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Abstract. This paper is devoted to some elliptic boundary value problems in a self-similar ramified
domain of R

2 with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A
generalized Neumann boundary condition is imposed on the fractal boundary. Sobolev spaces on this
domain are studied. In particular, extension and trace results are obtained. These results enable the
investigation of the variational formulation of the above mentioned boundary value problems. Next, for
homogeneous Neumann conditions, the emphasis is placed on transparent boundary conditions, which
allow the computation of the solutions in the subdomains obtained by stopping the geometric construc-
tion after a finite number of steps. The proposed methods and algorithms will be used numerically in
forecoming papers.
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1. Introduction

In this paper, we deal with some boundary value problems in a self-similar ramified domain of R2 with a fractal
boundary. This work was inspired by a wider and challenging project aimed at simulating the diffusion of medical
sprays in lungs. Our goal are more modest here, since the geometry of the problems (only two dimensions)
and the physical phenomena considered are much simpler, but we hope that rigorous results and methods will
prove useful. We refer to [5, 15, 16] for accurate physical descriptions of the lungs’ physiology and for studies
concerning the diffusion of oxygen in the lungs.

The geometry under consideration is that of a self-similar ramified bidimensional domain, called Ω0 below,
see Figure 1. It can be seen as a simple model for lungs.

The domain Ω0 is constructed in an infinite number of steps, starting from a simple polygonal T-shaped do-
main of R2, see Figure 1, called Y 0 below; we call Y n the domain obtained at step n: Y n+1 is obtained by glueing
2n+1 dilated/translated copies of Y 0, with the dilation factor of 1/2n+1, to Y n. Thus, Y 0 ⊂ Y 1 ⊂ . . . ⊂ Ω0.
We say that Ω0 is self-similar, because Ω0\Y n is made out of 2n+1 dilated copies of Ω0 with the dilation factor
of 1/2n+1.

Keywords and phrases. Domains with fractal boundaries, Helmholtz equation, Neumann boundary conditions, transparent
boundary conditions.
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As we shall see below, the boundary of Ω0 is made up of three parts; two straight lines, the bottom (resp.
top) boundary Γ0 (resp. Γ∞) of Ω0, and the lateral part of the boundary Σ0. Since the exchanges between the
lungs and the circulatory system take place only in the last generations of the lung tree (the smallest structures),
reasonable models for the diffusion of e.g. oxygen may involve non homogeneous Neumann or Robin conditions
on the top boundary Γ∞. Similarly, the lungs are mechanically coupled to the diaphragm, which also implies
non homogeneous boundary conditions on Γ∞, if one is interested in a coupled fluid-structure model.

The present paper is devoted to some simple elliptic boundary value problems in Ω0: we discuss Poisson
problems with the Laplace and Helmholtz equations. For example, the Helmholtz equation is satisfied by
time harmonic acoustic waves. The Laplace equation arises in e.g. electrostatics for computing the electrical
potential, or in the simplest fluid models (potential flow). The content of this paper can be applied to more
involved fluid models, e.g. Stokes equations, but we decided to focus on simple equations in order to stress
the general ideas. Similarly, what follows applies to the equation div (χ grad w) = 0, where χ is a symmetric
positive definite constant tensor.

Partial differential equations in domain with fractal boundaries or fractal interfaces is a relatively new topic:
variational techniques have been developed, involving new results on functional analysis, see [12,13,19]. A very
nice theory on variational problems in fractal media is given in [18]. Some numerical simulations are described
in [24, 25].

In this paper, we shall discuss Poisson problems with Dirichlet conditions on Γ0, homogeneous Neumann
conditions on Σ0 and Neumann conditions on Γ∞. Since the boundary of Ω0 is extremely irregular, a good
way to give sense to these problems is to use variational or weak formulations. For that, we need basic results
on Sobolev spaces on Ω0, like Poincaré’s inequalities, Sobolev imbeddings, extension and trace results. As we
shall see below, the domain Ω0 is not a (ε, δ) domain as defined in Jones [9] or Jonsson and Wallin [10], or
equivalently in dimension two a quasi-disk, see Maz’ja [17]. Thus the classical results on Sobolev spaces see
e.g. [17] cannot be applied and one must check carefully which results hold in the present case. These results
will give sense to the above-mentioned non homogeneous Neumann conditions on Γ∞.

Once existence and uniqueness results are obtained, one may wonder how to compute efficiently the solutions
with e.g. finite elements. In numerical simulations, it is not possible to completely represent the domain Ω0,
for this would imply infinite memory and computing time. Therefore, we shall be interested in computing the
restrictions of the solution to the domain Y n, where n is a fixed integer (one can take n = 0 for example).
Staying at the continuous level, we shall see in Algorithms 1 and 2, see Sections 5.2.2 and 6.2 below, that it
is possible to find the solution in Y n by successively solving 1 + 2 + · · · + 2n boundary value problems in the
elementary domain Y 0, with what we call transparent boundary conditions on the top part of the boundary
of Y 0.

Transparent boundary conditions were proposed in computational physics for linear partial differential equa-
tions with constant coefficients, for which the Green functions are known, and in particular in electromagnetism,
where one deals frequently with unbounded domains. They allow the solution to be computed in a bounded
domain without errors. We propose to adapt the idea to the present situation. There is a huge amount of
literature on transparent boundary conditions, see e.g. [11] for one of the first papers on the subject.

In this work, we discuss transparent boundary conditions for both the Laplace and Helmholtz equations, in
the case when the Neumann data on Γ∞ is zero. Transparent boundary conditions for nonzero Neumann data
will be discussed in [1]. The transparent conditions involve nonlocal operators, which may be called Dirichlet
to Neumann operators. They will be computed, or more precisely approximated up to an arbitrary accuracy,
by taking advantage of the self-similarity in the geometry. In the case of Laplace’s equation, the Dirichlet
to Neumann operator is approximated as the limit of an inductive sequence, see Section 5.2.3 below. In the
case of the Helmholtz equation, the Dirichlet to Neumann operators (depending on the pulsation of the related
harmonic wave), can be approximated by performing iterations of a renormalization operator, see Section 6.3
below. The method developed in this paper is reminiscent of some of the techniques involved in the theoretical
analysis of finitely ramified fractals (see [6, 20, 22, 23] for numerical simulations).
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In this paper, we stay at the continuous level, but the methods presented below have their discrete counterpart
with finite elements: the numerical methods and results for Laplace’s equation are presented in [1]. Numerical
results for the Helmholtz equation, and applications to the computation of the spectrum and to time-dependent
problems are discussed in [2].

The paper is organized as follows: in Section 2, the geometry is presented in detail. In Section 3, we give
and prove relevant theoretical results on Sobolev spaces. The boundary value problems with Laplace’s equation
are discussed in Section 4. In Section 5, we deal with the transparent boundary conditions, and with the
computation of the nonlocal Dirichlet to Neumann operator. Section 6 is devoted to the Helmholtz equation,
and to the use of transparent boundary conditions for computing the solution in a truncated domain Y n. For
the reader’s ease, some of the proofs are given in separate sections at the end of the paper.

Finally, let us stress that most of the results and methods described below can be used for other geometries:
for example, except for what concerns nonhomogeneous Neumann conditions on Γ∞, the whole content of the
paper can be adapted to the famous case of the Koch flake.

2. The geometry of the model problem

2.1. The domain Ω0

Consider the following T-shaped subset of R2

Y 0 = Interior
((

[−1, 1]× [0, 2]
) ∪ ([−2, 2]× [2, 3])

)
.

Let F1 and F2 be the affine maps in R
2

F1(x) =
(
−3

2
+
x1

2
, 3 +

x2

2

)
, F2(x) =

(
3
2

+
x1

2
, 3 +

x2

2

)
· (1)

Note that F1 is the homothety of ratio 1
2 and center (−3, 6), and F2 is the homothety of ratio 1

2 and center (3, 6).
For any integer n ≥ 1, we call An the set containing all the maps from {1, . . . , n} to {1, 2}, (note that the

cardinality of An is 2n) and for σ ∈ An, we define the affine map in R2

Mσ(F1, F2) = Fσ(1) ◦ · · · ◦ Fσ(n). (2)

Let us agree that A0 = {0} and that M0(F1, F2) is the identity. The open domain Ω0 is constructed as an
infinite union of subsets of R2 obtained by translating/dilating Y 0:

Ω0 = Interior
(
∪∞
n=0 ∪σ∈An Mσ(F1, F2)(Y 0)

)
. (3)

The construction of Ω0 is displayed in Figure 1. One can see that Ω0 ⊂ (−3, 3)× (0, 6).

Remark 1. Note that similar construction may be done, using dilations with ratii αn, n ∈ N, with α ∈ (0, 1/2];
here we have chosen α = 1/2.
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Figure 1. Left: the first step of construction: two dilated/translated copies of Y 0 are attached
to Y 0. Right: the ramified domain Ω0 (only a few generations are displayed).

2.2. The domain Ω0 is not a (ε, δ) domain

For completeness, we recall the definition of a (ε, δ) domain, (see Jones [9], and Jonsson and Wallin [10]): an
open connected subset Ω of Rd is a (ε, δ) domain, if whenever x, y ∈ Ω and |x− y| < δ, there exists a rectifiable
arc γ ⊂ Ω with length �(γ) joining x and y such that:

1. �(γ) ≤ |x− y|/ε;
2. using the notation d(z) = inft/∈Ω |z − t| for z ∈ Ω, we have d(z) ≥ (ε|x− z||y − z|)/|x− y| for all z ∈ γ.

In dimension two, the notion of (ε, δ) domain is equivalent to that of quasi-disk, see Maz’ja [17].
It is important to observe that Ω0 is not a (ε, δ) domain: indeed, take the two points A = (−3/2, 5/2) and

B = (3/2, 5/2), and call An = (F1 ◦ Fn2 ) (B), Bn = (F2 ◦ Fn1 ) (A), we have that

• limn→∞An = limn→∞Bn = (0, 6), therefore limn→∞ |AnBn| = 0;
• An ∈ Ω0 and Bn ∈ Ω0;
• the length of any curve joining An and Bn that is contained in Ω0 is greater than 3.

Therefore, when studying the Sobolev spaces in Ω0, we shall not be able to use the theory of Jones [9]. In
particular, general extension results do not apply to Ω0.

2.3. The boundary of Ω0

We define the bottom boundary of Ω0 by Γ0 = ([−1, 1]×{0}) and Σ0 = ∂Ω0 ∩{(x1, x2);x1 ∈ R, 0 < x2 < 6}.
Calling Γ∞ = [−3, 3]× {6}, one can verify that

∂Ω0 = Γ0 ∪ Σ0 ∪ Γ∞, (4)

and that the sets in the right hand side of (4) are disjoint.

Remark 2. Note that

1. Γ∞ is the unique compact set which is invariant with respect to the set of contraction maps {F1, F2},
i.e. such that Γ∞ = F1(Γ∞) ∪ F2(Γ∞), see [8, 14]. The similarity dimension of Γ∞ is one, see [14] for
the definition.

2. The Hausdorff dimension of ∂Ω0 is one.

The second point will not be used for what follows (this is why its proof is omitted).
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2.4. Various subdomains of Ω0

For what follows, it is important to define the polygonal open domain obtained by stopping the above
construction at the step N , N ≥ 0.

Y N = Interior
(
∪Nn=0 ∪σ∈An Mσ(F1, F2)(Y 0)

)
. (5)

It will be useful to define the ramified set ΩN

ΩN = Ω0\Y N−1 = Interior
(
∪∞
n=N ∪σ∈An Mσ(F1, F2)(Y 0)

)
. (6)

The following self-similarity property is true: ΩN is the union of 2N nonoverlapping translated copies
of 1

2N · Ω0, i.e.
ΩN = ∪σ∈AN Ωσ, (7)

where
Ωσ = Mσ(F1, F2)(Ω0). (8)

The bottom boundary of ΩN is defined by

ΓN = ∪σ∈AN Γσ ⊂
{
x : x2 = 3

N−1∑
i=0

2−i
}
, (9)

where
Γσ = Mσ(F1, F2)(Γ0). (10)

Let us stress that ΓN is strictly contained in ∂Y N−1 ∩ {x : x2 = 3
∑N−1
i=0 2−i}.

3. Some function spaces

We aim at studying some elliptic boundary value problems in Ω0 and their weak formulation. For that, we
need to first introduce some natural Sobolev spaces on Ω0, and present some of their properties which we did
not find in the literature.

Let q be a real number such that q ≥ 1. For a nonnegative integer n and a real number s, we define the
Sobolev space W s,q(Y n) as in [3,4] (note that Y n has a Lipschitz regular boundary, so a full theory is available
for the spaces W s,q(Y n)).

For n ≥ 0 and σ ∈ An, we shall also consider the function space W 1,q(Ωσ) = {v ∈ Lq(Ωσ) s.t.
∇v ∈ (Lq(Ωσ))2} . Similarly, for all positive integers p, it is possible to define W p,q(Ωσ) as the space of
functions whose partial derivatives up to order p belong to Lq(Ωσ). Since Ωσ is not a quasi-disk, the extension
and trace results in [9, 10, 17] cannot be applied.

Of course, for all n, n′, 0 ≤ n ≤ n′, σ ∈ An, η ∈ An′ such that Γη ⊂ Ωσ, it is possible to define the trace of
v ∈ W 1,q(Ωσ) on Γη. The trace operator on Γη is bounded from W 1,q(Ωσ) to Lq(Γη), and one can define the
closed subspace of W 1,q(Ωσ):

Vq(Ωσ) = {v ∈W 1,q(Ωσ) s.t. v|Γσ = 0}. (11)
In the case q = 2, the spaces are Hilbert spaces, and we use the special notation Hp(Ω0) = W p,2(Ω0) and
V(Ωσ) = V2(Ωσ).

Finally, we shall also use the Cartesian product spaces W p,q(Ωn) =
∏
σ∈An

W p,q(Ωσ), with the norm
‖v‖Wp,q(Ωn) = (

∑
σ∈An

‖v|Ωσ‖qWp,q(Ωσ))
1/q. The restriction of v ∈W p,q(Ω0) to Ωn belongs to W p,q(Ωn) and its

trace on Γn belongs to Lq(Γn) =
∏
σ∈An

Lq(Γσ).
In what follows, for a function u integrable on Γσ, σ ∈ An, n ≥ 0, the notation 〈u〉Γσ will be used for the

mean value of u on Γσ.
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2 2

8

4

Figure 2. Left: the set Q̂0. Right: the open set ω0 (only the longest fractures are displayed).

We will also use the notation � to indicate that there may arise constants in the estimates, which are
independent of the index n in Ωn or Y n, or the index σ in Ωσ.

3.1. Poincaré’s inequality and consequences

Theorem 1 (Poincaré’s inequality). For any u ∈ Vq(Ω0),

‖u‖Lq(Ω0) ≤ 8q−
1
q ‖∇u‖Lq(Ω0). (12)

Proof. The proof is done by explicitly constructing a measure preserving and one to one mapping from Ω0 onto
the set ω0 displayed in Figure 2. The set ω0 is obtained by removing an infinite number of vertical segments
from the rectangle (−1, 1)× (0, 8). It can be constructed by assembling translated/dilated copies of the set Q̂0

displayed on the left of Figure 2. For the reader’s ease, the details of the proof are postponed to Section 8. �

Corollary 1. There exists a positive constant C such that for all u ∈ W 1,q(Ω0),

‖u‖qLq(Ω0) ≤ C
(
‖∇u‖qLq(Ω0) + ‖u|Γ0‖qLq(Γ0)

)
. (13)

Proof. Define W 1− 1
q ,q(Γ0) as the space of the traces on Γ0 of the functions belonging to W 1,q(Y 0), endowed

with the norm
‖u‖

W
1− 1

q
,q

(Γ0)
= inf

v∈W 1,q(Y 0),v|Γ0=u
‖v‖W 1,q(Y 0). (14)

It is a classical result that for all v ∈W 1,q(Y 0),

‖v|Γ0‖
W

1− 1
q

,q
(Γ0)

�
(
‖∇v‖qLq(Y 0) + ‖v|Γ0‖qLq(Γ0)

) 1
q

. (15)

Moreover there exists a continuous lifting operator L: W 1− 1
q ,q(Γ0) to W 1,q(Y 0) such that ∀v ∈ W 1− 1

q ,q(Γ0),
(Lv)|Γ1 = 0, and

‖Lv‖W 1,q(Y 0) � ‖v‖
W

1− 1
q

,q
(Γ0)

. (16)

For u ∈W 1,q(Ω0), calling H(u) the function defined in Ω0 by extending L(u|Γ0) by 0 outside Y 0, we have that
u−H(u) ∈ Vq(Ω0), and from (12), (15) and (16),

‖u−H(u)‖Lq(Ω0) ≤ 8q−
1
q ‖∇(u−H(u))‖Lq(Ω0) ≤ 8q−

1
q
(‖∇u‖Lq(Ω0) + ‖∇(H(u))‖Lq(Ω0)

)
� ‖∇u‖Lq(Ω0) + ‖u|Γ0‖

W
1− 1

q
,q

(Γ0)

� ‖∇u‖Lq(Ω0) + ‖u|Γ0‖Lq(Γ0).

We obtain (13) from the previous inequality, using (15) and (16) again. �
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Remark 3. Results similar to Corollary 1 can be proved, for instance: there exists a positive constant C such
that for all u ∈W 1,q(Ω0),

‖u‖qLq(Ω0) ≤ C
(
‖∇u‖qLq(Ω0) + |〈u〉Γ0 |q

)
. (17)

By a simple scaling argument, we obtain from (13) the

Corollary 2. There exists a positive constant C such that for all integer n ≥ 0, and for all σ ∈ An, for all
u ∈W 1,q(Ωσ), (Ωσ is defined in (8))

‖u‖qLq(Ωσ) ≤ C
(
2−nq‖∇u‖qLq(Ωσ) + 2−n‖u|Γσ‖qLq(Γσ)

)
, (18)

where Γσ is defined by (10), and for all u ∈ W 1,q(Ωn)

‖u‖qLq(Ωn) ≤ C
(
2−nq‖∇u‖qLq(Ωn) + 2−n‖u|Γn‖qLq(Γn)

)
. (19)

Lemma 1. There exists a positive constant C such that for all u ∈W 1,q(Ω0), for all N ≥ 0,

‖u‖qLq(ΩN ) ≤ C2−N
(
‖∇u‖qLq(Ω0) + ‖u|Γ0‖qLq(Γ0)

)
. (20)

Proof. For σ ∈ An, we use a trace inequality on Mσ(F1, F2)(Y 0): for a constant C independent on n, we have

2n‖u|Mσ(F1,F2)(Γ1)‖qLq(Mσ(F1,F2)(Γ1)) ≤ C‖∇u‖qLq(Mσ(F1,F2)(Y 0)) + 2n‖u|Γσ‖qLq(Γσ), (21)

because Γ1 and Γ0 (resp. Mσ(F1, F2)(Γ1) and Γσ = Mσ(F1, F2)(Γ0)) have the same measures. Summing (21)
over σ ∈ An, we obtain that

2n‖u|Γn+1‖qLq(Γn+1) ≤ C
∑
σ∈An

‖∇u‖qLq(Mσ(F1,F2)(Y 0)) + 2n‖u|Γn‖qLq(Γn). (22)

Multiplying (22) by 2−n and summing up from n = 0 to N − 1, we obtain that

‖u|ΓN‖qLq(ΓN ) ≤ C
(
‖∇u‖qLq(Y N−1) + ‖u|Γ0‖qLq(Γ0)

)
.

Substituting this into (19), we obtain (20). �

Theorem 2 (compactness). The imbedding of W 1,q(Ω0) in Lq(Ω0) is compact.

Proof. From (20), we have ‖u − 1Y Nu‖Lq(Ω0) ≤ C2−
N
q ‖u‖W 1,q(Ω0). On the other hand, the imbedding of

W 1,q(Y N ) in Lq(Y N ) is compact. Combining the previous two remarks yields the desired result. �

3.2. Extensions and traces

3.2.1. The main extension result

We aim at constructing an extension operator mapping a function defined on Ω0 to a function defined in a
simple polygonal domain Ω̂0. We choose Ω̂0 as the trapezoidal domain with vertices (− 3

2 , 0) , (3
2 , 0), (−3, 6),

and (3, 6). Note that Ω0 ⊂ Ω̂0.
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We know that there does not exist ε > 0 and δ > 0 such that Ω0 is a (ε, δ) domain (see [9,10,17]). Therefore,
from [9], (Thms. 1 and 3), there must exist an integer p and a real number q, 1 ≤ q ≤ ∞, such that there
does not exist a bounded extension operator from W p,q(Ω0) to W p,q(Ω̂0). In fact, it is very easy to see that
there is no bounded extension operator from H1(Ω0) to H1(Ω̂0): indeed it is possible to construct a function
u ∈ H1(Ω0) such that

u(x) = 1, x ∈ F1(Ω0),
u(x) = 0, x ∈ F2(Ω0).

Note that ∆, the open segment of the straight line joining the points (0, 6) and (− 7
4 , 3), is contained in Ω0,

(indeed the whole triangle {x : 2x1 − x2 < −6, 3x1 − 2x2 > −12, 3 < x2} is contained in Ω0). Similarly, ∆′,
the open segment of the straight line joining the points (0, 6) and (7

4 , 3), is contained in Ω0 (the whole triangle
{x : −2x1 − x2 < −6, −3x1 − 2x2 > −12, 3 < x2} is contained in Ω0). It is clear that u|∆ = 1 and that
u|∆′ = 0. If there existed a bounded extension J from H1(Ω0) to H1(Ω̂0), then we would have J (u)|∆ = 1 and
J (u)|∆′ = 0, in contradiction with the fact that J (u) ∈ H1(Ω̂0).

The previous observation indicates that the following extension result is in some sense optimal:

Theorem 3. There exists an extension operator J bounded from W 1,q(Ω0) to W 1,q(Ω̂0), for all q, 1 ≤ q < 2.

Proof. Since the proof of Theorem 3 is rather long, we postpone it to Section 9. �

Remark 4. Of course, since Ω0 is a bounded domain, the extension operator J is bounded from H1(Ω0) to
W 1,q(Ω̂0), for q, 1 ≤ q < 2.

As a consequence of Theorem 3, we have the Sobolev imbeddings:

Proposition 1 (Sobolev imbeddings). Let q be a real number such that 1 ≤ q < 2, we have the continuous
imbeddings:

W 1,q(Ω0) ⊂ Lp(Ω0), ∀p, 1 ≤ p ≤ q∗, q∗ =
2q

2 − q
,

and the imbedding is compact if p < q∗.
Furthermore, for all q, p, 1 ≤ q < 2, 1 ≤ p ≤ q∗, there exists a constant C such that for all N ≥ 0,

u ∈W 1,q(ΩN ),

‖u‖p
Lp(ΩN )

≤ C
(
2

2N(p−q)−qpN
q ‖∇u‖p

Lq(ΩN )
+ 2

N(p−2q)
q ‖u‖p

Lq(ΓN )

)
. (23)

For all real number p, 1 ≤ p <∞, H1(Ω0) ⊂ Lp(Ω0) with continuous and compact imbedding.

3.2.2. Density results

We denote with C∞(Ω0) (resp. C∞(Ω̂0)) the space of the restrictions to Ω0 (resp. Ω̂0) of the functions in

C∞(R2). We call R : C∞(Ω̂0) → C∞(Ω0) the operator which maps v ∈ C∞(Ω̂0) to its restriction on Ω0.

Theorem 4. For q, 1 ≤ q < 2, there exist a constant c and a sequence of linear operators (Sn)n∈N from
W 1,q(Ω0) to C∞(Ω̂0) such that

∀u ∈ W 1,q(Ω0), ‖(R ◦ Sn)(u)‖W 1,q(Ω0) ≤ ‖Snu‖W 1,q(Ω̂0) ≤ c‖u‖W 1,q(Ω0), (24)

and

∀u ∈W 1,q(Ω0), lim
n→∞ ‖u− (R ◦ Sn)(u)‖W 1,q(Ω0) = 0. (25)

Therefore, C∞(Ω0) is dense in W 1,q(Ω0).
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Proof. We know that for all q, 1 ≤ q < 2, (in fact, this is true for all q, 1 ≤ q < ∞), C∞(Ω̂0) is dense in
W 1,q(Ω̂0) and that there exists a sequence of linear operators (Ŝn)n∈N from W 1,q(Ω̂0) to C∞(Ω̂0) such that

∀v ∈W 1,q(Ω̂0), lim
n→∞ ‖v − Ŝnv‖W 1,q(Ω̂0) = 0,

and for a constant c,
∀v ∈ W 1,q(Ω̂0), ‖Ŝnv‖W 1,q(Ω̂0) ≤ c‖v‖W 1,q(Ω̂0).

Consider an extension operator J as in Theorem 3. The operators Sn = Ŝn ◦ J answer the question. �
3.2.3. Traces

Recall that if u ∈ C∞(Ω̂0), then the trace of R(u) on Γ∞ coincides with the trace of u on Γ∞.
Take q, 1 < q and call N q

m the mapping

N q
m : W 1,q(Ω0) → R+, N q

m(v) = ‖v|Γm‖qLq(Γm). (26)

It is easy to check the following estimate: for all integers n,m, n > m ≥ 0 and for all v ∈W 1,q(Ω0),∣∣∣‖v|Γm+1‖qLq(Γm+1) − ‖v|Γn+1‖qLq(Γn+1)

∣∣∣ ≤ C2(1−q)m‖∇v‖qLq(Y n\Y m). (27)

Estimate (27) shows that for any v ∈W 1,q(Ω0), (N q
m(v))m∈N is a Cauchy sequence in R+ and that it converges

to a real number N q
∞(v) as m tends to infinity. It is an easy matter to prove the following

Lemma 2. Let q be a real number such that 1 < q. The mapping v �→ N q∞(v) is homogeneous of degree q.
There exists a constant C such that for all v ∈W 1,q(Ω0),

N q
∞(v) ≤ C‖v‖qW 1,q(Ω0). (28)

For v ∈ C∞(Ω0),

N q
∞(v) =

1
3
‖v|Γ∞‖qLq(Γ∞). (29)

Theorem 5. Let q be a real number such that 1 < q < 2. The trace operator on Γ∞ defined on C∞(Ω0) can be
extended to a unique continuous operator from W 1,q(Ω0) onto W 1− 1

q ,q(Γ∞).

Proof. Consider a sequence of operators (Sn)n∈N as in Theorem 4. Let u be a function in W 1,q(Ω0). The
function Sn(u) has a trace on Γ∞, belonging to W 1− 1

q ,q(Γ∞), and we have from (24) that for a constant c
(independent of n)

‖(Sn(u))|Γ∞‖
W

1− 1
q

,q
(Γ∞)

≤ c‖u‖W 1,q(Ω0).

We recall that (R ◦ Sn)(u)|Γ∞ = (Sn(u))|Γ∞ , so the same estimate holds with (R ◦ Sn)(u)|Γ∞ on the left
hand side.

Therefore, one can extract a subsequence Sφ(n) such that Sφ(n)(u)|Γ∞ converges weakly in W 1− 1
q ,q(Γ∞) and

strongly in Lq(Γ∞) to some function w ∈W 1− 1
q ,q(Γ∞). There remains to prove that w is unique (i.e. the whole

sequence converges), and that w depends only on u and not on the sequence Sn.
Assume that there exist two subsequences (Sφ(n)(u))n∈N and (Sψ(n)(u))n∈N whose traces on Γ∞ converge

respectively to w and w′ weakly in W 1− 1
q ,q(Γ∞) and strongly in Lq(Γ∞). We have from (29) that

‖w − w′‖qLq(Γ∞) = lim
n→∞ ‖((R ◦ Sφ(n))(u))|Γ∞ − ((R ◦ Sψ(n))(u))|Γ∞‖qLq(Γ∞)

= 3 lim
n→∞N q

∞
(
(R ◦ Sφ(n))(u) − (R ◦ Sψ(n))(u)

)
.
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From (28),

‖w − w′‖qLq(Γ∞) ≤ 3C lim sup
n→∞

‖(R ◦ Sφ(n))(u) − (R ◦ Sψ(n))(u)‖qW 1,q(Ω0),

and we conclude from (25) that

‖w − w′‖qLq(Γ∞) = 0,

and therefore w = w′.
The same argument leads to the fact that w does not depend on the sequence of operators (Sn)n∈N, and

that if u ∈ C∞(Ω0), then w = u|Γ∞ . It can also be proved by density that if u = û|Ω0 , û ∈ W 1,q(Ω̂0), then w
coincides with the usual trace of û on Γ∞.

Therefore, we have constructed a continuous linear operator from W 1,q(Ω0) to W 1− 1
q ,q(Γ∞), which extends

the trace operator defined on C∞(Ω0), and is unique by density. It is surjective because the trace operator from
W 1,q(Ω̂0) to W 1− 1

q ,q(Γ∞) is surjective. �

Remark 5. Of course, for two real numbers 1 < q < q′ < 2, the restriction to W 1,q′(Ω0) of the trace operator
defined above on W 1,q(Ω0), coincides with the trace operator defined above on W 1,q′(Ω0), from the density of
C∞(Ω0) in both Sobolev spaces.

For any q, 1 < q < 2 and u ∈W 1,q(Ω0), we shall denote with u|Γ∞ the trace of u on Γ∞ defined in Theorem 5.

Proposition 2. Consider p, q in (1, 2) such that 4/3 < p, q which ensures that W 1− 1
p ,p(Γ∞) ⊂ L2(Γ∞) and

W 1− 1
q ,q(Γ∞) ⊂ L2(Γ∞). For all u ∈W 1,p(Ω0), for all g ∈W 1,q(Ω0),

lim
n→∞

∫
Γn

u|Γng|Γn =
1
3

∫
Γ∞

u|Γ∞g|Γ∞ . (30)

Proof. We skip the proof for brevity. The main ingredient is the density of C∞(Ω0) in both Sobolev spaces. �

For what follows, we define a continuous trace operator from H1(Ω0) on L2(Γ∞):

Definition 1. We fix r, 4/3 < r < 2, and we have that W 1− 1
r ,r(Γ∞) is (compactly) imbedded in L2(Γ∞). We

call ir the imbedding from H1(Ω0) to W 1,r(Ω0) and, for u ∈ H1(Ω0), we define γ(u) = (ir(u))|Γ∞ . It is clear
that γ is a continuous operator from H1(Ω0) to L2(Γ∞), which extends the trace operator defined on C∞(Ω0).

Remark 6.

• From the fact that H1(Ω0) ⊂W 1,q(Ω0), for all 1 < q < 2, and from Remark 5, the definition of γ does
not depend on r.

• The operator γ may not be the only continuous operator from H1(Ω0) to L2(Γ∞), extending the trace
operator on C∞(Ω0), because C∞(Ω0) is not dense in H1(Ω0).

• The operator γ has the following property: for all g ∈ W 1,p(Ω0) with 4/3 < p < 2, and for all
u ∈ H1(Ω0),

lim
n→∞

∫
Γn

u|Γng|Γn =
1
3

∫
Γ∞

γ(u)g|Γ∞ . (31)

• In the same manner, for any q ≥ 1, it is possible to define a continuous operator from H1(Ω0) to
Lq(Γ∞), which extends the trace operator defined on C∞(Ω0).



P.D.E. IN DOMAINS WITH FRACTAL BOUNDARIES 633

4. Poisson problems

4.1. Definition, existence and uniqueness results

The goal of this section is to study some Poisson problems in Ω0 (the partial differential equation is −∆w = 0)
with

• Dirichlet boundary condition on Γ0;
• homogeneous Neumann boundary condition on Σ0;
• Neumann boundary condition on Γ∞.

Since the boundary of Ω0 is very irregular, a good way to give sense to these problems (especially to the
Neumann boundary condition on Γ∞) is to use variational or weak formulations.

More precisely, take g ∈ L2(Γ∞) and u ∈ H
1
2 (Γ0). We are interested in the variational problem: find

w ∈ H1(Ω0) such that
w|Γ0 = u,∫

Ω0
∇w · ∇v =

1
3

∫
Γ∞

gγ(v), ∀v ∈ V(Ω0). (32)

This function is a weak solution to
−∆w = 0, in Ω0,

w = u, on Γ0,
∂w
∂n = 0, on Σ0,

with an additional Neumann condition on Γ∞ which can only be written in a variational setting (to the best of
our knowledge).

All what follows can be generalized to the equation −div(χ∇w) = 0, where χ is a symmetric and positive
definite constant tensor.

Proposition 3. For g ∈ L2(Γ∞) and u ∈ H
1
2 (Γ0), problem (32) has a unique solution.

Proof. The linear form v �→ ∫Γ∞ gγ(v) is continuous on H1(Ω0). Therefore, from Theorem 1, problem (32) has
a unique solution. �

Remark 7. In view of the fourth point of Remark 6, it is possible to consider in (32) a more general Neumann
datum g on Γ∞, i.e. g ∈ Lp(Γ∞) with p > 1 arbitrary.

The following result says that the solution to (32) can be approximated by solving boundary value problems
in the polygonal domains Y n, n→ ∞, with Neumann boundary condition on ∂Y n\Γ0:

Proposition 4. Assume that g ∈ W 1− 1
p ,p(Γ∞), for some p, 4/3 < p < 2. Then g ∈ L2(Γ∞) and there exists

g̃ ∈ W 1,p(Ω̂0) such that g = g̃|Γ∞ . Take u ∈ H
1
2 (Γ0). Let w be the solution to (32) and wn ∈ H1(Y n) be the

solution to:
wn|Γ0 = u∫

Y n

∇wn · ∇v =
∫

Γn+1
g̃|Γn+1v|Γn+1 , ∀v ∈ V(Y n), (33)

we have
lim
n→∞ ‖w|Y n − wn‖H1(Y n) = 0.

Proof. Calling en the error en = w|Y n − wn ∈ V(Y n), we see that ∀v ∈ V(Ω0),∫
Y n

∇en · ∇v =
(

1
3

∫
Γ∞

gγ(v) −
∫

Γn+1
g̃|Γn+1v|Γn+1

)
−
∫

Ωn+1
∇w · ∇v. (34)

From Remark 6, 1
3

∫
Γ∞ gγ(v) = limn→∞

∫
Γn+1 g̃|Γn+1v|Γn+1 , so the first term in the right hand side tends to

zero. Moreover, Proposition 1 shows that for all q, 1 < q < p, the function g̃v belongs to W 1,q(Ω0), and it is
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easy to check by a scaling argument that, for all m < m′,∣∣∣∣∫
Γm+1

g̃|Γm+1v|Γm+1 −
∫

Γm′+1
g̃|Γm′+1v|Γm′+1

∣∣∣∣ � 2m
1−q

q ‖∇(g̃v)‖Lq(Y m′\Y m).

Since g̃ is fixed, this implies that∣∣∣∣∫
Γm+1

g̃|Γm+1v|Γm+1 −
∫

Γm′+1
g̃|Γm′+1v|Γm′+1

∣∣∣∣ � 2m
1−q

q ‖v‖H1(Ω0).

Thus, the sequence of continuous linear forms on V(Ω0): v �→ ∫Γn+1 g̃|Γn+1v|Γn+1 is a Cauchy sequence in the
dual of V(Ω0), therefore,

lim
n→∞ sup

v∈V(Ω0),v �=0

∣∣ 1
3

∫
Γ∞ gγ(v) − ∫Γn+1 g̃|Γn+1v|Γn+1

∣∣
‖v‖H1(Ω0)

= 0. (35)

We also have that

lim
n→∞ sup

v∈V(Ω0),v �=0

∫
Ωn+1 ∇w · ∇v
‖v‖H1(Ω0)

= 0. (36)

From (34), (35) and (36), we deduce the desired result. �
Remark 8. Questioning the intrinsic character of (32) is natural since there may be other continuous trace
operators γ from H1(Ω0) to L2(Γ∞). Proposition 4 shows that if g = g̃|Γ∞ with g̃ ∈ W 1,p(Ω̂0), for some p,
4/3 < p < 2, then the solution to (32) can be approximated by solving the boundary value problems in Y n:

−∆wn = 0, in Y n,

wn = u, on Γ0,

∂wn

∂n = g̃, on Γn+1,

∂wn

∂n = 0, on ∂Y n\(Γ0 ∪ Γn+1).

This gives an intrinsic meaning to problem (32), under the last assumption on g.

5. Transparent boundary conditions for problem (32)

5.1. General orientation

The following is part of a program consisting of approximating the restriction to the truncated domain Y n

of w, the solution to (32), to the best possible accuracy. This is important, because, in numerical simulations,
it is not possible to completely represent the domain Ω0, for this would imply infinite memory and computing
time. For example, one can only look for the restriction of w to Y 0, (i.e. n = 0).

In the following, we will restrict ourselves to the simpler case when g = 0 (homogeneous Neumann boundary
conditions on Γ∞). In this case, it is possible to find the restriction of w to Y n, but for that, we need to use
nonlocal operators on Γσ, σ ∈ An+1. We will see that these operators can be called Dirichlet to Neumann
operators. They will be computed, or more precisely approximated up to an arbitrary accuracy, by taking
advantage of the self-similarity in the geometry. The new boundary conditions on Γn+1 can be called transparent
boundary conditions.

Moreover, as we shall see in the beginning of Section 5.2.3, solving the new boundary value problem in Y n

is equivalent to successively solving 1 + 2 + · · · + 2n boundary value problems in Y 0, (this is very useful for
numerical simulations). In this paper, we stay at the continuous level: numerical methods and results are
presented in [2].
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The general case g �= 0 can be handled too: the method uses the fact that if g is a Haar wavelet on Γ∞

(working with Haar wavelets is very natural with the chosen geometry), then the restriction of w to Y n can be
computed with an arbitrary accuracy by using a transparent boundary condition, obtained by taking advantage
of the self-similarity. Then, for a general g, we expand g on the basis of Haar wavelets, and we use the linearity
to compute w. This program, in the case g �= 0, is discussed in [1], since its complete description is too long for
the present paper. In [1], numerical results are presented too.
Here, we focus on the case when g = 0.

5.2. The case when the Neumann data on Γ∞ is zero

5.2.1. Harmonic lifting of functions defined on Γ0

For a function u ∈ H
1
2 (Γ0), we define the harmonic lifting H0(u) ∈ H1(Ω0) of u by: the trace of H0(u) on Γ0

is u, and for all v ∈ V(Ω0), ∫
Ω0

∇H0(u) · ∇v = 0. (37)

It is clear that H0 is a bounded operator from H
1
2 (Γ0) to H1(Ω0).

Similarly, for an integer n > 0 and for σ ∈ An, one can define the lifting operator Hσ from H
1
2 (Γσ) to

H1(Ωσ): for all u ∈ H
1
2 (Γσ), the trace of Hσ(u) on Γσ is u and for all v ∈ V(Ωσ),

∫
Ωσ ∇Hσ(u) · ∇v = 0. It is

easy to verify that, for all u ∈ H
1
2 (Γσ),

Hσ(u) ◦Mσ(F1, F2) = H0(u ◦Mσ(F1, F2)). (38)

The following result will be useful to study the asymptotic behavior of ‖∇H0(u)‖L2(Ωn) as n tends to ∞.

Lemma 3. There exists a positive constant C such that, for all u ∈ H
1
2 (Γ0),

‖∇H0(u)‖L2(Y 0) ≥ C‖∇H0(u)‖L2(Ω0). (39)

Proof. It is enough to prove (39) for all u ∈ H
1
2 (Γ0) such that

∫
Γ0 u = 0, because H0(1Γ0) = 1Ω0 .

From the classical Poincaré-Wiertinger inequality in Y 0:

‖v‖L2(Y 0) � ‖∇v‖L2(Y 0), ∀v ∈ H1(Y 0) s.t.
∫

Γ0
v|Γ0 = 0,

we deduce that ‖u‖
H

1
2 (Γ0)

� ‖∇H0(u)‖L2(Y 0). On the other hand, from the continuity of H0, we have that

‖∇H0(u)‖L2(Ω0) � ‖u‖
H

1
2 (Γ0)

. The desired result follows from the last two estimates. �

Lemma 4. There exists a constant ρ < 1 such that for all u ∈ H
1
2 (Γ0),∫

Ω1
|∇H0(u)|2 ≤ ρ

∫
Ω0

|∇H0(u)|2. (40)

Proof. The result is a direct consequence of Lemma 3. �

Theorem 6. For all u ∈ H
1
2 (Γ0), ∫

ΩN

|∇H0(u)|2 ≤ ρN
∫

Ω0
|∇H0(u)|2, (41)

where the constant ρ < 1 has been introduced in Lemma 4.
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Proof. The desired result will be proved once we have established that∫
Ωn+1

|∇H0(u)|2 ≤ ρ

∫
Ωn

|∇H0(u)|2. (42)

For that, we realize that for all σ ∈ An, the function H0(u)
∣∣
Ωσ ◦ Mσ(F1, F2) defined on Ω0 is the harmonic

lifting of a function in H
1
2 (Γ0), namely

H0(u)
∣∣
Ωσ ◦Mσ(F1, F2) = H0

(H0(u)
∣∣
Γσ ◦Mσ(F1, F2)

)
.

From this, we can use (40), and see that∫
Ω1

∣∣∇ (H0(u)
∣∣
Ωσ ◦Mσ(F1, F2)

)∣∣2 ≤ ρ

∫
Ω0

∣∣∇ (H0(u)
∣∣
Ωσ ◦Mσ(F1, F2)

)∣∣2 ,
and performing the change of variables y = Mσ(F1, F2)(x), we obtain∫

Mσ(F1,F2)(Ω1)

∣∣∇H0(u)
∣∣2 ≤ ρ

∫
Ωσ

∣∣∇H0(u)
∣∣2 .

Summing over σ ∈ An, we get (42). From (42), the desired result is proved by induction. �

Remark 9. Theorem 6 can be explained intuitively by the fact that when we go toward the small structures
of the ramified domain, diffusion becomes more and more important, and the solution to the Poisson problem
gets exponentially dampened. As we shall see later, the same phenomenon occurs with the Helmholtz equation.

From the general theory of boundary value problems, see [7] for example, we have the following regularity:

Lemma 5 (local regularity). For all u ∈ H
1
2 (Γ0), for all open bounded domain O strongly contained in R×(0, 6),

and for all ε, 0 < ε < 5
3 , the restriction of H0(u) to Ω0 ∩ O belongs to H

5
3−ε(Ω0 ∩O).

5.2.2. The Dirichlet-Neumann operator and transparent boundary conditions

Call
(
H

1
2 (Γ0)
)′

the topological dual space of H
1
2 (Γ0) and consider the Dirichlet-Neumann operator T 0:

H
1
2 (Γ0) �→

(
H

1
2 (Γ0)
)′

〈T 0u, v〉 =
∫

Ω0
∇H0(u) · ∇H0(v). (43)

We remark that

〈T 0u, v〉 =
∫

Ω0
∇H0(u) · ∇ṽ, (44)

for any function ṽ ∈ H1(Ω0) such that ṽ|Γ0 = v.
In fact, T 0u is the normal derivative of H0(u) on Γ0. This is why T 0 is called a Dirichlet-Neumann operator.
The operator T 0 is bounded, self-adjoint and positive semi-definite. It is clear that T 01 = 0. Call V the

closed subspace of H
1
2 (Γ0):

V =
{
v ∈ H

1
2 (Γ0),

∫
Γ0
v = 0
}
. (45)

From (14) and from (17), we see that T 0 is coercive on V , i.e. there exists a positive constant α such that

∀v ∈ V, 〈T 0v, v〉 ≥ α‖v‖2

H
1
2 (Γ0)

. (46)
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Similarly, for σ ∈ An, one can define the operators T σ, from H
1
2 (Γσ) (see (8) and (10)) to their respective duals

by 〈T σu, v〉 =
∫
Ωσ ∇Hσ(u) ·∇Hσ(v) =

∫
Ωσ ∇Hσ(u) ·∇ṽ, for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v. From

the self-similarity of Ω0 and (38), we have that

∀u, v ∈ H
1
2 (Γσ), 〈T σu, v〉 = 〈T 0(u ◦Mσ(F1, F2)), (v ◦Mσ(F1, F2))〉, (47)

where the duality pairing on the left (resp. right) hand side of (47) is the duality (H
1
2 (Γσ))′- H

1
2 (Γσ) (resp.

(H
1
2 (Γ0))′- H

1
2 (Γ0)).

Lemma 6. For all u ∈ H
1
2 (Γ0), for n ≥ 1, the restriction of H0(u) to Y n−1 is the solution to the following

boundary value problem: find û ∈ H1(Y n−1) such that û|Γ0 = u and ∀v ∈ V(Y n−1),∫
Y n−1

∇û · ∇v +
∑
σ∈An

〈
T 0 (û|Γσ ◦Mσ(F1, F2)) , v|Γσ ◦Mσ(F1, F2)

〉
= 0. (48)

Furthermore, ∀v ∈ H1(Y n−1),

〈T 0u, v|Γ0〉 =
∫
Y n−1

∇û · ∇v +
∑
σ∈An

〈T σû|Γσ , v|Γσ 〉

=
∫
Y n−1

∇û · ∇v +
∑
σ∈An

〈
T 0(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
.

(49)

Proof. Follows from (38) and (47). �

Remark 10. Note that the boundary value problem (48) is well posed because the bilinear form on the left
hand side is continuous, symmetric and coercive on V(Y n−1).

We see that, for a fixed arbitrary integer n > 0 (for example n = 1), once the nonlocal operator T 0 is known,
the restriction of H0(u) to the truncated domain Y n−1 can be found by solving the boundary value problem (48)
in Y n−1 with a boundary condition involving T 0. It is important to understand that (48) is a Poisson problem
in Y n−1, with a Dirichlet boundary condition on Γ0, a homogeneous Neumann condition on ∂Y n−1\(Γ0 ∪ Γn),
and for each σ ∈ An,

∂û

∂n
+ T σ û|Γσ = 0, on Γσ, (50)

and all the operators T σ, σ ∈ An are obtained readily from T 0 by (47). Equation (50) is a nonlocal boundary
condition, called a transparent boundary condition. Furthermore, solving (48) is equivalent to successively
solving 1 + 2 + · · · + 2n−1 boundary value problems in Y 0: indeed, an algorithm for solving (48) is as follows:

Algorithm 1.

• Loop: for p = 0 to n− 1,
– Loop : for σ ∈ Ap, (at this point, û|Γσ is known)

∗ Solve the boundary value problem in Y 0: find w ∈ H1(Y 0) such that w|Γ0 = û|Γσ ◦
Mσ(F1, F2) and

∫
Y 0

∇w · ∇v +
2∑
i=1

〈
T 0(w|Fi(Γ0) ◦ Fi), v|Fi(Γ0) ◦ Fi

〉
= 0, ∀v ∈ V(Y 0).

∗ Set û|Mσ(F1,F2)(Y 0) = w ◦ (Mσ(F1, F2))
−1.
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Let us stress the fact that, in the numerical simulations of H0(u)|Y n−1 , Algorithm 1 saves solving discrete
boundary value problems in the domain Y n−1, which is complicated when n is large. This is why the transparent
boundary condition is well suited for numerical simulations, as soon as T 0 or a good approximation to T 0 is
known. This program has been carried out successfully with finite elements and the numerical method and its
results are presented in [2], for both the Laplace and Helmholtz equations.

5.2.3. Approximation to the Dirichlet-Neumann operator

Orientation. We have seen above that if T 0 or a good approximation of T 0 is available, then the restriction
of H0(u) to Y n−1 can be approximated by a standard discrete method for (48), which consists of successively
solving 1+2+ · · ·+2n−1 discrete boundary value problems in Y 0 with a transparent boundary condition on Γ1.

There remains the computation of T 0, or at least its accurate approximation: for that, we will make use
of (49), in the case n = 1.

The operator T 0 can be constructed as the limit of an inductive sequence. Lemma 6, in the case
n = 1, leads us to introduce the cone O of self adjoint, positive semi-definite, bounded linear operators from
H

1
2 (Γ0) to its dual, vanishing on the constants, and the mapping M : O �→ O defined as follows: for Z ∈ O,

define M(Z) by

∀u ∈ H
1
2 (Γ0), ∀v ∈ H1(Y 0), 〈M(Z)u, v|Γ0 〉 =

∫
Y 0

∇û · ∇v +
2∑
i=1

〈
Z(û|Fi(Γ0) ◦ Fi), v|Fi(Γ0) ◦ Fi

〉
, (51)

where û ∈ H1(Y 0) is such that û|Γ0 = u and

∀v ∈ V(Y 0),
∫
Y 0

∇û · ∇v +
2∑
i=1

〈
Z(û|Fi(Γ0) ◦ Fi), v|Fi(Γ0) ◦ Fi

〉
= 0. (52)

Remark 11. From the definition of M, it can be seen, (see (54) and (55) below), that for all p ≥ 1, if w satisfies
the Poisson problem ∆w = 0 in Y p−1, with ∂w

∂n = 0 on ∂Y p−1\(Γ0 ∪ Γp), and with ∂w
∂n |Γσ ◦ Mσ(F1, F2) =

−2pZ(w|Γσ ◦Mσ(F1, F2)), σ ∈ Ap, then ∂w
∂n |Γ0 = Mp(Z)(w|Γ0 ).

Lemma 6 shows that T 0 is a fixed point of M. In fact, we have the

Theorem 7. The operator T 0 is the unique fixed point of M. Moreover, for all Z ∈ O, there exists a positive
constant C such that, for all p ≥ 0,

‖M
p(Z) − T 0‖ ≤ Cρ

p
4 , (53)

where ρ, 0 < ρ < 1 is the constant appearing in Lemma 4.

Proof. It is easy to check by induction that

∀u ∈ H
1
2 (Γ0), ∀v ∈ H1(Y p−1),

〈Mp(Z)u, v|Γ0〉 =
∫
Y p−1

∇û · ∇v +
∑
σ∈Ap

〈Z(û|Γσ ◦Mσ(F1, F2)), (v|Γσ ◦Mσ(F1, F2))〉 , (54)

where û ∈ H1(Y p−1) is such that û|Γ0 = u and

∀v ∈ V(Y p−1),
∫
Y p−1

∇û · ∇v +
∑
σ∈Ap

〈Z(û|Γσ ◦Mσ(F1, F2)), (v|Γσ ◦Mσ(F1, F2))〉 = 0. (55)
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Therefore, for φ ∈ H
1
2 (Γ0),

〈(Mp(Z) − T 0)u, φ〉 = I + II + III,

I =
∫
Y p−1

∇(û−H0(u)) · ∇H0(φ),

II =
∑
σ∈Ap

〈
Z((û−H0(u))|Γσ ◦Mσ(F1, F2)),H0(φ)|Γσ ◦Mσ(F1, F2)

〉
,

III =
∑
σ∈Ap

〈
(Z − T 0)(H0(u))|Γσ ◦Mσ(F1, F2)),H0(φ)|Γσ ◦Mσ(F1, F2)

〉
.

In order to estimate I, II and III, we introduce Hp(û) ∈ H1(Ω0) defined by

Hp(û) =

{
û in Y p−1,

the harmonic lifting of û|Γp in Ωp.

It can be proved that for a constant C independent of p, ‖Hp(û)‖H1(Ω0) ≤ C‖û‖H1(Y p−1). Then

∫
Y p−1

|∇(û−H0(u))|2 +
∑
σ∈Ap

〈
Z((û−H0(u))|Γσ ◦Mσ(F1, F2)), (û −H0(u))|Γσ ◦Mσ(F1, F2)

〉
= −
∫
Y p−1

∇(Hp(û) −H0(u)) · ∇H0(u) −
∑
σ∈Ap

〈
Z((H0(u))|Γσ ◦Mσ(F1, F2)), (û −H0(u))|Γσ ◦Mσ(F1, F2)

〉
=
∫

Ωp

∇(Hp(û) −H0(u)) · ∇H0(u) −
∑
σ∈Ap

〈
Z((H0(u))|Γσ ◦Mσ(F1, F2)), (û−H0(u))|Γσ ◦Mσ(F1, F2)

〉

�
(∫

Ωp

|∇H0(u)|2
) 1

2
(∫

Ωp

|∇Hp(û) −∇H0(u)|2
) 1

2

� ρ
p
2 ‖∇H0(u)‖L2(Ω0)

(‖∇(H0(u))‖L2(Ωp) + ‖∇(Hp(û))‖L2(Ωp)

)
� ρ

p
2 ‖∇H0(u)‖L2(Ω0)

(‖H0(u)‖H1(Ω0) + ‖û‖H1(Y p−1)

)
� ρ

p
2 ‖u‖2

H
1
2 (Γ0)

,

where the constant hidden in the sign � depends on Z.
Because of the estimate written above, |I + II| � ρ

p
4 ‖u‖

H
1
2 (Γ0)

‖φ‖
H

1
2 (Γ0)

. Estimate (41) implies that

|III| � ρp‖u‖
H

1
2 (Γ0)

‖φ‖
H

1
2 (Γ0)

. Estimate (53) is proved. As a consequence, T 0 is the unique fixed point
of M. �

As a consequence of Theorem 7, it is simple to prove that for fixed n, if in Algorithm 1, T 0 is replaced with
Mp(Z), then the error on H0(u)|Y n−1 decays at least like ρ

p
4 as p tends to infinity. This behavior is observed in

the numerical tests presented in [2].
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6. Propagation problems and transparent boundary conditions

The goal of this section is to study the weak solutions of the Helmholtz equation that is satisfied by a class of
time-harmonic waves in the domain Ω0. The analysis of the problem uses the compact imbedding of H1(Ω0) in
L2(Ω0), see Theorem 2, and Fredholm’s alternative. Next, as in Section 5, we are going to introduce transparent
boundary conditions satisfied by the restriction of the solution to Y 0 (or Y n). We shall make extensive use of
self-similarity in order to design an approximation method for the Dirichlet-Neumann operator entering this
transparent condition. This method, which can be used for numerical simulations, is not as simple as the one
used for the Poisson problem, because the equation is not invariant by rescaling: as we go toward the finest
structures of the ramified domain, diffusion effects dominate and the wave is exponentially dampened. Besides,
this is precisely why the approximation of the Dirichlet-Neumann operator will be possible. In this paper, we
stay at the continuous level; related numerical methods and simulations are presented in [2].

6.1. The boundary value problem

For an integer n ≥ 0, and for σ ∈ An, given a real number k and u ∈ H
1
2 (Γσ), let us consider the variational

problem: find û ∈ H1(Ωσ) such that

û|Γσ = u and ∀v ∈ V(Ωσ),
∫

Ωσ

∇û · ∇v − k

∫
Ωσ

ûv = 0. (56)

If it exists, û is a weak solution to the Helmholtz equation ∆û+ kû = 0 in Ωσ.
Let us define the operator Lσk :

Lσk : V(Ωσ) �→ (V(Ωσ))′ , 〈Lσkw, v〉 =
∫

Ωσ

∇w · ∇v − k

∫
Ωσ

wv. (57)

A scaling argument yields that, for all σ ∈ An, v, w ∈ V(Ωσ),

〈Lσkw, v〉 =
〈
L0

k
4n

(w ◦Mσ(F1, F2)), v ◦Mσ(F1, F2)
〉
. (58)

Let us call (ker(Lσk))
◦ the closed subspace of H

1
2 (Γσ):

(ker(Lσk ))
◦ =

⎧⎨⎩u ∈ H
1
2 (Γσ) s.t.

∣∣∣∣∣∣
∀ũ ∈ H1(Ωσ) with ũ|Γσ = u,∫

Ωσ

∇ũ · ∇v − kũv = 0, ∀v ∈ ker(Lσk)

⎫⎬⎭ . (59)

From the geometrical self-similarity, it can be verified that for all σ ∈ An,

(ker(L0
k
4n

))◦ = {u ◦Mσ(F1, F2), u ∈ (ker(Lσk))
◦} . (60)

Theorem 2, the self-similarity of Ω0 and Fredholm’s alternative lead to

Proposition 5. For all n ∈ N, there exists a countable set Spn = {λp, p ∈ N} of positive numbers, with
λp ≤ λp+1 and limp→∞ λp = +∞ such that for σ ∈ An,

• for k ∈ R\Spn, the operator Lσk is one to one, with a bounded inverse;
• for all k ∈ Spn, ker(Lσk ) has a positive and finite dimension.

One can obtain a Hilbertian basis of V(Ωσ) by assembling bases of ker(Lσk ), k ∈ Spn.
We have

Spn = 4nSp0. (61)
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For u ∈ (ker(Lσk))
◦, (see (59)), there exists û ∈ H1(Ωσ) satisfying (56), and û is unique up to the addition of

functions in ker(Lσk ). Problem (56) defines an injective bounded operator Hσ
k

Hσ
k : (ker(Lσk))

◦ → H1(Ωσ)/ ker(Lσk), Hσ
k (u) = û mod (ker(Lσk )). (62)

Proof. Let us focus first on the case n = 0. The compact imbedding of H1(Ω0) in L2(Ω0), stated in Theorem 2,
implies the existence of Sp0 with the properties stated above. We have seen in Section 4 that 0 �∈ Sp0. Then,
for n > 0, identity (58) yields that Spn given by (61) has the properties stated above. The last statement of
Proposition 5 is a consequence of Fredholm’s alternative. �

Remark 12. In relation with Proposition 5, we know from (61) that for any k ∈ R, there exists a nonnegative
integer N(k) = min{n ∈ N such that ∀p ≥ n, ∀σ ∈ Ap, L

σ
k is coercive on V(Ωσ)}. We have N(k) = 0 if k ≤ 0

and N(k) ∼ log(k) as k → +∞.

From the geometrical self-similarity, it can be verified that for all σ ∈ An,

Hσ
k ◦Mσ = H0

k
4n
. (63)

Remark 13. One can prove the analogue of Lemma 4: there exist two positive constants k0 and µ < 1 such
that, for all k < k0, ker(L0

k) = {0} and for all u ∈ H
1
2 (Γ0), ‖H0

k(u)‖H1(Ω1) ≤ µ‖H0
k(u)‖H1(Ω0). From this, (63)

and Remark 12, we have the analogue of Theorem 6: for all u ∈ (ker(L0
k))

◦, ‖H0
k(u)‖H1(Ωp) decays exponentially

with p as p→ ∞.

6.2. The Dirichlet-Neumann operators and transparent boundary conditions

For σ ∈ An, n ≥ 0, the Dirichlet-Neumann operator T σk : (ker(Lσk ))
◦ �→ ((ker(Lσk))

◦)′ is defined by:
∀u, v ∈ (ker(Lσk ))

◦,

〈T σk u, v〉 =
∫

Ωσ

∇Hσ
k (u) · ∇ṽ − k

∫
Ωσ

Hσ
k (u)ṽ, (64)

for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v, where, when k ∈ Spn, Hσ
k (u) stands for any function in the

class Hσ
k (u). We have that, for all u, v ∈ (ker(Lσk ))

◦,

〈T σk u, v〉 =
〈
T 0

k
4n

(u ◦Mσ(F1, F2)) , v ◦Mσ(F1, F2)
〉
. (65)

For k /∈ Spn, T σk is a bounded self-adjoint operator from H
1
2 (Γσ) to its dual.

Lemma 7. The operator T σk is a perturbation of a bounded self-adjoint coercive operator from (ker(Lσk ))
◦ to

((ker(Lσk ))
◦)′ by a compact operator.

Proof. For a positive constant α, one may write, for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v,

〈T σk u, v〉 =
∫

Ωσ

∇Hσ
k (u) · ∇Hσ

k (u) + α

∫
Γσ

uv − k

∫
Ωσ

Hσ
k (u)Hσ

k (v) − α

∫
Γσ

uv. (66)

But from (13), we know that for α large enough, the operator T̂ σk :

〈T̂ σk u, v〉 =
∫

Ωσ

∇Hσ
k (u) · ∇Hσ

k (v) + α

∫
Γσ

uv − k

∫
Ωσ

Hσ
k (u)Hσ

k (v)

is coercive, whereas T σk − T̂ σk is clearly compact. �
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Lemma 8. For all u ∈ (ker(L0
k))

◦, the restriction û to Y n−1 of any function in the class H0
k(u) is a solution

to the following boundary value problem: for all σ ∈ An,

û|Γσ ∈ (ker(Lσk))
◦ (67)

and

û|Γ0 = u, and
∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈T σk û|Γσ , v|Γσ 〉 = 0, (68)

for all v ∈ V(Y n−1), such that for all σ ∈ An, v|Γσ ∈ (ker(Lσk))
◦. A solution to (67) and (68) can be extended

to a solution to (56) in a unique manner. Problem (67), (68) has a unique solution up to the addition of
restrictions of functions of ker(L0

k) to Y n−1. Furthermore, ∀v ∈ H1(Y n−1), such that v|Γ0 ∈ (ker(L0
k))

◦, and
for all σ ∈ An, v|Γσ ∈ (ker(Lσk))

◦,

〈T 0
ku, v|Γ0〉 =

∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈T σk û|Γσ , v|Γσ〉

=
∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈
T 0

k
4n

(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)
〉
.

(69)

Proof. We skip the proof that the restriction of a function in H0
k(u) to Y n−1 satisfies (67) and (68), since this

is easily seen. We aim at proving that each solution to (67) and (68) can be extended in a unique manner to a
solution of the original problem (56). This is clear if k

4n �∈ Sp0. Thus, we consider the case when k
4n ∈ Sp0.

The subspace ker(Lσk ) is finite dimensional. Furthermore, we can apply Holmgren’s unique continuation
theorem, see [21]: if v ∈ ker(Lσk) and if the normal derivative of v on Γσ is zero, then v = 0. Note that
∂v
∂n |Γσ = 0 if and only if the operator from H

1
2 (Γσ) to its dual: w �→ ∫

Ωσ ∇w̃ · ∇v − k
∫
Ωσ w̃v, where w̃ is any

lifting of w in H1(Ωσ), is zero.
If the dimension of ker(Lσk ) is d > 0, let (φσ,i)i=1,...,d be a basis of ker(Lσk). From the previous unique continu-

ation result, we see that ∂φσ,i

∂n |Γσ , i = 1, . . . , d are linearly independent. This implies that {(〈∂φσ,i

∂n |Γσ , ψ〉)i=1,...,d,

ψ ∈ H
1
2 (Γσ)} = Rd. Therefore, there exists a family (ψσ,i)i=1,...,d of linearly independent functions in H

1
2 (Γσ)

such that
∫
Ωσ ∇ψ̃σ,i · ∇φσ,j − k

∫
Ωσ ψ̃σ,iφσ,j = δi,j , where ψ̃σ,i is an arbitrarily chosen function in V(Ω0) such

that ψ̃σ,i|Γσ = ψσ,i and ψ̃σ,i|Ωσ′ = 0 for each σ′ ∈ An, σ′ �= σ. We have

V(Ω0) = {v ∈ V(Ω0), v|Γσ ∈ (ker(Lσk ))
◦, ∀σ ∈ An} ⊕

(⊕
σ∈An

Span(ψ̃σ,j , j = 1, . . . , d)

)
. (70)

Let û be a solution to (67) and (68): in order to extend it to a solution of (56), we have, for each σ ∈ An,
to choose the extension in Hσ

k (û|Γσ ), which is well defined since û|Γσ ∈ (ker(Lσk))
◦. With any such choice, the

extended function belongs to H1(Ω0) and satisfies the Helmholtz equation in Y n−1 and Ωσ, σ ∈ An. But, for
the extension to satisfy (56), its normal derivative must also be continuous across Γσ, σ ∈ An. It can easily
be seen that for each σ ∈ An, there exists a unique function ûσ ∈ Hσ

k (û|Γσ), such that calling ũ the extension
of û by ûσ in Ωσ, ∀σ ∈ An, we have ∀σ ∈ An, ∀i = 1, . . . , d,

∫
Ω0 ∇ũ · ∇ψ̃σ,i − k

∫
Ω0 ũψ̃σ,i = 0. From this and

from (67), (68) and (70), we deduce that ũ is a solution to (56).
The last two assertions of the Lemma follow easily. �
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We see from (65) (68) that, if the nonlocal operator T 0
k
4n

is known (which implies that (ker(L0
k
4n

)◦ is known),

then the restriction of H0
k(u) to Y n−1, n ≥ 1, is characterized as the solution of a boundary value problem

in Y n−1, with a boundary condition involving T 0
k
4n

. Moreover, in the most frequent case when k
4p /∈ Sp0,

∀p = 0, . . . , n, and if the operators T 0
k
4p

, p = 1, . . . , n are known (or accurately approximated), then solving (68)

is equivalent to successively solving 1 + 2 + · · · + 2n−1 boundary value problems in Y 0 as follows:

Algorithm 2.

• Loop: for p = 0 to n− 1,
– Loop : for σ ∈ Ap, (at this point, û|Γσ is known)

∗ Solve the boundary value problem in Y 0: find w ∈ H1(Y 0) such that w|Γ0 = û|Γσ ◦
Mσ(F1, F2) and ∀v ∈ V(Y 0),

∫
Y 0

(
∇w · ∇v − k

4p
wv

)
+
〈
T 0

k

4p+1

(
w|F1(Γ0) ◦ F1

)
, v|F1(Γ0) ◦ F1

〉
+
〈
T 0

k

4p+1

(
w|F2(Γ0) ◦ F2

)
, v|F2(Γ0) ◦ F2

〉
= 0.

∗ Set û|Mσ(F1,F2)(Y 0) = w ◦ (Mσ(F1, F2))
−1.

In the general case, if k
4p ∈ Sp0, for some p, 1 ≤ p < n, then, as in the proof of Lemma 8, additional finite

dimensional linear systems must be solved at the step p of Algorithm 2, in order to enforce the continuity of
the normal derivative of û at the interfaces Γσ, σ ∈ Ap.

This method can be transposed at the discrete level (see [2] for a related numerical method and simulations).

6.3. Approximations of the Dirichlet-Neumann operators

6.3.1. Orientation

There remains the need to compute the operators T 0
k
4p

, 0 ≤ p ≤ n. The equations (65), (68), (69) can be

seen as a backward induction formula with respect to p, in order to compute T 0
k . The backward character of

the induction makes the exact construction of T 0
k impossible. Yet, observing that limn→∞ T 0

k
4n

= T 0 (T 0 is
the Dirichlet-Neumann operator for Laplace’s equation, see (43)) enables the initialization of the induction by
approximating T 0

k
4n

by T 0, for n large enough. The goal of what follows is to carry out this program in detail.

6.3.2. An induction formula to approximate the Dirichlet-Neumann operators

For σ ∈ An, n ≥ 0, and r ∈ N, r ≥ n, let us introduce the operators Lσ,rk

Lσ,rk : V(Ωσ) �→ (V(Ωσ))′ , 〈Lσ,rk u, v〉 =
∫

Ωσ

∇u · ∇v − k

∫
Y r−1∩Ωσ

uv,

agreeing that Y −1 = ∅. Note that for u ∈ H
1
2 (Γσ), a function û ∈ H1(Ωσ) such that

û|Γσ = u and ∀v ∈ V(Ωσ),
∫

Ωσ

∇û · ∇v − k

∫
Y r−1∩Ωσ

ûv = 0, (71)

is a weak solution to the Helmholtz equation ∆û+ k1Y r−1∩Ωσ û = 0 in Ωσ.
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Let us call (ker(Lσ,rk ))◦ the closed subspace of H
1
2 (Γσ):

(ker(Lσ,rk ))◦ =

⎧⎨⎩u ∈ H
1
2 (Γσ) s.t.

∣∣∣∣∣∣
∀ũ ∈ H1(Ωσ) with ũ|Γσ = u,∫

Ωσ

∇ũ · ∇v − k

∫
Y r−1∩Ωσ

ũv = 0, ∀v ∈ ker(Lσ,rk )

⎫⎬⎭ . (72)

We have the analogue of Proposition 5:

Proposition 6. For all n, r ∈ N with r ≥ n, there exists a countable set Spn,r = {λq, q ∈ N} of positive
numbers, with λq ≤ λq+1 and limq→∞ λq = +∞ such that, for all σ ∈ An,

• for all k ∈ R\Spn,r, the operator Lσ,rk is one to one, with a bounded inverse;
• for all k ∈ Spn,r, ker(Lσ,rk ) has a positive and finite dimension.

We have
Spn,r = 4nSp0,r−n. (73)

If u ∈ (ker(Lσ,rk ))◦, then there exists û ∈ H1(Ωσ) satisfying (71) and û is unique up to functions in ker(Lσ,rk ).
Problem (71) defines an injective bounded operator Hσ,r

k

Hσ,r
k : (ker(Lσ,rk ))◦ → H1(Ωσ)/ ker(Lσ,rk ), Hσ,r

k (u) = û mod (ker(Lσ,rk )). (74)

The Dirichlet-Neumann operator T σ,rk : (ker(Lσ,rk ))◦ �→ ((ker(Lσ,rk ))◦)′ is defined by: ∀u, v ∈ (ker(Lσ,rk ))◦,

〈T σ,rk u, v〉 =
∫

Ωσ

∇Hσ,r
k (u) · ∇ṽ − k

∫
Y r−1∩Ωσ

Hσ,r
k (u)ṽ, (75)

for any function ṽ ∈ H1(Ωσ) such that ṽ|Γσ = v, and where Hσ,r
k (u) stands for any function in the class Hσ,r

k (u)
if k ∈ Spn,r.

The analogues of Lemmas 7 and 8 are summarized in the following result:

Lemma 9. The operator T σ,rk is the perturbation of a bounded and coercive self-adjoint operator from
(ker(Lσ,rk ))◦ to ((ker(Lσ,rk ))◦)′ by a compact operator.

For all n, r ∈ N, with n ≤ r, for all σ ∈ An and u, v ∈ (ker(Lσ,rk ))◦, we have u◦Mσ(F1, F2), v◦Mσ(F1, F2) ∈
(ker(L0,r−n

k
4n

))◦, and

〈T σ,rk u, v〉 =
〈
T 0,r−n

k
4n

(u ◦Mσ(F1, F2)) , v ◦Mσ(F1, F2)
〉
. (76)

If n ≥ 1, then for all u ∈ (ker(L0,r
k ))◦, the restriction û to Y n−1, n ≥ 1, of any function in the class H0,r

k (u)
satisfies the following boundary value problem: for all σ ∈ An,

û|Γσ ∈ (ker(Lσ,rk ))◦ (77)

and
û|Γ0 = u, and

∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈T σ,rk (û|Γσ ), v|Γσ 〉 = 0, (78)

∀v ∈ V(Y n−1) such that for all σ ∈ An, v|Γσ ∈ (ker(Lσ,rk ))◦ ((78) can be written in terms of T 0,r−n
k
4n

thanks

to (76)). Problem (77)–(78) has a unique solution up to restrictions of functions of ker(L0,r
k ) to Y n−1. Fur-

thermore, ∀v ∈ H1(Y n−1), such that v|Γ0 ∈ (ker(L0,r
k ))◦ and for all σ ∈ An, v|Γσ ∈ (ker(Lσ,rk ))◦,

〈T 0,r
k u, v|Γ0〉 =

∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈T σ,rk û|Γσ , v|Γσ〉

=
∫
Y n−1

∇û · ∇v − k

∫
Y n−1

ûv +
∑
σ∈An

〈
T 0,r−n

k
4n

(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)
〉
.

(79)
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From Lemma 9, we see that if T 0 is available, then one can construct T 0,r
k by the following induction:

Algorithm 3 (the inductive construction of T 0,r
k ). Let us construct the closed subspaces D(j) of H

1
2 (Γ0) and

the operators (Z(j))0≤j≤r by

• D(0) = H
1
2 (Γ0) and Z(0) = T 0.

• Induction formula (I.F.). Suppose that after j steps, j < r, we have constructed the closed subspace
D(j) of H

1
2 (Γ0) with finite codimension and the operator Z(j), from D(j) to its dual, such that Z(j) is a

perturbation of a coercive self-adjoint operator on D(j) by a compact operator. We call W (j) the finite
dimensional space containing the functions w ∈ V(Y 0), such that w|Γσ ◦Mσ(F1, F2) ∈ D(j), ∀σ ∈ A1,
and∫

Y 0
∇w · ∇v − k

4r−j−1

∫
Y 0
wv +
∑
σ∈A1

〈
Z(j)(w|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
= 0,

∀v ∈ V(Y 0), with v|Γσ ◦Mσ(F1, F2) ∈ D(j), ∀σ ∈ A1.

We call D(j+1) the closed subspace of H
1
2 (Γ0) containing the functions v such that ∀w ∈ W (j),∫

Y 0
∇w · ∇ṽ − k

4r−j−1

∫
Y 0
wṽ +
∑
σ∈A1

〈
Z(j)(w|Γσ ◦Mσ(F1, F2)), ṽ|Γσ ◦Mσ(F1, F2)

〉
= 0,

∀ṽ ∈ H1(Y 0), with ṽ|Γσ ◦Mσ(F1, F2) ∈ D(j), ∀σ ∈ A1, and ṽ|Γ0 = v.

Then, from Fredholm’s alternative, we know that the problem: find û ∈ H1(Y 0) such that û|Γ0 = u, û|Γσ ◦
Mσ(F1, F2) ∈ D(j), ∀σ ∈ A1, and∫

Y 0
∇û · ∇v − k

4r−j−1

∫
Y 0
ûv +
∑
σ∈A1

〈
Z(j)(û|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
= 0

∀v ∈ V(Y 0) such that ∀σ ∈ A1, v|Γσ ◦Mσ(F1, F2) ∈ D(j), (80)

has a solution if u ∈ D(j+1), which is unique up to functions in W (j). Then we can define the operator Z(j+1)

from D(j+1) to its dual, by: ∀u, v ∈ D(j+1),〈
Z(j+1)u, v

〉
=
∫
Y 0

∇û · ∇ṽ − k

4r−j−1

∫
Y 0
ûṽ +
∑
σ∈A1

〈
Z(j)(û|Γσ ◦Mσ(F1, F2)), ṽ|Γσ ◦Mσ(F1, F2)

〉
,

∀ṽ ∈ H1(Y 0), with ṽ|Γσ ◦Mσ(F1, F2) ∈ D(j), ∀σ ∈ A1, and ṽ|Γ0 = v, (81)

where û is a solution to (80). It is clear that Z(j+1) has the same properties as Z(j).

Proposition 7. The operators constructed by Algorithm 3 satisfy: for j ≤ r,

Z(j) = T 0,j
k

4r−j

and D(j) =
(

ker
(
L0,j

k

4r−j

))◦
.

Proof. By induction. �

Remark 14. In fact, for k belonging to a dense subset in R, the domains Dj , 0 ≤ j ≤ r all coincide withH
1
2 (Γ0).

Proposition 7 says that T 0,r
k can be constructed inductively, departing from T 0.
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Finally, the following result says that the original Dirichlet-Neumann operator T σk , σ ∈ An, can be approxi-
mated by the modified operator T σ,rk , at least when k /∈ Spn:

Theorem 8. For σ ∈ An and k �∈ Spn, there exists R(k, n) ≥ n, such that for all r ≥ R(k, n), the operator Lσ,rk
is one to one, and there exists a constant C > 0, (depending of k but not of n and r), such that, for r ≥ R(k, n),

‖(Lσ,rk )−1 − (Lσk)
−1‖ ≤ C2−n−r, (82)

and the operator T σ,rk is bounded from H
1
2 (Γσ) to its dual, with

‖T σ,rk − T σk ‖ ≤ C2−n−r. (83)

Proof. Since k �∈ Spn, Lσk is one to one. From (20), we have that ‖Lσ,rk − Lσk‖ � 2−n−r and therefore
limr→∞ ‖Lσ,rk − Lσk‖ = 0. It is a standard matter to deduce (82) and (83) from the last two observations. �
6.3.3. Stability of the approximation of the Dirichlet-Neumann operator

In practice, T 0 is not available, and one has to initialize Algorithm 3 by approximations of T 0. The approxi-
mation of T 0 is constructed by using (53). The following theorem gives an error estimate for the approximation
of T 0

k :

Theorem 9. For all R ∈ O, r, q ∈ N, consider the sequence Z(j)
q,r , 0 ≤ j ≤ r:

• Z
(0)
q,r = M

q(R);
• for 0 ≤ j < r, Z(j+1)

q,r is obtained from Z
(j)
q,r by the induction (I.F.) above,

where M has been introduced in (51), (52). Assume that k �∈ Sp0. Then there exist two integers R(k) and Q(k)
such that for all r > R(k), for all q > Q(k) Z(r)

q,r is a bounded operator from H
1
2 (Γ0) to its dual, and there exists

a constant C such that for all r > R(k), q > Q(k),

‖Z(r)
q,r − T 0

k ‖ ≤ C(ρ
q
4 + 2−r), (84)

where 0 < ρ < 1 is the constant introduced in (40).

Proof. The proof is given in Section 10. �

7. Conclusion

We have introduced transparent boundary conditions for both the elliptic problem (32) (with g = 0) and for
the Helmholtz equation (56). For any n > 0, they permit finding the solutions in Y n−1. Let us summarize how
this can be done:

• for problem (32) (with g = 0):
– approximate T 0 by Mr(0) (see Thm. 7), with a large enough r,
– use Algorithm 1 to compute w|Y n−1 ;

• for problem (56):
– approximate T 0 by Mr(0) (see Thm. 7), with a large enough r,
– approximate T 0

k
4p

, p = 0, . . . , n by using Algorithm 3,
– use Algorithm 2 to compute û|Y n−1 .

These methods can be transposed at a discrete level by using finite elements with self-similar triangulations
(assuming that a unique continuation theorem holds in the discrete case). This is done in [2] for both the Laplace
and Helmholtz equations. In [2], a method for computing and normalizing the vibration modes is implemented
as well. In [1], the use of transparent boundary conditions in the case when g �= 0 is discussed.

Finally, let us underline the fact that all the algorithms and methods proposed in this paper can be applied
for many other self-similar geometries such as the Koch flake, for example. They can also applied in dimension
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three, under the same geometrical assumptions. Although no numerical tests have been done so far in dimension
three, one can predict that the complexity of the numerical methods stemming from the theory above remains
moderate. The methods above may also be extended to the case when the two mappings F1 and F2 correspond
to two different dilation ratii, as soon as self-similarity is preserved. On the contrary, since they rely heavily
on self-similarity, the methods presented here cannot apply to the irregular situations when the dilation ratio
changes arbitrarily within one generation.

8. Proof of Theorem 1

We proceed by first proving the Poincaré inequality for functions in the space Vq(Y N ) = {v ∈ W 1,q(Y N )
s.t. v|Γ0 = 0}, with a constant independent of N . Since the function space {v ∈ C∞(Y N ) s.t. v|Γ0 = 0} is

dense in Vq(Y N ), it is enough to prove the inequality for functions in that space.
The idea of the proof is to construct explicitly a change of variables which maps Ω0 onto a fractured set

contained in the rectangle (−1, 1) × (0, 8).
Let us introduce Q0 =

(
(−1, 1) × (0, 2]

) ∪ ((−2, 2) × (2, 3)) ∪ (((−2,−1) ∪ (1, 2)) × {3}). We define first a
continuous and piecewise affine change of variables χ0 mapping Q̂0 = ((−1, 1)× (0, 4])\({0}× [3, 4]) onto Q0 by

if x > 0, χ0(x, t) =

⎧⎨⎩
(x, t) for t ∈ (0, 3 − x]
(t− 3 + 2x, 3 − x) for t ∈ [3 − x, 4 − x]
(x+ 1, t− 1) for t ∈ [4 − x, 4]

,

if x < 0, χ0(x, t) = (−χ0
1(−x, t), χ0

2(−x, t)) for t ∈ (0, 4],

χ0(0, t) = (0, t) for t ∈ (0, 3).

It is simple to verify that χ0 is one to one. The set Q̂0 is fractured in the sense that it does not lie locally on
one side of its boundary.

Note also that for each x ∈ (−1, 1), the trajectory {χ0(x, t), t ∈ (0, 4]} is made of at most three straight lines
parallel to the axes, and that for x ∈ (0, 1), χ0(x, 4) = x + 1 so {χ0(x, 4), x ∈ (0, 1)} = (1, 2) × {3}. Similarly,
one can check that ∇χ0 is piecewise constant and can only take the values

∇χ0 =
(

1 0
0 1

)
or ∇χ0 =

(
2 1
−1 0

)
. (85)

Thus, at the points where ∇χ0 is defined, det(∇χ0) = 1. Therefore the map χ0 preserves the measure.
Let H1 and H2 be the affine maps in R2

H1(x) =
(
−1

2
+
x1

2
, 4 +

x2

2

)
, H2(x) =

(
1
2

+
x1

2
, 4 +

x2

2

)
·

Then we define the one to one mapping

χN : Q̂N = ∪Nn=0 ∪σ∈An Mσ(H1, H2)(Q̂0) �→ ∪Nn=0 ∪σ∈An Mσ(F1, F2)(Q0),

by
χN (x) =

(Mσ(F1, F2) ◦ χ0 ◦ (Mσ(H1, H2))−1
)
(x), if x ∈ Mσ(H1, H2)(Q̂0).

Note that Q̂N is contained in the rectangle (−1, 1)× (0, 4sN) where

sN =
N∑
i=0

2−i, (86)
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and that Q̂N has
∑N

n=0 2n vertical fractures. It is clear that ∇χN can take only the two values in (85) and that
χN preserves the measure.

Similarly, we can construct a one to one map χ∞ from ω0 = ∪∞
n=0 ∪σ∈An Mσ(H1, H2)(Q̂0) to Ω0, which

preserves the measure. The sets Q̂0 and ω0 are displayed in Figure 2.
Let us define IN = 1+

∑N
i=0 2i and call ai, 0 ≤ i ≤ IN the abscissa of the vertical boundaries of Q̂N , ordered

increasingly. Consider a function u ∈ C∞
0 (Y N ) such that u|Γ0 = 0.

∫
Y N

|u|q =
∫
Q̂N

|u|q(χN (x, t)) =
IN−1∑
i=0

∫ ai+1

ai

dx
∫ 4sN

0

|u|q(χN (x, t))dt

=
IN−1∑
i=0

∫ ai+1

ai

dx
∫ 4sN

0

∣∣∣∣∫ t
0

d

ds
(u(χN (x, s))) ds

∣∣∣∣q dt

≤
IN−1∑
i=0

∫ ai+1

ai

dx
∫ 4sN

0

dt tq−1

∫ t
0

(∣∣∣∣ ∂u∂x1
(χN (x, s))

∂χN1
∂t

(x, s)
∣∣∣∣q +
∣∣∣∣ ∂u∂x2

(χN (x, s))
∂χN2
∂t

(x, s)
∣∣∣∣q) ds

by Hölder’s inequality and because
∂χN1
∂t

∂χN2
∂t

= 0. (87)

Therefore∫
Y N

|u|q ≤ (4sN )q

q

IN−1∑
i=0

∫ ai+1

ai

dx
∫ 4sN

0

(∣∣∣∣ ∂u∂x1
(χN (x, s))

∂χN1
∂t

(x, s)
∣∣∣∣q +
∣∣∣∣ ∂u∂x2

(χN (x, s))
∂χN2
∂t

(x, s)
∣∣∣∣q) ds

≤ (4sN )q

q

IN−1∑
i=0

∫ ai+1

ai

dx
∫ 4sN

0

∣∣∇u(χN (x, s))
∣∣q ds

from (87) and because |∂χN
1

∂t | ≤ 1, and |∂χN
2

∂t | ≤ 1. Using the fact that sN < 2 and performing the inverse change
of variables, we obtain that ∫

Y N

|u|q ≤ 8q

q

∫
Y N

|∇u|q. (88)

By density, it is clear that (88) holds for u ∈ Vq(Y N ). Since the constant in (88) does not depend on N , we
obtain (12) by using Lebesgue’s theorem.

9. Proof of Theorem 3

9.1. An intermediate domain

The construction of the extension operator is done by introducing an intermediate domain Ω̃0 displayed on
the right side of Figure 3 with full lines, such that Ω0 ⊂ Ω̃0 ⊂ Ω̂0, and by composing an extension operator
from Ω0 to Ω̃0 with an extension operator from Ω̃0 to Ω̂0.

The domain Ω̃0 is defined as follows: call Ỹ 0 the trapezoidal domain with vertices (− 3
2 , 0), (3

2 , 0), (− 5
2 , 3)

and (5
2 , 3), and Ω̃0 the new domain

Ω̃0 = Interior

(⋃
n∈N

⋃
σ∈An

Mσ(F1, F2)(Ỹ 0)

)
.

It is clear that Ω0 ⊂ Ω̃0.
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Figure 3. The extension is performed in two steps.

Note that Ω̃0 is obtained by removing an infinite family of nonoverlapping triangles from Ω̂0. More precisely,
consider the triangle T whose vertices are (0, 6), (1, 3), and (−1, 3) (note that T ⊂ Ω̂0\Ω̃0), which is visible on
the right part of Figure 3. We have that

Ω̃0 = Ω̂0\
(⋃
n∈N

⋃
σ∈An

Mσ(F1, F2)T

)
.

9.2. Bounded extension from W 1,q(Ω0) to W 1,q(Ω̃0), 1 ≤ q <∞
Lemma 10. There exists an extension operator E bounded from W 1,q(Ω0) to W 1,q(Ω̃0), for all q, 1 ≤ q <∞.

Proof. The extension operator E is constructed in two steps.

First step. Call DL the L-shaped compact set DL = conv
(
(−1,−2), (− 1

2 ,−2), (− 1
2 , 2), (−1, 2)

)∪conv((− 1
2 , 2),

(−2, 2), (−2, 5
2 ), (− 1

2 ,
5
2 )) and DR the image of DL by the symmetry of axis x1 = 0. Call also TL the triangle

whose vertices are (−1,−2), (−1, 2), and (−2, 2) and TR the image of TL by the symmetry of axis x1 = 0.
It is possible to construct an extension operator EL, which maps continuouslyW 1,q(DL) to W 1,q(DL∪TL), for

all q ∈ [1,+∞): there is a positive constant c (depending on q) such that, for all u ∈W 1,q(DL), ‖ELu‖W 1,q(TL) ≤
c‖u‖W 1,q(DL).

Call Ω0
L = Ω0 ∩⋃n∈N

Fn1 (DL) and Ω̃0
L = Ω̃0 ∩⋃n∈N

Fn1 (DL ∪ TL). Similarly Ω0
R = Ω0 ∩⋃n∈N

Fn2 (DR) and
Ω̃0
R = Ω̃0 ∩⋃n∈N

Fn2 (DR ∪ TR). The previous observation and the facts that
• |Fn1 (TL) ∩ Fm1 (TL)| = 0 if n �= m;
• for any point x in Ω0

L, there exists at least one and at most two integers n such that x ∈ Fn1 (DL),

enable to construct an extension operator ẼL, bounded from W 1,q(Ω0
L) to W 1,q(Ω̃0

L), 1 ≤ q <∞, by:

if x ∈ Fn1 (TL), n ≥ 1, then (ẼLu)(x) = EL((u ◦ Fn1 )|DL)
(
(Fn1 )−1(x)

)
,

if x ∈ Ω̃0 ∩ TL, then (ẼLu)(x) = EL,0(u|DL)(x),

where EL,0 is any extension operator which maps continuously W 1,q(Ω0 ∩ DL) to W 1,q(Ω̃0 ∩ (DL ∪ TL)),
1 ≤ q <∞.

By symmetry, it is possible to construct an extension operator ẼR, bounded from W 1,q(Ω0
R) to W 1,q(Ω̃0

R),
1 ≤ q <∞.
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Second step. Let GL = {F2 ◦Mσ(F1, F2), σ ∈ An, n ∈ N} and GR = {F1 ◦Mσ(F1, F2), σ ∈ An, n ∈ N}. We
observe that for any point x in Ω̃0\Ω0, one and only one of the following four conditions is true:

(1) either x ∈ Ω̃0
L\Ω0;

(2) or x ∈ Ω̃0
R\Ω0;

(3) or there exists a unique transformation τ in GL such that x ∈ τ(Ω̃0
L\Ω0);

(4) or there exists a unique transformation τ in GR such that x ∈ τ(Ω̃0
R\Ω0).

From this observation, it is possible to construct an extension operator E , bounded from W 1,q(Ω0) to W 1,q(Ω̃0),
1 ≤ q <∞, by: for x ∈ Ω̃0\Ω0,

• if condition 1 is true: (Eu)(x) = (ẼLu)(x);
• if condition 2 is true: (Eu)(x) = (ẼRu)(x);
• if condition 3 is true: (Eu)(x) = (ẼL(u ◦ τ))(τ−1(x));
• if condition 4 is true: (Eu)(x) = (ẼR(u ◦ τ))(τ−1(x)). �

9.3. Bounded extension from W 1,q(Ω̃0) to W 1,q(Ω̂0), 1 ≤ q < 2

Lemma 11. There exists an extension operator F bounded from W 1,q(Ω̃0) to W 1,q(Ω̂0), for all q, 1 ≤ q < 2.

Proof. Consider the triangle T̂ whose vertices are (0, 6), (3
2 , 2), and (− 3

2 , 2)) (T̂ is displayed on the left of
Figure 3 with interrupted lines). The key observation is that T̂\T ⊂ Ω̃0, and that

∀σ1, σ2 ∈
⋃
n∈N

An such that σ1 �= σ2, Mσ1(F1, F2)(T̂ ) ∩Mσ2(F1, F2)(T̂ ) = ∅. (89)

By using known results on Sobolev spaces on polygonal domains, see e.g. [7], there exists a extension operator F̃ ,
bounded from W 1,q(T̂\T ) to W 1,q(T̂ ), for any q, 1 ≤ q < 2. Note that the operator cannot be bounded from
W 1,2(T̂\T ) to W 1,2(T̂ ), see [7].

From this and (89), we can construct an extension operatorF , bounded fromW 1,q(Ω̃0) toW 1,q(Ω̂0), 1 ≤ q < 2
by

if x ∈ Mσ(F1, F2)(T ), F(u)(x) = F̃
(
(u ◦Mσ(F1, F2)) |T̂\T

)
◦ (Mσ(F1, F2))−1(x). �

9.4. Bounded extension from W 1,q(Ω0) to W 1,q(Ω̂0), 1 ≤ q < 2

The operator J = F ◦E is an extension operator bounded from W 1,q(Ω0) to W 1,q(Ω̂0), 1 ≤ q < 2. Theorem 3
is proved.

10. Proof of Theorem 9

To prove Theorem 9, we need to study the stability of the inductive construction of T 0,r
k in Algorithm 3 with

respect to Z0:

Proposition 8. Let Xq be a sequence of operators in O converging to T 0 as q → ∞. For an integer r, and
0 ≤ j ≤ r, let us call Zjq,r the operators such that

• Z0
q,r = Xq;

• for 0 ≤ j < r, Zj+1
q,r is obtained from Zjq,r by the induction (I.F.) above.

Assume that k �∈ Sp0,r. Then, there exists an integer Q such that for all q > Q, Zrq,r is a bounded operator from
H

1
2 (Γ0) to its dual, and for q > Q, for a constant C independent on q,

‖Zrq,r − T 0,r
k ‖ ≤ C‖Xq − T 0‖. (90)
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Proof. Since k �∈ Sp0,r, the problem: find ug ∈ V(Y r−1), such that for all v ∈ V(Y r−1),∫
Y r−1

∇ug · ∇v − k

∫
Y r−1

ugv +
∑
σ∈Ar

〈
T 0(ug|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
= 〈g, v〉

defines an isomorphism Ψ : g �→ ug from V ′(Y r−1) onto V(Y r−1).
For u ∈ H

1
2 (Γ0), consider the problem: find ũ ∈ H1(Y r−1) such that ũ|Γ0 = u and for all v ∈ V(Y r−1),∫
Y r−1

∇ũ · ∇v − k

∫
Y r−1

ũv +
∑
σ∈Ar

〈Xq(ũ|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)〉 = 0. (91)

Let û = H0,r
k u. Problem (91) is equivalent to finding e = ũ− û ∈ V(Y r−1) such that for all v ∈ V(Y r−1),∫

Y r−1
∇e · ∇v − k

∫
Y r−1

ev +
∑
σ∈Ar

〈
T 0(e|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
=
∑
σ∈Ar

〈
(T 0 −Xq)((e+ û)|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)

〉
,

so (91) can be reformulated as a fixed point problem with a linear operator involving Ψ. For q large enough,
the operator in the fixed point is a contraction, so (91) has a unique solution and there exists Q > 0 and a
constant C > 0 such that for all q > Q

‖û− ũ‖H1(Y r−1) ≤ C‖T 0 −Xq‖‖u‖
H

1
2 (Γ0)

. (92)

Now, one can check that, for all v ∈ H1(Y r−1),

〈Zrq,ru, v|Γ0〉 =
∫
Y r−1

∇ũ · ∇v − k

∫
Y r−1

ũv +
∑
σ∈Ar

〈Xq(ũ|Γσ ◦Mσ(F1, F2)), v|Γσ ◦Mσ(F1, F2)〉 , (93)

so from (79) and (78) in the case n = r, (93) and (92), one can deduce (90). �
Theorem 9 is a consequence of Theorem 7, Lemma 8 and Proposition 8.
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Interfaces des Mathématiques “LePoumonVousDisJe”.

References

[1] Y. Achdou, C. Sabot and N. Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a
fractal boundary. SIAM Multiscale Model. Simul. (2006) (accepted for publication).

[2] Y. Achdou, C. Sabot and N. Tchou, Transparent boundary conditions for Helmholtz equation in some ramified domains with
a fractal boundary. J. Comput. Phys. (2006) (in press).

[3] R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). Pure Appl. Math. 65.
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