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MOMENTS OF THE WEIGHTED NON-CENTRAL CHI-SQUARE DIST RIBUTION

Daniel GRAU

University of Pau, Laboratory of Applied Mathematics, CNRS UMR 5142

IUT de Bayonne, 3 Av. Jean Darrigrand, 64100 Bayonne, France

Abstract :
The weighted non-central chi-square distribution with 1 degree of freedom, introduced by
Chen is generalized to the case of v degrees of freedom. Thus we obtain the non central

moments as well as the central moments in specific cases.
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1. Introduction

In any production process, it is essential to supervise a certain number of variables of
interest so that the manufactured goods are in conformity with the specifications defined by
the research department. In order to assess the aptitude of a process to respect these
specifications, the manufacturers commonly use various indices called capability indices. As
the capability of the process is only known through a sample taken from the production, it is
necessary to know the distribution of the estimators of these indices in order to estimate
them by confidence intervals or to carry out statistical tests on their values. In most of the
processes, the target aimed at by the variable of interest is located at the centre of the
specifications, and the first indices used relate to this situation. The first indices relating to
the asymmetrical case where the target is not located at the centre of the specifications

appear in the nineties. However, faced with the difficulty to obtain the properties of the



estimators which are in the form of random variables quotients, Greenwich and Jahr-
Schaffrath (1995) suggest to use rather an incapability index. Chen (1998) continues these
works by improving that incapability index. To study the properties of the estimator of this
new index, he takes an interest in the distribution of the random variable Z =
Maxz(alN(J,l),—azN (5,1)) , where a, and a, are two positive numbers, the density of which

he gives as an infinite sum of central chi-square distributions in the following form
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However, Chen does not study the moments of that variable Z, but he only uses this
decomposition in order to obtain the moments of the estimator of its incapability index in the
form of an infinite sum. Soon, Chen, Pearn, and Lin (1999), then Pearn, Lin, and Chen
(1999) use the density of Z to obtain the moments of the capability indices specific to the
asymmetrical case, in the form of an infinite sum. More recently Grau (2006) uses the same
principle to extend these results to a more general family of indices including the previous
ones. It thus appears that the knowledge of the moments of Z, which is the main purpose of
this paper, could allow a different approach to obtain the moments of the estimators of the
capability indices, possibly by releasing itself from the infinite sums. By introducing the
previous variable Z, Chen (1995) calls it weighted non-central chi-square distribution with
one degree of freedom (d.f.). This terminology is justified by the usual presentation of the

non-central chi-square distribution. Indeed, if Y is a N(o,1) distribution, then
Y2=(N(J,1))? = Maxz(N(J,l),—N (5,1)) is a non-central chi-square distribution with 1 d.f. and
non-centrality parameter J°. In this work, we intend to generalize this distribution to the case

of any number v of d.f., which we will note x2(d%a,,a,), the density of which is defined by
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Obviously, for the case where a, =a, =1, this reduces to x?(62,1,1) = x?(0?), the probability

density function of a non-central chi-square distribution with v d.f. and non-centrality



parameter d°. In section 2, we obtain the exact expression of the r-th moment of this
distribution. Then, in section 3, we are interested in the central moments in some specific
cases. This allows in particular to give a general expression of the central moments of a

XZ2(0?) distribution, which are usually obtained in a recursive way from cumulants.

2. Moments of the x2(d2,a,,a,) distribution

In order to simplify the writing, we note
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We thus have E[Z'|=(a? +a}' )A +(a? -a})B, , where
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The five following lemmas allow to give expressions of a,(d) and f.(d) in form of finite

sums.

Lemmal: f..(0) =95 (9)+(2r +v)5 (9).

Proof
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By derivation with respect to 9,
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thus the lemma.
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Proof
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By derivation of &' (d) with respect to J,
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Proof

Note L ( f)the Laplace transform of the function f. We have
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In  addition, since £.(9) can be  written in the following  form,
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we have S,
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, thus the lemma.
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Lemma4: a,(9)=a,,(9)—-(-1)d"a, (0).

Proof
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(v-1)0"2a, (0)+9""a, (0)=9""a,,,(d), and the lemma.
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Lemmab5: A:V+5
Proof
We have
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Proposition 1

Proof



This result is true for r = 1according to lemma 3. Let us suppose that it is true for the rank r.

. 1 . e erf (JIx/E)
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from where according to lemma 2,
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Let R, =R +0Q +2Q +(-10'(R+Q)-V-1p™"

and Q. =(v+0%)Q, +20Q +Q +(V-1)07Q . 2)
Q... is obviously an even polynomial of 2(r+1) degrees.

For P.,, we have
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according to the assumption of recurrence, therefore P (0)+Q, (0)= 2
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consequently B, =B +0Q, +2Q + (v~ 1)(2(%(2 +1)+a, )" +a, JJ , which is
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definitely an odd polynomial of 2r+1 degrees.

Proposition 2: Q = i%( )52k :E[()(,,Z(JZ))r]



Proof

According to lemmas 1 and 2 we have
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Taking into account the fact that & lert (5/\/5) is neither polynomial, nor fractional, from (1)
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and Q' +(J+(-1)5)Q =2Q . (4)
Taking d=0in (3), we have Q' (0)+ 2 -1, = 2Q, (0), thenin (2),

Q.(0)=vQ (0)+Q (0)+ 2¢ - 1p, = (2 +v . (0, whence

Q.,(0)= (2r +V)(2 +v - 2)...¢ + 2, since Q(0)=v.

In (4), by equalizing the terms of rank 2k-2 (k #r +1), we have
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proposition for Osk <r.
In (4), by equalizing the terms of rank 2r-2, we have

)

—~ ___ Since
r@2r+v-2)

(2r)(2r =1y, + (& - 2p,_,+ 2 ¢ - 1p, = 2a,_, thus a, =

r ) 2 _r+vi2) =2r(r -1+v/2), we have a,_, =1, and the proposition for k=r.
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Proposition 3 :

M(k+i+(-1)/2)r(k+i+1/2 ( r

xgr(k+r+i +1+(V‘1)/2)r(k+i+|//2) k+i)(2(k+i)+(v—l)/2)52k-1_

Proof

In (3), by equalizing the terms of rank 2r-1, we have
dra, =(2r-1p, _,+ (X +v ,_,— ¢ - 1n,, thus b,_, =a, =1, and by equalizing the terms of
rank 2k -1 (k#r ), we have
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=...., and in a recursive way we obtain the proposition by using the previous expression of

a.zk .



Proposition 4 : :% .
Proof
This result is true for r = 1 according to lemma 5 and proposition 2. Let us suppose that it is

-32/2

2

true for rank r. We have A =

@ (@)=, thus a,(8)=¢""Q., a,(®)=¢"*(5Q +Q),
and a;(3) =e”?((1+3°)Q +20Q +Q).
From lemma 4, a,.,(9) = e’/ ((1+ 0%)Q +20Q, + Qr") +V-10"a, ©)

_ e52/2 ((I/ + a-z)Qr + Za-Qr +Qr" + (I/ _1)5—1Qr') = ecSZ/ZQH:L according to (2), thus Aa= Qr2+1 .

Theorem 1 : If Z is a weighted non-central chi-square distribution x2(52,a,,a,), then
, e /2 J
C=E[Z=(af +af )A +|af —af )| R——+Aef| — ||,

_lrzr_kr(r"'V/Z)r w1 20 52y\'
where A _Zé Tk D) (k)d ZE[()(V(5 ) J

G T(k+r+@u-1)/2)T (r+v/2)
and P“_; M(k+@-1)/2)r (k+1/2

r-k

& T(k+i+v-1)/2)r(k+i+1/2 (r

xgr(kﬂ +i+1+ (v -1)/2T (k+i+v /2 k+i)(2(k+i)+(v—l)/2)52k-1.

Proof
We have E[Z']|=(a7 +a})A +(a? -a?)B,. From proposiions 2 and 4,
:%E[(){f(dz))r] Since B, =e**2j3.(5), expression of P is obtained from propositions 1

and 4, then the theorem.

In particular, we have

A =%(v+52), R=0,A =%[(2+v)u+2(2+v)§2+54], PR=(v+3)0+35°;



A :%[(4+u)(2+ VW +3(4+V)(2+y PP+ 34y Pt +5°],

=3P+ +50+ (I +11Pp°+9°;
A, =%[(6+v)(4+v)(2+v)/+ A6+V )4V )(2vy PP+ 6(6V )4V §+ 4BV 9°+0°],

=(W*+42°+ 128 + 1059 + (B*+ 58+ 1238P+ W+ 237+
In the particular case where v =1, P, is simplified and is equal to

Z F(r+k) « (Zr)
2" (2K) &
In the case where a,=a,=1, Z is a chi-square distribution with v d.f. , and non-centrality
parameter J7, and the previous formula gives again y, = E[()(f(dz))r]
In the case where 6 = 0, Z is a weighted chi-square distribution with v d.f. , of which the
density is f(z =l[a‘2f (a722) + a5 f (a‘zz)} and 4 ——( "+aZ JE[(x2)' ], since P is
2 1 Xg 1 2 sz 2 ’ r 2 v

odd.

3. Central moments of the  x?(d%,a,,a,) distribution

r

The r-th central moment is 4, = E[(Z -E(2)) } = (lr()(—l)r‘k/,/l;uf_k

k=0
In the general case, the complex expression of the non-central moments does not allow to
obtain simple results for the central moments. Simplifications can only be obtained in the
case of a non-weighted chi-square distribution or in the case of a central chi-square

distribution

Théoreme 2 : If Z is a non-weighted and non-central chi-square distribution xZ(J2), then

DHI) 52"‘i’V“j(—1)k(r [k)(k+kj _i)(r LR j)2"r(r —k+VI2)IM ¢ k= j+V /2).

i=0 j=0k=i-j
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Proof

For a non-weighted distribution, a, =a, =1, thus 4, = E[()(VZ(JZ))r } :Zr:

2"kl'(r+l//2)(r)52k
~ T(k+v/2)

k

and u, =v+09?, so

t=Y (R 2reeviz ) ('.<)—‘52i e+ )
=L “\i ) 2T +v/2) ’

whence the theorem after gathering the terms of the same rank.

Let us note that the summation on i from O to r can be restricted from [(r+1)/2] to r, where [ ]

represents the integer part. Indeed 4, =»'°*™) B, , where

i=0 i=0
) _ . '
B, = Z,V'_'(‘l)k(rfk)(kJ,kj _i)(rfkﬁj)zr(r ~K+V 12T —k=j+v/2)

k=i-j

=3 vi-J(—l)k(r[k)(k+'<j _i)(r[Eﬁj)zir(r—kw/z)/r C—k-j+v/2)

k=0

Now V'~ (k+kj _i)(riEEj)zjr(r—k+v/2)/r(r—k—j+v/2) is a polynomial in k of degree

(i+]). B is thus null for r>i+j+1, since Z(—l)k(lr()kmzo for r2m+1. Consequently

k=0

ZB]. will be null for r 22i +1, that is to say for i <(r -1)/2.

j=0
It should be noted that the central moments of a non-central chi-square distribution are
usually obtained in a recursive way from cumulants. The previous formula allows to find the

central moments with a rank lower or equal to 4 (e.g. Johnson et al, 1994, p. 447),

(=20 +287), pa =BV +307), , =1207 + & (57 + )+ &7 §7+ 4),

Theorem 3 : If Z is a weighted central chi-square distribution x2(0,a,,a,), then
=Y (@t +a)ai +ad) ()2 v kv 0 12),
k=0

Proof

11



Since J= 0, we have 4 =%(afr +a? )E[(x2)" ], whence the theorem.
In particular, 1, =:11V2(af —a??+v(alt+al), W, =g|/2(af —ajai-aaivad+av@ita)d),
Ho= v @t -datai it Srae v @ M S G E S

+2v2(Tal - dala?-alal+ iy 24 @B+al.

Theorem 4 : If Z is a non-weighted central chi-square distribution x?, then

r

i :Z({()(—l kKR Ky [2)F @ 12).

k=0
Proof

For a non-weighted central chi-square distribution, d= 0 and a, =a, =1. The theorem is then

obtained from theorems 2 or 3.
Conclusion

We suggest an extension of the weighted non-central chi-square distribution introduced by
Chen (1998) for 1 d.f., to the case of v d.f.. This new distribution with 4 parameters is a
generalization of the non central chi-square distribution. The non central moments are
obtained. The complexity of the expressions does not allow to consider a simple relation for
the central moments in the general case. Those are obtained for specific cases which allow
in particular to give an expression for the non-central chi-square distribution without requiring

the use of cumulants.
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