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This paper addresses issues on control and coding co-design in the context of low-energy sensors. We particularly focus on issues of low energy consumption (energy-aware). To this aim, we propose to use a coding strategy with the ability to quantify and to differentiate stand-still signal events from changes in the source (level crossing detector). The standstill signal event is then modulated with a low energy carrier, whereas the changes of levels will be modulated with enough energy. Coding is then effectuated by defining a 3-valued alphabet. The paper studies the closed-loop properties of such arrangement. In particular, we derive conditions required so that this coding algorithm preserves closed loop stability.

I. INTRODUCTION

W IREless low-cost sensor networks are an expanded technology in many new and varied areas such as: traffic monitoring and control (urban, highways), undersea monitoring/exploration, environment sensing (forest, farms, etc.), building services, large instruments with distributed sensing and actuators (Tokomak, telescopes), etc.

Sensors will be packaged together with communication protocols, RF electronics, and energy management systems. Therefore, the development of such integrated sensors will be driven by constraints like: low cost, ease of replacement, low energy consumption, and efficient communication links. In turn, these constraints bring new problems to be considered in the exploitation of this information. For instance, low cost will induce sensors with low resolution (binary sensors, at the extreme), low consumption will impose issues on efficient sensor energy management (sleep and wake-up modes), ease of replacement will imply the system ability to keep safe operation in a failure of one or several sensors, and finally communication links and protocols should be designed to account for energy savings, information loss, and varying fading characteristics.

To some extent, the coding structure proposed here can be interpreted as a particular class of quantizer. Some works in relation to study of coarse quantizers and coding have been previously reported in [1], [START_REF] Elia | Stabilization of linear systems with limited information[END_REF], [START_REF] Liberzon | On stabilization of linear systems with limited information[END_REF], [START_REF] Ling | Control system performance under dynamic quatization: the scalar case[END_REF], [START_REF] Tan | Numerical study of joint quatization and control under block-coding[END_REF], [START_REF] Li | Robust quatization for diginal finite communication bandwidth (dfcb) control[END_REF], [START_REF] Hespanha | Towards the control of linear systems with minimum bit-rate[END_REF], [START_REF] Brockett | Quantized feedback stabilization of linear systems[END_REF], [START_REF] Canudas-De-Wit | Differential coding in networked controlled linear systems[END_REF], and [START_REF] Gomez-Estern | Adaptive delta-modulation coding in networked controlled systems[END_REF], [START_REF] Lopez | Compensation schemes for a delta-modulation-based ncs[END_REF] among others. The use of 3-valued code, in connection with a delta-modulation coding structure and a variable length-block encoding scheme, was proposed in [START_REF] Canudas-De-Wit | entropy coding in networked controlled systems[END_REF]. In this work, the authors have proposed to use entropy coding to take advantage of the probability distribution of the events, and hence to improve compression rates. However, no claim for energy saving was done.

To the authors knowledge, this work is one of the first intents to study the coding design in the context of NCS in connection to characteristics of low-energy sensors. In this paper, we particularly focus on issues on low energy consumption (energy-aware). To this aim, we propose to use a coding strategy with the ability to quantify and to differentiate stand-still signal events from changes in the source (level crossing detector). The stand-still signal event is then modulated with a low energy carrier (sleep mode), whereas the changes of levels will be modulated with enough energy (wake-up mode). Coding can then be effectuated by defining a 3-valued alphabet: 0 for the case where the source signal information is contained in the time interval between level crossing(sleep mode) and, ±1 in order to indicate the direction of the level crossing when it occurs (wake-up mode).

The overall coding strategy studied here is composed of two main blocks: (i) a 3-valued encoder including a modelbased predictor (MBP) similar to the one proposed in [START_REF] Canudas-De-Wit | entropy coding in networked controlled systems[END_REF], and (ii) an amplitude modulator used to carry the code produced by the encoder. The paper aims at studying the closed-loop properties of such arrangement. In particular we derive conditions required by this coding algorithm in order to preserve closed loop stability. 

A. Definitions

B. Assumptions

• The transmitted information is amplitude modulated
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Low pass filter • Only encoder-to-decoder information transmission is allowed, • Reliable noiseless transmission channel is considered,

kT s + τ s LF (t) cos(2πf 0 t) b(t) + + 2 cos(2πf 0 t) s HF (t) h e (t)
• local clocks at the encoder/decoder are assumed to be synchronized.

II. PROBLEM SET UP

We consider the following SISO discrete-time linear system (possible unstable), of the form,

x k = B(q -1 ) A(q -1 ) u k (1) 
together with an RST controller,

u k = R(q -1 ) S(q -1 ) γ T (q -1 ) r k -xk (2) 
where r k is the reference, xk is the estimated of the system output x k , and R(q -1 ), S(q -1 ), T (q -1 ) are the control polynomials in the delay operator q -1 . They also satisfy:

T = RB, SA + RB = A cl , γ △ = A cl (1)
with A cl being the closed-loop polynomial, and γ the static gain needed to reach unitary zero-frequency gain. For simplicity, we will omit the use of the argument (q -1 ) when needed.

The coding process consists in several steps: 1) Encoding the system output x k . This process yields the 3-valued signal δ k , 2) Modulation of the encoded signal. δ k is transmitted by using some particular type of modulation, i.e. amplitude shift keying modulation (ASK). Note that when signal is in stand still mode (the produced code is δ k = 0) then very limited power is needed, 3) Demodulation of the transmitted signal δk , and 4) Decodification of the received information to produce the estimated xk . The complete sequence can be seen as a full estimation process. The different components are shown in Figure 1.

When xk ≡ x k , the above controller gives the following closed-loop nominal relation,

x k = γ A cl (q -1 ) r k else (x k = x k ), we have, x k = γ A cl (q -1 ) r k + W (q -1 )x k
where xk = x k -xk is the estimation error, and W = BR/A cl . As A cl defines a stable polynomial, the output x k is kept bounded as long as xk is bounded as well.

The problem is then to design the combined coding/modulation process that defines the output xk from the input x k preserving closed-loop properties. This process, which will be described next, can be split into two steps: coding and modulation. We first present the coding algorithm and study its stability assuming that the transmitted signal process is ideal, then we present in a subsequent section the influence of the amplitude modulator in terms of stability.

III. CODING PROCESS

We assume first that δk = δ k , the effect of the modulation process is first neglected. The coding (encoding/decoding) process is shown in Figure 1. The encoder (respectively the inverse decoder) operation is composed of: a non uniform sampler encoder including a level detector (LD), associated to the map ϕ LD , together with a model-based predictor (MBP).

A. The Level Detector

The operation principle of the level detector is shown in Figure 2. The map (ϕ LD : xk → δ k ), takes the error signal and codes the output signal into a 3-valued δ k ∈ {-1, 0, 1}. That is:

δ k =      1 if one level is crossed upwards, 0 if xk stays at the actual level, -1 if one level is crossed downwards.
Equations behind this are:

l k = xk ∆ - 1 2 δ k = f (x k ) = 0 if l k = l k-1 , sign (l k -l k-1 ) else,
with ∆ the level threshold and ⌊•⌋ the floor operator which rounds to the smaller integer.

δ k -∆ 2 T s time x(t) + ∆ 2 + 3∆ 2 xk -3∆ 2 0 0 1 -1 1 0 0 0 -1 0 Fig. 2
. Illustration of the level detector working operation principe.

B. The model-based predictor (MBP)

The role of the MBP is to recover the encoded signal x k from the 3-valued binary signal δ k . It is composed of:

• The inverse of the level detector:

ϕ -1 LD : δ k → xk , whose equation is: xk = xk-1 + ∆ • δ k
• The predictor: it is a model-based predictor. As its name indicates, it uses the target closed-loop model as a basis for its design. This structure is inspired by our previous works in [START_REF] Canudas-De-Wit | Differential coding in networked controlled linear systems[END_REF], [START_REF] Gomez-Estern | Adaptive delta-modulation coding in networked controlled systems[END_REF], and also in [START_REF] Hespanha | Towards the control of linear systems with minimum bit-rate[END_REF].

The predictor is a dynamic linear discrete-time operator that maps the output of the inverse level detector, to the signal prediction xk . Its structure depends upon the particular control used (state feedback or output feedback). For instance, for the RST-control discussed here, it has the following form:

xk = W γ T r k + xk , W △ = BR A cl , (3) 
which results in the following error equation:

xk = W xk -xk . (4) 

IV. STABILITY PROPERTIES UNDER IDEAL TRANSMISSION

Following the assumptions made in this section (lossless transmission channel, with no transmission delay nor noise), we then have that δ k = δk . In this case, we do not need to differentiate the MBP at the encoder from the MBP at the decoder otherwise it must be, and hence error equation can be described by real variables only.

A. Error system

Introducing: 

• e k = x k -γ A cl
e k = W (q -1 )x k (5) xk = W (q -1 )ε k (6)
with W = BR/A cl being the stable operator defined previously. Note that ε k = ε k (x k ), and thereby the above error equation can be seen as two systems in cascade, i.e. the output of the autonomous system ( 6) is the input of the stable system [START_REF] Tan | Numerical study of joint quatization and control under block-coding[END_REF]. For stability purposes it is thus sufficient to demonstrate the stability properties of the sub-system [START_REF] Li | Robust quatization for diginal finite communication bandwidth (dfcb) control[END_REF]. Note that ε k writes as:

ε k = xk -xk = xk -ϕ LD • ϕ -1 LD {x k } = xk -φLD {x k }
where φLD

△ = ϕ LD • ϕ -1 LD : xk → xk .
Note that this map is dynamic and defined by the following relation:

xk = xk-1 + ∆ • δ k (7) 
with δ k = f (x k ) as defined before. Ideally, ie without coding, the map φLD be a linear map with unitary gain. This ideal goal is hampered by several factors, among which the unknown initial conditions of x0 , and, more important, by a bad choice of T s , and ∆. In particular, large sampling times T s , and too small quantum ∆ may result in signal variation of more than one level, which may lead to unrecovered bias in the estimated, leading to potential instabilities for unstable open-loop systems.

The following analysis gives sufficient stability conditions, and it also details the type of stability that can be reached with this coding scheme. For simplicity reasons, the analysis is presented using a simple linear system with a scalar gain which captures the essential stability characteristics of such type of scheme, namely:

• condition needed for stabilization given as a function of the maximum unstable open-loop eigenvalues, and • attraction domain specified as a function of the granularity of the level detector (∆) The analysis first presents the case of the ideal transmission when δk = δ k , then, in subsequent sections, the impact of the modulation latency is assessed.

B. Stability properties: ideal transmission δk = δ k

Consider the stabilization problem (r = 0) of the following simple unstable system B(q -1 )

A(q -1 ) = bq -1 1-aq -1 , with 2 > |a| > 1, and the static feedback control law u = kx k . Let 1 > a c > 0 be the desired closed loop poles, the required gain to reach such closed-loop specification is k = -(a -a c )/b. This particular choice leads to the error equations ( 5)-( 6) with W (q -1 ) = (a-ac)q -1 1-acq -1 . Due to the cascade structure of such error equation arrangement, stability only relies on the stability of the equation ( 5) which captures most of the difficulties. To this aim we will concentrate on the following set of equations,

xk+1 = a c xk + (a -a c )ε k , ε k = xk -xk (8) 
xk = xk-1 + ∆sign (l k -l k-1 ) , l k = xk ∆ - 1 2 (9) 
The stability analysis mainly depends on the following two properties: 

B ρ1 = {x k : |x k | < ρ 1 } , ρ 1 = (1 -(a-ac) 2 ) 1 -a c ∆ with ρ 1 > 0. Then for all |x k | ∈ B ρ1 the following holds, ∀k ∈ Z + : i) |x k -xk-1 | ∆, furthermore, i) implies the following two equivalent inequalities: ii) |l k -l k-1 | 1 iii) |ε k | ∆/2
Proof: . See [START_REF] Canudas-De-Wit | entropy coding in networked controlled systems[END_REF] The Lemma establishes conditions on |x k |, ∀k ∈ Z + such that the rate change in the level detector be at most one. For consistency reason, it is implicitly assumed that the encoder/decoder internal states are suitably initialized. That is, x0 , and l 0 are such that: ε 0 < ∆/2, and x0 = ∆l 0 at k = 0.

Lemma 2: Invariance condition. Assume that x0 , and l 0 are such that: ε 0 < ∆/2, and x0 = ∆l 0 at k = 0, and that x0 ∈ B ρ1 , then if,

ρ 0 = ∆ (a -a c ) 2(1 -a c ) < ∆ (1 -(a-ac) 2 ) 1 -a c = ρ 1
then all solutions of xk ∈ B ρ1 , for all k = 0, 1, . . . . Proof: . See [START_REF] Canudas-De-Wit | entropy coding in networked controlled systems[END_REF] Working out details of the above inequality, it can be shown that this equality holds if a-a c < 1, for all a c ∈ (0, 1). Note that this is a stronger condition than the one in Lemma 1 as it is derived from a more conservative (Lyapunov) analysis.

The following theorem used the previous two lemmas to derive the complete stability result.

Theorem 1: Assume that the coding algorithm is initialized such that x0 , and l 0 are such that: ε 0 < ∆/2, and x0 = ∆l 0 . Consider system satisfying a -a c < 1, with initial condition in the set x0 ∈ B ρ1 . Then:

• xk ∈ B ρ1 , ∀k ∈ Z + , • ∃k 0 : |x k | ρ 0 , ∀k k 0 , and • lim k→∞ d(x k , B β ) = 0.
where d(x k , B β ) is the minimum Euclidean distance from x k to any point within the ball

B β := {x ∈ R : x < β},
and β is a constant that depends on ρ 0 , and on the infinite norm of W (q -1 ).

Proof: The first two statements follow from the previous analysis, the last statement result from equation ( 5), i.e;

|x k | ||W || • |x k |.
Details for the derivation of this property are similar to the ones used in [START_REF] Canudas-De-Wit | Differential coding in networked controlled linear systems[END_REF], and [START_REF] Gomez-Estern | Adaptive delta-modulation coding in networked controlled systems[END_REF].

V. STABILITY PROPERTIES WITH WIRELESS

TRANSMISSION

In this section we study the stability properties for the case of wireless transmission. We first present the wireless transmission method (amplitude modulation) and investigate the effects of this transmission (latency), and then we present a modification of the encoder to account for such a difference.

A. Wireless transmission method

There exists many well-known transmission techniques that can be used to transmit the information symbols δ k ∈ {-1, 0, 1} at the rate 1/T s , see for example [START_REF] Proakis | Digital Communications[END_REF] for a complete description. One possibility is to use a ternary RZ line code associated to an amplitude shift keying modulation (ASK). Let us describe the corresponding transmission and the reception stages.

1) Transmission:

The transmission stage can be divided into two different steps: the line coding and the modulation.

a) Line coding: We have first of all to build a baseband, low frequency signal, also called line code. It writes:

s LF (t) = k δ k h e (t -kT s ) (10) 
with h e an emission filter whose aim is to precise to timefrequency localization of the transmitted signal. For example, h e (t) can be a simple rectangular window with duration T s .

In this case, we get the so called NRZ (Non Return to Zero) line code. The rectangular window can also have a duration τ < T s , which corresponds to RZ (Return to Zero) line code 1 . This is the choice adopted in this work. This signal, s LF (t), could be transmitted through a wired line, but not through a transmission channel. Indeed, wireless transmission is possible only for high frequency signal (HF), whereas s LF (t) is low frequency by construction. It is worthwhile mentioning that the spectral properties of this signal are fixed by h e (t). In practice, the spectrum is never perfectly bounded, but we can nevertheless make the approximation that there exists an upper maximal frequency

f max : |H e (f )| << 1 for |f | > f max .
b) Modulation: The modulation step consists in transposing the low frequency signal s LF (t) around a carrier frequency f 0 in order to transmit it through radio waves. We have chosen to use an amplitude modulation for its ease of implementation and also in order to take advantage of the fact that the signal will be equal to zero when δ k = 0, reducing the energy used. Then, the corresponding high frequency modulated signal simply writes :

s HF (t) = s LF (t) cos(2πf 0 t)
The modulated signal spectrum is then concentrated around -f 0 and f 0 , precisely in the intervals [-f max -f 0 ; +f max -f 0 ] and [-f max +f 0 ; +f max +f 0 ]. Thus, we must have f 0 > f max , otherwise these two intervals overlap. In practice, f 0 >> f max .

2) Reception: We will suppose that the received signal is exactly equal to the transmitted signal s HF (t), which is obviously not the case in reality. We will so neglect synchronization issues, noise and any distortions due to the transmission channel. The reception stage is dual to the transmission stage. Thus, it comprises a demodulation step followed by a decoding and a detection step.

a) Demodulation: We first have to demodulate the received high frequency signal s HF (t), so that we will recover s LF (t). The optimal solution consists in multiplying s HF (t) by the same carrier as the one used at the modulation step, and then low-pass filtering the obtained signal. Indeed, we have

s HF (t) cos(2πf 0 t) = 1 2 s LF (t) |f |<fmax + s LF (t) cos(2π2f 0 t) |f -2f0|<fmax or |f +2f0|<fmax
and we thus deduce that s LF (t) can be recovered by low pass filtering of s HF (t) cos(2πf 0 t), providing that this filter H LF (ν), is such that :

• H LF (ν) = 2 pour |ν| < f max ; • H LF (ν) = 0 pour |ν| > -f max + 2f 0 .
That is why 2f 0 has to be greater enough than f max , otherwise the low-pass filter will not be practically feasible.

b) Decoding: Let us denote ŝLF (t) the signal obtained after low pass filtering. If the low pass filtering is perfect and if s LF (t) is completely spectrally concentrated in [-f max ; f max ], ŝLF (t) = s LF (t). Otherwise, in a real case, a slight error ε(t) occurs : ŝLF (t) = s LF (t) + ε(t). This slight error is not problematic in fact. Indeed, what is important is not to reconstruct exactly s LF (t), but only to recover the δ k symbols. It can be shown that the optimal receiver consists in filtering by h e (-t) and then sampling at the instant kT s :

δk = ∞ -∞ ŝLF (t)h e (t -nT s )dt = [ŝ LF (t) * h e (-t)] t=kTs (11)
The problem is that h e (-t) is not a causal filter. That is why, even for a perfectly reliable channel without noise, a delay need to be introduced. Let us denote τ the duration of h e (t). Then, h e (τ -t) is causal and δk = [ŝ LF (t) * h e (τ -t)] t=kTs+τ Thus, the symbol δ k transmitted at the instant kT s can only be received at the instant kT s + τ , that is to say with a delay τ . Moreover, this delay is equal to the duration of h e (t). Thus, the lower is the duration of h e (t), the lower will be this delay. But a lower duration also implies a greater spectral occupancy. It is worthwhile noting that if there were no noise, this filtering would not be necessary, and therefore there no demodulation delay. c) Detection: At least, after the computation of an estimation δk of the symbol transmitted at the instant kT s , we can take advantage of the fact that δ k ∈ {-1, 0, 1} in using a threshold non linearity with the following detection rule:

δk △ =    -1 if δk < -0.5 0 if | δk | < 0.5 1 if δk > 0.5
to get the final estimated δk .

In conclusion, it is worthwhile emphasizing that :

• we must have H LF (ν) = 2 for |ν| < f max and H LF (ν) = 0 for |ν| > -f max + 2f 0 , hence f 0 >> f max ; • if δ k is transmitted at the instant kT s , it is received at the instant kT s + τ . Therefore:

δ(kT s ) = δ(kT s -τ ), ∀k ∈ Z + , τ > 0 (12) 

B. Proposed modification for latency compensation

We have just seen that the transmission process introduces a delay τ . Therefore, we can not assume anymore that δk = δ k as in section IV. Nevertheless, we will now see that it is possible to build a predictor with modified time-horizon at the decoder side, so that the stability conditions remain unchanged.

Without loss of generality, let us assume that 2 τ = T s /2. This implies that the information needs to be processed with higher rate, and hence the digital version of the decoder needs to compile with this new sampling rate. To this aim, let us introduce the new delay operator z -1 in this new time-base, as: υ(t)z -1 = υ(t -T s /2). We have then the following relation z -2 = q -1 , and according to [START_REF] Canudas-De-Wit | entropy coding in networked controlled systems[END_REF] we also have:

δk = z -1 δ k
Thus, the transmission latency can be assimilated to a pure delay equal to z -1 . The idea of the modification proposed can be explained by first rewriting the encoder equation in this new time basis (although there is no need to make any change of equation nor to modify the time basis of the clock at the encoder side). This gives,

xk = W (z -2 ) ∆ 1 -z -2 δ k
and noticing that if the previous decoder structure is modified as:

xk = W (z -2 ) ∆z -1 1 -z -2 δk = W (z -2 ) ∆ 1 -z -2 δ k = W (q -1 ) ∆ 1 -q -1 δ k
where the last expression is obtained by using the fact that δk = z -1 δ k . Then, if the encoder and the decoder are initialized equally, the solutions and the associated error equation are similar to the ones presented in section IV. As a consequence, the stability properties follow the results in Theorem 1. 
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W (z -2 ) xk xk δ k ∆ 1-z -2 Transmission + Decoder δk ∆ 1-z -2 W (z -2 ) z -1 xk xk δ k z -1

VI. SIMULATION RESULTS

We consider the following simple system

B(q -1 ) A(q -1 ) = bq -1 1 -aq -1 (13) 
The controller is: u k = kx k + γr k obtained from the closedloop specification given by With

A cl = (1 -a cl q -1 ), k = -a-
ρ 1 = 1-a-ac 2 
1-ac ∆ = 0.028, we have x0 < ρ 1 and a < 1 + a c = 1.5 so theorem 1 applies.

The upper figure 4, shows that x k can track the reference r k with a certain error function of the quantification ∆. Figure 4 (bottom) displays the distribution of δ k : we can see that when the reference is constant (as the output) the encoder sends a substantially large number of δ k = 0. As the the encoder has no energy consumption during the δ k = 0 phases, an important saving in energy is obtained at the sensor side. This saving is much more important than the ones that can be obtained by using the standard two-state ∆-modulation (δ k = ±1) strategy.

VII. CONCLUSIONS

In this paper we have investigated the possibility to use 3level coding alphabet in the context of networked controlled systems. The main motivation has been to explore the benefits in terms of energy savings (energy-aware) in the context of low-energy sensors. We have proposed to use a coding strategy with the ability to quantify and to differentiate stand-still signal events, from changes in the source (level crossing detector). The stand-still signal event results then in a modulation strategy with a low energy carrier (sleep mode), whereas the changes of levels are modulated with enough energy (wake-up mode).

We have studied the impact of the wireless RZ amplitude modulation strategy in connection with the stability of the system. It has been shown that this modulation introduced an arbitrarily small latency, but that it can be compensated at the decoder side, by accommodating the predictor horizons to this delay which is known and fixed by the user. In that way, the same stability condition as in the case of ideal transmission are preserved. 

  r k : reference signal, x k : system output, xk : estimated (reconstructed) output, xk : true estimated error, xk = x k -xk , ϕ LD : level detector, ϕ -1 LD : inverse of level detector, xk : approximated estimated error, obtained after reconstruction, i.e. xk = {ϕ -1 LD • ϕ LD }(x k ), with ϕ -1 LD • ϕ LD = 1. ∆: step interval used to detect level and reconstruct xk , δ k : 3-level valued integer signal: {-1, 0, 1}. Signal to be modulated, δk : demodulated signal at the received information, u k : control input.
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 1 Fig. 1. Block diagram of the complete estimation/control process including the coding and the modulation steps.

  r k : the tracking error, • xk = x k -xk : the prediction error, and • ε k = xk -xk : the LD error. we have the closed-loop error system:

Fig. 3 .

 3 Fig. 3. Decoder and encoder equations.

  a cl b and γ = 1 -a c . Parameter used in simulations are: a = 1.1, b = 1, a c = 0.5, T s = 0.1 (sec), ∆ = 0.02, x 0 = 0 and x0 = -0.01 so x0 = 0.01.

Fig. 4 .

 4 Fig. 4. Time evolution of x k and r k (upper). Event distribution of δ (bottom).

•

  Rate level condition. Defines conditions on a, and a domain B ρ1 for xk that ensure that no more than one level change can be effectuated, i.e. |l k -l k-1 | 1, • Invariance condition. Defines condition under which the domain B ρ1 is indeed an invariant; solutions xk starting in B ρ1 do not leave this domain. Lemma 1: Rate level condition. Consider unstable systems limited by the relation a < 2 + a c < 3, and let define the compact set, B ρ1 , as:

Classically, RZ and NRZ line codes rather use binary symbols, but they of course can be extended yo the case of ternary symbols.