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Abstract 
 

We have developed a broad-band technique for 
measuring the complex permittivity (εr) of dielectric 
materials, especially thin layers. Our method is based 
on the use of a coaxial probe. The extraction of the 
complex permittivity uses a capacitance model valid in 
a broad frequency range dependent on the sample 
dimensions and the boundary conditions. Compared to 
transmission line method, one advantage of the coaxial 
probe is to avoid the costly lithography process, 
especially for Silicon or SOI substrates. To illustrate 
our technique, circular samples with a diameter of 
2.922 mm are characterised in the range 0.5 – 25 GHz 
for a thickness of 0.5mm and various relative 
permittivity up to 12 with a fixed electric conductivity of 
0.2S/m.  

Index Terms  −− Broad-band, Characterization and 
Dielectric Permittivity. 

 
1. Introduction 
 

The knowledge of dielectric properties is very 
important in studying the absorption of electromagnetic 
energy, and the propagation of signal in MMICs. 
Several techniques are found in the literature for 
determining the dielectric parameters [1]-[2]: cavity, 
transmission lines, open ended coaxial probes, MIM 
capacitance, free space [3], etc.  

Cavities provide the most efficient permittivity 
characterization method when only a few frequencies 
are required [4]; so, suffer from disadvantage of being 
narrow-band [5].   Transmission line techniques are 
based on the use of lithography which is long and costly 
for some substrates like Silicon and SOI [6]. Based on 
measuring the scattering parameters of a discontinuity 
embedded in the transmission line, that technique is 
limited by the accuracy on relative permittivity and loss 
tangent in high frequency. This limitation is mainly due 

to the resonance occurring at half-wavelength 
frequencies [7].  

Open-ended coaxial probes are not suitable to thin 
film layers [8], because this method can give erroneous 
results if there is even a tiny air bubble or gap near its 
mouth [9]. MIM capacitance technique is limited in the 
deduction of losses [10]. Ellipsometry technique, based 
on free space, provide the permittivity characterization 
when only one frequency is needed [3]. 

In recent latest years, the coaxial probe has received 
attention and has gained favour of many researchers 
because of its simplicity and is therefore suitable for 
industrial use [9]-[12].  

We develop a procedure to extract complex 
permittivity for thin dielectric layers, for a broad-band 
range of frequencies, without the use of the lithography. 
The sample is completely surrounded by a metallization 
unlike Stuchly works or Martens [9] . This technique is 
essentially based on measuring the reflection coefficient 
from a coaxial transmission line, terminated with the 
material under test as shown in figure 1. 

 

 
Figure 1a. Coaxial Probe Fixture  
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Figure 1b. Coaxial probe transverse section fixture  

 
The method supposes that the material is not magnetic 

(µeff=1). 
Electromagnetic simulations were made with a 3D 

simulator based on the Finite Integration Method (FIM) 
in order to analyse the frequency limitations of the 
probe.  

The main frequency limitation of the probe is due 
to the resonance depending on the dielectric permittivity 
and boundary conditions on different sides of the probe. 

The electric equivalent model of this probe is showed 
in figure 2. 

 
Figure 2. Equivalent Electric fixture  

 
In this work, we give the theory of the method before 

digging deeper of the method through its principle 
secondly. Simulation results in order to consolidate the 
theory will be done in the third point before seeing 
thickness effects and ending by a conclusion. 

 
2. Principle of the method 
 
Consider a uniform waveguide ended by a 

capacitance composed of the sample to characterize. 
The reflection is measured in two cases: With and 
without the sample. From the measured reflection, we 
define the termination admittance [9] by the following 
relation: 
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where R0=50Ω, S11co the reflection coefficient measured 
from open-circuit and S11mat the reflection coefficient 
measured with material. 

Some hypotheses are made to simplify the extraction. 
We consider that the reflection coefficient is unity when 
we have the open circuit. The reference plan of the 
calibration is the plan P0 (fig.2).  
 
2.1. Capacitance model 

From the electrical circuit the admittances are 
expressed by: 
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Thereupon, effective permittivity is related to 

termination admittance by: 
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From the effective permittivity depending on the 

dimensions of the probe, the intrinsic relative 
permittivity is calculated using a polynomial fitting 
function. The extraction of the conductivity requires an 
additional correction function depending on the 
frequency.   

 
2.1. Polynomial fitting function 

The parameters of this model are obtained from the 
electromagnetic simulations of different permittivity 
values, with and without losses. 

We assume the complex dielectric permittivity 
linked to the effective permittivity by the following 
relation: 
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where “a” and “b” are adjusted coefficients to minimize 
the fitting error. 
The accuracy obtained on the relative permittivity 
depends on the metallic conductors, and leads also to a 
parasitic dependence with the frequency of the extracted 
conductivity. 

 
Our investigations proved that best results are 

obtained when the sample is circular, and if it’s totally 
surrounded by metallic walls. The choice of the 
connector to use is important in terms of frequency 
range 
 



 
Connector 

SMA 
(D=4.1mm) 

K (D=2.922mm) 

Fmax for 
εr<12 

≈14GHz ≈23GHz 

Table 1. Frequency range as a function of 
connector dimensions 

 
2.3. Extraction Method Flow Chart 

We illustrate the global method in the following flow 
chart. 

 

 
 

Figure 3. Diagram Flow Chart of the Method 
 
The method is based on the use of measurements and 

Electromagnetic simulations.  
In fact, metal conductivity appears in the final 

results because of the contact between the dielectric and 
the metallization (copper in our case). 

 
3. Simulation results 

 
Our purpose is to extract initial dielectric relative 

permittivity up to 25GHz.  We use a connector K 
(2a=1.27mm and 2b=2.9mm) specified up to 40GHz. 
The probe length is l=10mm with a diameter of 
2.922mm. We consider different relative permittivity 
from 4 to 12 with a constant conductivity of 
σdiel=0.2S/m considered to be constant in broad-band.  

The sample thickness is e=500µm. The probe 
conductor (metal) is copper with conductivity of 
σcop=58,13.106S/m. 

 
3.1. Extraction of permittivity and electric 
conductivity 

These results show that the relative permittivity can 
be extracted with an error less than 2%, from 
electromagnetic (E.M) simulations.  
The operating frequency band is limited by the 
resonances of the cavity formed by the dielectric under 
test. The electric conductivity extracted when relative 
permittivity varies from 4 to 12 is shown in Figure 4b. 
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Figure 4a. Dielectric Relative Permittivity with losses 

σ=0.2S/m 
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Figure 4b. Electric Conductivity (S/m) Extracted from 
E.M.S before corrected the conductivity of the sample. 

 

0,14

0,16

0,18

0,2

0,22

0,24

0,26

0,28

0,3

0,5 5,5 10,5 15,5 20,5

Frequency (GHz)

E
le

ct
ri

c 
C

o
n

d
u

ct
iv

it
y 

(S
/m

) 
co

rr
ec

te
d Er=4; d=2.922mm; K Connector

Er=8; d=2.922mm; K Connector

Er=12; d=2.922mm; K Connector

 
Figure 4c. Electric Conductivity (S/m) Extracted from 

E.M.S after corrections of  conductors losses 
 

We observe some variations of the extracted 
conductivity according to the permittivity. So, we 
develop another principle of correction through 
MATHCAD to get high in frequency. We developed a 
routine to make that correction. Here are results we 
obtain. 



These results show that depending on the value of the 
relative permittivity, the extraction of electric 
conductivity is limited in frequency. 
 
3.2.  Extraction of variable  electric conductivity 

Now, we change the sample conductivity when the 
relative permittivity is εr=12 and its diameter is 
d=2.922mm, using the connector K. We set up the 
following conductivities: σdiel=0.2; 0.5 and 1 S/m 
(Figure 5). 
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Figure 5. Electric Conductivity (S/m) Extracted from 

E.M.S with different conductivity values. 
 

These results are in agreement with electromagnetic 
simulations (E.M.S). The method used proves that 
conductivity doesn’t influence the principle adopted up. 

Using this fixture, we can notice also if you can’t 
make correction on the conductivity, you will just 
extract easily that up around 10GHz. But if you do this, 
the frequency bandwidth will grow up to 20.5GHz. 

  
4. Conclusion 

 
In this paper we have discussed a new coaxial probe 

technique for accurate extraction of the relative 
permittivity of thin film. We demonstrated that 
approach can be readily applied with good precision to 
layers having thickness greater than 400µm.  

The frequency range depends on dielectric 
dimensions . The probe with circular sample and 
metallic walls operates up to 25 GHz for relative 
permittivity up to 10.  We observe some undulations 
coming from the driving line mismatch, but this affects 
the accuracy on of the permittivity extraction  

In low frequencies, some problems of mesh 
refinement from the electromagnetic simulator affect the 
accuracy. The sample diameter must be chosen equal to 
the outside conductor of the connector to optimise the 
frequency range of the characterisation. 

The sample thickness associated to the value of the 
relative permittivity determines the capacitance to be 
extracted. 

This method has been applied to circular samples with a 
diameter of 2.922 mm, a thickness of 0.5mm, characterised in 
the range 0.5 – 25 GHz for relative permittivity up to 12 with 
an electric conductivity of 0.2S/m.  
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