Material decomposition mechanisms in femtosecond laser interactions with metals - Archive ouverte HAL
Article Dans Une Revue Physical Review B: Condensed Matter and Materials Physics (1998-2015) Année : 2007

Material decomposition mechanisms in femtosecond laser interactions with metals

Résumé

A numerical hydrodynamic study of femtosecond laser ablation is presented. A detailed analysis of material decomposition is performed using a thermodynamically complete equation of state with separate stable and metastable phase states and phase boundaries. The lifetime of the metastable liquid state is estimated based on the classical theory of homogeneous nucleation. In addition, mechanical fragmentation of the target material is controlled based on available criteria. As a result, several ablation mechanisms are observed. A major fraction of the ablated material, however, is found to originate from the metastable liquid region, which is decomposed either thermally in the vicinity of the critical point into a liquid-gas-mixture or mechanically at high strain rate and negative pressure into liquid droplets and chunks. The calculation results explain available experimental findings.
Fichier principal
Vignette du fichier
ARTICLE1.pdf (251.49 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00194823 , version 1 (22-09-2021)

Identifiants

Citer

Mikhail E. Povarnitsyn, Tatiana Itina, Marc Sentis, Konstantine Khishchenko, Pavel Levashov. Material decomposition mechanisms in femtosecond laser interactions with metals. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2007, 75 (23), pp.235414. ⟨10.1103/PhysRevB.75.235414⟩. ⟨hal-00194823⟩

Collections

CNRS UNIV-AMU LP3
48 Consultations
137 Téléchargements

Altmetric

Partager

More