f1], . . . , µj [fn]}[START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

The constrained model is a three dimensional Random Field Ising Model, due to the randomness of the dynamical field. The possible occurrence of phase transitions for this model has been proved in[START_REF] Bricmont | Phase transition in the 3d Random Field Ising Model[END_REF].

Acknowledgements:

The author thanks the members of the departments of mathematics of the universities UFMG and UFGRS who organized and attended to these lectures, A.C.D. van Enter (Groningen) for its legendary careful readings and suggestions and S. Friedli (Belo Horizonte) for many comments, readings and discussions.